

Niagara River Biomonitoring Study 2015, Caged Mussels (*Elliptio complanata*), and Semi-Permeable Membrane Devices (SPMDs)

Lisa Richman Ontario Ministry of Environment, Conservation and Parks Water Monitoring Section Environmental Monitoring and Reporting Branch

> Copyright: Queen's Printer for Ontario, August 2018 ISBN: 978-1-4868-2961-3

Acknowledgments

The author would like to acknowledge John Thibeau and Ryan Mototsune of MECP for the 2015 field work. The efforts of the MECP Laboratory Services Branch organic contaminant analysis unit and dioxin unit are also acknowledged.

The author would also like to acknowledge and thank Tanya Long and Cheriene Vieira (MECP), Brad Hill (ECCC) and staff from NYSDEC for their review and comments on this report, and Natalie Pulham for her assistance with the tables.

Executive Summary

The Niagara River is the interconnecting channel between Lake Erie and Lake Ontario. Numerous persistent toxic and bioaccumulative contaminants from waste disposal sites, industrial outfalls, municipal point sources and non-point sources have been discharged to the Niagara River for decades. Since 1983 the Ontario Ministry of Environment, Conservation and Parks (MECP) has been committed to the biomonitoring of contaminants in the Niagara River using caged mussels (*Elliptio complanata*) and more recently using passive samplers known as semi-permeable membrane devices (SPMDs) as part of Ontario's commitment to the Niagara River Toxics Management Plan (NRTMP). These studies have provided information on suspected contaminant sources and source areas in the river between Fort Erie (FE) and downstream at the mouth of the river at Niagara-on-the-Lake (NOTL).

The water quality dataset (2005-2015; Hill, 2018) from Environment and Climate Change Canada (ECCC) Upstream/Downstream (US/DS) Niagara River Monitoring Program identified several organic contaminants which exceed water quality criteria/objectives (WQC) (e.g., hexachlorobenzene (HCB), octachlorostyrene (OCS), mirex, and total PCBs), and also show evidence of statistically significant Niagara River sources: i.e., contaminants that have higher water concentrations at NOTL compared with FE. The 2015 caged mussel and SPMD data were used to identify sources of these contaminants to the river (Table ES1). With the exception of metabolites of DDT at Fort Erie, sources of contaminants were not identified on the Canadian side of the river.

Table ES1: Niagara River sources identified from caged mussel and/or SPMD data for compounds identified in the ECCC US/DS water quality monitoring dataset that have concentrations higher at NOTL than at FE.

US/DS data suggest	NR sources identified by
NR sources	Caged Mussels and/or SPMD Data
1,2,3-Trichlorobenzene	Gill Creek, Pettit Flume Cove, Occidental Chemical Buffalo Ave. Plant,
1,2,4-Trichlorobenzene	
1,3,5-Trichlorobenzene	
1,2,3,4-Tetrachlorobenzene	Pettit Flume Cove, Bloody Run Creek, Occidental Chemical Buffalo Ave. Plant
Pentachlorobenzene	
Hexachlorobenzene ¹	
α-HCH	Courses Consilioned Cill Consilio
γ-HCH (Lindane)	Cayuga Creek and Gill Creek
α -chlordane ²	Two Mile Creek, Cayuga Creek, and Pettit Flume
pp-DDE ³	Fort Erie, Gratwick Riverside Park marina, Cayuga Creek
Dieldrin	Two Mile Creek
a- Endosulfan	Two Mile Creek and Bloody Run Creek
Mirex	Occidental Chemical Buffalo Ave. Plant and associated sites
Octachlorostryene	Pettit Flume Cove, Bloody Run Creek, Occidental Chemical Buffalo Ave. Plant, Gill Creek
Hexachlorobutadiene	Occidental Chemical Buffalo Ave plant and Gill Creek
Total PCBs ⁴	Two Mile Creek/Rattlesnake Creek, Occidental Chemical Buffalo Ave plant,
	upstream of Gratwick Riverside Park (source still to be identified), Pettit Flume Cove
¹ HCB present at all sites in the	river >WQC
² Low concentrations of α - chlo	ordane were present at all stations sampled on the river
³ nn-DDF present at all sites in	

³pp-DDE present at all sites in the river >WQC

⁴Total PCBs present at all sites in the river >WQC

SPMD data, reported as ng/SPMD were used to estimate mean water concentrations (ng/L) using the United States Geological Survey (USGS) SPMD Water Concentration Estimator. These values were compared with the most stringent of the relevant New York State Department of Environmental Conservation (NYSDEC) guidelines, the US Environmental Protection Agency (EPA) guidelines, ECCC and/or MECP Provincial Water Quality Objectives.

In summary, SPMD data suggested that water concentrations of dieldrin, DDT metabolites (4'4,-DDE and 4'4,-DDD), mirex, HCB and total PCBs exceeded the most stringent water quality criteria at multiple stations. However, in general, organochlorinated pesticides were present at low concentrations throughout the Niagara River. Chlorinated benzenes and chlorinated industrial compounds were detected at many of the stations on the American side of the river, but, concentrations overall, with the exception of HCB and OCS at the Pettit Flume Cove, Bloody Run Creek and Occidental Chemical Co. Buffalo Ave plant, were low and below the most stringent WQC. Estimated water concentrations for total PCBs at the Occidental Chemical outfall were as high as 71 ng/L. Additionally, elevated concentrations of PCBs were present upstream of Gratwick Riverside Park. The 2018 survey will attempt to track down a source of the PCBs associated with this area. PCBs exceeded the WQC at all stations monitored in the Niagara River.

Long-term trends for caged mussel data show that at American locations that were remediated, COCs remain low (e.g., chlorinated benzenes at the Pettit Flume and 102nd St. Waste site; PCBs at Gill Creek). For sites that were not remediated, COCs remain consistent through time, and the sites remain a source to the river (e.g., Two Mile Creek-PCBs; Bloody Run Creek-chlorinated benzenes, dioxins and furans). The 2015 mussel, SPMD and sediment data confirm the previous survey data that showed the Pettit Flume and Bloody Run Creek to be sources of dioxins and furans to the river. Data for sediment collected downstream of the Pettit Flume cove and at Fisherman's Park showed that dioxin contaminated sediment from the Pettit Flume is likely migrating off-site. Additionally, sediment and caged mussels collected downstream of Bloody Run Creek also show movement of dioxins and furans offsite. Without further remedial actions at these sites these trends are unlikely to change through time. Likewise, the Occidental Chemical Co. will continue to remain a source of multiple contaminants to the river (chlorinated benzenes, industrial organic compounds (OCS, HCBD), mirex and PCBs).

Table of Contents

INTRODUCTION AND BACKGROUND	
OBJECTIVES	
METHODS	
Sample Locations	3
Collection Methods and Ambient Measurements Mussel Deployment/Retrieval and Sample Preparation Sediment Water Chemistry SPMD Deployment	
Analytical Methods	6
Data Analysis	6
RESULTS	
Balsam Lake Control Mussels, SPMDs and SPMD Field and Lab Blanks Balsam Lake Field Blanks	
Caged Mussel and SPMD Data: Niagara River Organochlorine Pesticides	
Chlorinated Benzenes and Industrial Compounds Total PCB (Polychlorinated Biphenyls) Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans	
CONCLUSIONS & RECOMMENDATIONS	
REFERENCES	40
APPENDICES	45

List of Tables

Table 1: Estimated mean water concentrations (ng/L) for organic compounds based on the SPMD dataset. Concentrations are compared with Water Quality Criteria/Objectives (WCQ).

List of Figures

Figure 1: Niagara River: Mussel biomonitoring sampling stations 2015.

Figure 2: PCB homologue distribution patterns in SPMDs deployed in Balsam Lake, and SPMD field blanks exposed to the air during deployment and retrieval, 2015.

Figure 3: Estimated water concentrations (ng/L) for organochlorine pesticides (lindane and isomer alpha HCH) in SPMDs, Niagara River, 2015.

Figure 4: Estimated water concentrations (ng/L) for organochlorine pesticides (chlordane and isomers) in SPMDs, Niagara River, 2015.

Figure 5: Estimated water concentrations (ng/L) for organochlorine pesticides (heptachlor and heptachlor epoxide) in SPMDs, Niagara River, 2015.

Figure 6: Estimated water concentrations (ng/L) for organochlorine pesticides (DDT metabolites and dieldrin) in SPMDs, Niagara River, 2015.

Figure 7: Estimated water concentrations (ng/L) for organochlorine pesticides (mirex) in SPMDs, Niagara River, 2015

Figure 8: Mean (+/- SD) concentrations of chlorinated benzenes in caged mussels deployed in the Niagara River 2015).

Figure 9: Estimated water concentrations (ng/L) for chlorinated benzenes in SPMDs deployed in the Niagara River, 2015.

Figure 10: Estimated water concentrations (ng/L) for trichlorobenzenes from SPMDs deployed in the Niagara River, 2015.

Figure 11: Estimated water concentrations (ng/L) for OCS from SPMDs deployed in the Niagara River, 2015.

Figure 12: Estimated water concentrations (ng/L) for HCBD from SPMDs deployed in the Niagara River, 2015

Figure 13: Mean (+/- SE) concentrations of HCBD in caged mussels deployed at the mouth of Gill Creek through time (1987-2015).

Figure 14: Mean (+/- SE) concentrations of chlorinated organic compounds in caged mussels deployed at the Pettit Flume Cove through time (1987-2015).

Figure 15: Mean (+/- SD) concentrations of chlorinated organic compounds in caged mussels deployed at the Occidental Chemical Corp. Sewer 003 through time (1983-2015).

Figure 16: Mean (+/- SD) concentrations of chlorinated organic compounds in caged mussels deployed at Bloody Run Creek through time (1987-2015).

Figure 17: Mean (+/- SD) concentrations of hexachlorobenzene and pentachlorobenzene in caged mussels deployed at Bloody Run Creek and upstream and downstream of the contaminated area, 2015. ND (non-detect)

Figure 18: Chlorinated Benzenes in SPMDs (ng/SPMD) (mean +/- SD) deployed on the Canadian side of the Niagara River, 2015 with estimated water concentrations (ng/L) compared with the most stringent water quality criteria (WQC).

Figure 19: Mean (+/- SD) total PCB concentrations in caged mussels (mussel samples analysed using the congener specific method (sum of 52 congeners ND<5 ng/g) and/or Aroclor method (ND<20 ng/g)) deployed at sites along the Niagara River in 2015.

Figure 20: Mean (+/- SD) total PCBs (sum of 209 congeners) for SPMDs deployed in the Niagara River, 2015 with estimated water concentrations (ng/L).

Figure 21: Congener pattern (percent contribution of each congener to total PCB concentration) for SPMDs deployed in the Pettit Flume Cove and U/S and D/S of the cove, (208 congeners), 2015.

Figure 22: Congener pattern (percent contribution of each congener to total PCB concentration) for caged mussels, SPMDs and the pattern for Aroclor 1248A. The number of congeners presented for SPMDs and Aroclor 1248 were reduced to match the 52 congeners analysed in mussels.

Figure 23: Congener patterns (percent contribution of each congener to total PCB concentration) in the caged mussels deployed along the shoreline U/S and D/S of GRP compared with the pattern for Aroclor 1248.

Figure 24: Congener patterns (percent contribution of each congener to total PCB concentration) in the SPMD deployed GRP station U/S of the marina compared with the pattern for Aroclor 1248.

Figure 25: Congener patterns (percent contribution of each congener to total PCB concentration) in the caged mussels deployed along Two Mile Creek (2015) compared with the pattern for Aroclor 1254.

Figure 26: Mean (+/- standard error) of total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Two Mile Creek through time (1987-2015) and mean concentrations using the congener method (sum of 52 congeners) 2006-2015.

Figure 27: PCB congener patterns (percent contribution of each congener to total PCB) in caged mussels deployed in Rattlesnake Creek and Two Mile Creek, and the SPMD deployed at the mouth of Two Mile Creek, 2015. The number of congeners presented for SPMDs were reduced to match the 52 congeners analysed in mussels.

Figure 28: Mean (+/- standard error) of total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Gill Creek through time (1983-2015).

Figure 29: Mean +/- SD total PCBs (sum of 209 congeners) for SPMDs (ng/SPMD) deployed on the Canadian side of the Niagara River, 2015 with estimated water concentrations (ng/L) compared with the most stringent water quality criteria (WQC)

Figure 30: Total PCDD/F (ng/g dry wt.) trend through time data for the Pettit Flume cove and Fisherman's Park and congener patterns in sediment collected from the Pettit Flume and Fisherman's Park, 2015

Figure 31: Total PCDD/F (ng/g dry wt.) trend through time data for sediment collected from the Niagara River shoreline associated with Bloody Run Creek.

Figure 32: PCDD/F congener patterns in sediment collected from the Niagara River shoreline associated with Bloody Run Creek, 2015.

List of Appendices

Appendix A: Sampling Location Coordinates.

Appendix B1 & 2: Water Temperature, Dissolved Oxygen and Conductivity Data.

Appendix C: 2015 Mussel Tissue Wet and Dry Weights.

Appendix D1: 2015 Caged Mussel Tissue Contaminant Data.

Appendix D2: 2015 Caged Mussel Congener Specific PCB Data.

Appendix D3: 2015 Dioxin and Furan Concentrations in Mussel Tissue and Sediment.

Appendix E: Dioxin and Furan Concentrations in Mussels and Sediment 1985-2015. Appendix F1 – F4: SPMD Data.

Appendix G: PCB Aroclor Profile – percent contribution of each congener to the total PCB concentration using the 52 congeners analysed in caged mussels (analytical method PCBC3485.

Introduction and Background

The Niagara River (64 km long), is the interconnecting channel between Lake Erie and Lake Ontario. Since 1983, the Ontario Ministry of Environment, Conservation and Parks (MECP) has been committed to both routine and specialized biomonitoring of contaminants in the river using caged mussels (*Elliptio complanata*) as part of Ontario's commitment to the Niagara River Toxic Management Plan (NRTMP). These studies have provided information on suspected contaminant sources and source areas on the American as well as the Canadian side of the river between Fort Erie and Niagara-on-the-Lake (Richman *et al.* 2011).

Numerous persistent, toxic and bioaccumulative contaminants from waste disposal sites, industry, municipal point sources and non-point sources have been discharged to the Niagara River for decades. The river was identified as an Area of Concern by the International Joint Commission in 1987. Currently, due to environmental improvements through government and local stakeholder/industry remedial actions, the Niagara River (Ontario) RAP (Remedial Action Plan) is moving towards delisting the Canadian side of the river as an AOC. On the American side of the river, sediment investigations are ongoing, and remedial actions will be taken as needed to address areas where contaminated sediments contribute to Beneficial Use Impairments. Delisting of the US AOC is not expected until 2025 or possibly later.

The biota in the river can accumulate contaminants from the water, sediment and the food chain. Since they are sensitive indicators and accumulate the contaminants at higher concentrations than are present in the water, the use of caged mussels as a biomonitor has been an effective tool to measure the presence of contaminants in the river.

The 2015 biomonitoring survey using mussels (*Elliptio complanata*) was a follow up to surveys conducted every two to three years since 1983. In 2009, passive samplers known as semi permeable membrane devices (SPMDs) were introduced at selective stations to assess their effectiveness at accumulating organic compounds. Geographic contaminant patterns matched well with the caged mussels, and additional compounds not previously detected in the mussels were measured in the passive samplers. This may be due to differences in contaminant uptake processes in the passive samplers compared with the mussels. Accordingly, SPMDs were deployed in 2012 and 2015 at a selected number of stations including a control site (Balsam Lake) to further assess their effectiveness as contaminant monitors and obtain a more complete database of the stations routinely monitored with mussels.

Objectives

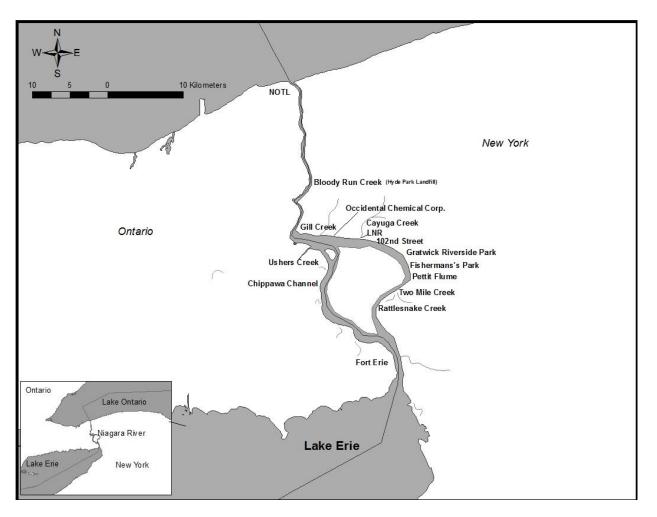
The biota in the river can accumulate contaminants from the water, sediment and the food chain. The principle behind the mussel biomonitoring program was to take mussels from a relatively uncontaminated site and place them in an environment that was known

or suspected of being contaminated with persistent, bioaccumulative, toxic substances. Mussels are abundant, easily collected and transported, and sedentary, which means that their contaminant exposure is reflective of relatively local conditions. They are responsive to their surrounding environment so tissue concentrations can often reflect short-term fluctuations in contaminant concentrations which may not be detected by routine water quality monitoring (Kauss and Hamdy, 1991; Lobel *et al.*, 1991; Metcalfe and Charlton, 1990; Muncaster *et al.*, 1989). *Elliptio complanata* is a filter feeder (feeding on plankton and organic detritus) and will accumulate contaminants directly from both the water column and particulate matter (Pennak, 1978). This makes it a good biomonitor since contaminants often partition between the dissolved and particulate phases.

SPMDs and other passive samplers efficiently sequester hydrophobic contaminants dissolved in the water and may be more reliable monitors than the caged mussels since the monitoring method is standardized among all stations. Biota don't always survive the exposure, or they may be stressed which can affect uptake and depuration leading to inaccurate measurements of ambient exposure concentrations. Additionally, there may be variability in the bioaccumulation due to their physical condition, sex or age (Lobel *et al.* 1991).

Deployment of SPMDs between 14-30 days has been shown to be sufficient to accumulate most hydrophobic contaminants that are environmentally relevant, although studies have suggested that depending on the contaminant, they may require a longer deployment time to be in equilibrium with the environment (Huckins *et al.* 1996; Petty *et al.* 2000). While some studies have shown agreement in geographic contaminant trends between SPMDs and mussels (Prest *et al.* 1992; Prest *et al.* 1995; Herve *et al.* 1995; Peven *et al.* 1996), others did not find a good correlation (Richardson *et al.* 2001; Degger *et al.* 2011). One explanation was that the variability in the performance of mussels had an effect on study outcomes, but these studies also highlighted the importance of the different contaminant uptake processes for SPMDs and mussels (dissolved-phase only, and both dissolved- and particulate-phase, respectively). Accordingly, it may be useful to use the two datasets in tandem to compare the relative patterns of contamination among the stations but not compare the actual concentrations between the monitors.

The objectives of the survey in 2015 were consistent with earlier surveys and are listed below:


- Identify contaminant sources or source areas requiring more detailed follow-up investigations based on uptake of contaminants in selected biomonitors.
- Compare results with ongoing long-term contaminant monitoring using indigenous species (i.e., young of the year (YOY) spottail shiners and emerald shiners) and identify spatial and temporal trends.
- Augment ongoing upstream/downstream Niagara River Toxics Management Plan programs by providing information on contaminants present in the river between Fort Erie and Niagara-on-the-Lake. The Environment and Climate Change Canada (ECCC) Upstream/Downstream (US/DS) water monitoring dataset (2005-2015; Hill, 2018) identified several organic contaminants which exceed the most stringent water quality criteria (WQC) and show evidence of statistically significant Niagara River sources: i.e., contaminants that have higher concentrations at Niagara-on-the-Lake compared with Fort Erie. The cage mussel and SPMD dataset will be used to identify sources of these contaminants in the river.

Methods

Sample Locations

During the week of July 7th 2015, mussels were deployed at sites on the Canadian and US side of the Niagara River (Figure 1; Appendix A provides site coordinates). Caged mussels were retrieved during the week of July 28th. Historically, caged mussels deployed on the Canadian side of the river in tributaries typically did not have detectable concentrations of organochlorine (OC) pesticides or chlorinated benzene compounds. Accordingly, in 2015 SPMDs were deployed at Ushers Creek and the Chippawa Channel in place of mussels. Both mussels and SPMDs were deployed at the head and mouth of the river: Fort Erie (FE) and Niagara-on-the-Lake (NOTL).

On the US side, mussels were deployed at stations with long-term monitoring datasets (e.g., the Occidental Chemical Corp. (Buffalo Ave facility) sewer 003, Gill Creek, Two Mile Creek, Pettit Flume and Bloody Run Creek) for OC pesticides, and chlorinated benzenes and in some cases congener specific PCB analyses and/or polychlorinated dibenzo-*p*-dioxins and polychlorinated dibenzofurans (PCDD/F). At other locations, (e.g., Gratwick Riverside Park (GRP), Cayuga Creek, Little Niagara River (LNR) and 102nd St. Hazardous Waste Site, mussels were only analysed for congener specific PCBs. SPMDs were deployed at most stations on the US side of the river (Appendix A).

Figure 1: 2015 Niagara River caged mussel biomonitoring locations. Some locations have multiple sampling stations.

Collection Methods and Ambient Measurements

Mussel Deployment/Retrieval and Sample Preparation

Mussels were collected by divers from Balsam Lake, a relatively uncontaminated lake located in Victoria County, Ontario. Mussels of approximately the same size (6.5 to 7.2 cm) were selected to reduce variability due to tissue weight and mussel age. They were placed in buckets lined with clean bioassay (food-grade) polyethylene bags partially filled with lake water and then sealed with trapped air inside for transportation back to the laboratory. Rapid temperature fluctuations were avoided. Five, randomly selected mussels were submitted for analysis of contaminants to determine initial tissue contaminant concentrations. These mussels are referred to as the "Balsam Lake control mussels".

A minimum of five clean mussels (and/or up to 28 mussels, depending on analytical requirements) were placed in clean, galvanized wire cages (about 30 cm x 36 cm x 10cm; 1 cage per station). These were anchored to the bottom using spikes or rope

attached to a concrete block in water of at least 1 m depth. All caged mussels were deployed for three weeks (21 days). After the three week deployment, at 18 selected stations three randomly selected mussels were retrieved and analysed individually for percent lipid and total PCBs (polychlorinated biphenyls), organochlorine pesticides, chlorinated benzenes and industrial chlorinated compounds (Appendix A). At 18 stations, three replicates of 6 mussels each were composited and submitted for congener-specific PCBs. Additionally, at 10 stations mussels (one composite of four mussels) were submitted for dioxins and furans.

Upon retrieval, mussels were immediately shucked, excess water drained and the soft tissues weighed (Appendix C). Mussels were either wrapped individually in hexanerinsed aluminum foil or packaged as composites, placed in plastic bags, and frozen until analysis. Mussels submitted for PCB congener-specific analysis were freeze-dried prior to analysis. In all cases, the mussels were not depurated prior to analysis.

Sediment

At 16 stations located at either Bloody Run Creek, the Pettit Flume, Fisherman's Park and Two Mile Creek, surficial sediment (top 3 cm) grab samples were collected, during mussel retrieval, with a hexane rinsed mini ponar or if the sediment was hard packed (e.g., sand and gravel) a stainless steel spoon for PCDD/Fs analysis. All sediment samples were also analysed for total organic carbon and particle size (Appendix A).

Water Chemistry

Water temperature, DO and conductivity measurements were collected *in situ* during deployment and retrieval of mussels at all stations using a YSI sonde (Appendix Table B).

SPMD Deployment

SPMDs were obtained from Environmental Sampling Technologies (EST) who is the manufacturer of the SPMD equipment, media preparation and dialysis services. Analysis of the SPMDs for contaminants of interest was performed by AXYS Analytical Services Ltd. SPMDs were deployed at 29 stations to measure contaminant uptake from the dissolved phase in water (Appendix A). Additionally, SPMDs were deployed in Balsam Lake for three weeks to compare uptake with the Balsam Lake Control mussels. Briefly, 91.4 cm x 2.5 cm low density polyethylene lay-flat tubing was filled with 1 mL of high purity triolein then heat-sealed and stored frozen in aluminum canisters for transportation to the Niagara River. EST also spiked the SPMDs with Performance Reference Compounds (PRC). These compounds are used to measure rates of loss, which allow adjustment of the SPMD data to reflect field sampling conditions. Each SPMD was spiked with 60 ng/SPMD of PCB 14, PCB 29 and PCB 50. At each site, three SPMDs were placed on a "spider carrier" within a galvanized metal shroud and deployed by placing them in the current on the sediment using site rocks or steel pegs to hold them in place. Three field blanks were opened and exposed to the air for the duration of the deployment and retrieval to assess the impact of atmospheric contamination on the SPMDs. Two sites were on the US side and one site was on the Canadian side.

SPMDs were retrieved simultaneously with the caged mussels, placed in metal containers, and stored on ice until return to the laboratory where they were stored frozen until analysis by SGS AXYS Analytical. All SPMD data were reported in Appendix F as ng/SPMD.

Analytical Methods

The mussel samples were analyzed for total-PCB and OC pesticides using the OMOE method E3136 (OMOE, 2008a; summarized in Richman and Somers, 2010). PCB congeners were analysed in biota using OMOE method E3411 and E3485 (OMOE, 2008b) and the seventeen 2,3,7,8-substituted toxic PCDD/Fs and homologue totals were analysed in mussels and sediment using the OMOE method DFPCB-E3418 (OMOE, 2008c; Richman and Somers, 2005). A select number of sediment samples were analysed for PCDD/F using a new MOECC screening method that utilizes a modified sample preparation procedure involving the QuEChERS technology in conjunction with the analysis being carried out using the same GC/HRMS system stated above and quantitation by isotope dilution (E3535) (OMOE, 2015). Particle size and TOC in sediment were analyzed by OMOE methods E3328A and E3142A (OMOE, 2008d-e; described in Richman and Milani, 2010).

All mussel data are reported on a wet weight basis with the exception of the data for congener-specific PCBs. These mussels were freeze dried prior to analysis so concentrations are reported as dry weight. The total PCB concentration (sum of the 52 congeners) for these samples were also converted to wet weight by determining the ratio of wet to dry weight for each individual sample to facilitate a comparison with historical PCB data. The water content of the mussel tissue ranged from 84-91%. All sediment data are reported on a dry weight basis.

SPMDs were analysed for PCBs, OC pesticides, chlorinated benzenes and dioxins and furans by AXYS with a combined gas chromatography/low resolution mass spectrometry (GC/LRMS) analysis (based on EPA Method 8270 OC/D, EPA Method 625, EPA Method 1613B respectively). Prior to the analysis, all parameters were co-extracted (AXYS in house method MLA-013 (fractionation only). Detailed descriptions of analytical methods can be provided upon request. All SPMD data are reported as ng/SPMD (equivalent to ng/mL triolein) unless otherwise noted.

The remaining PRC PCBs (14, 29 and 50) measured following retrieval were subtracted from the total PCB data and for the description of homologue patterns.

Data Analysis

For the caged mussel data, a "W" flag represents the smallest amount of an analyte that can be reliably detected by the procedure used. Concentrations described as "trace" are flagged with a "<T". Trace values ranged from greater than "W" to 10 times "W" for organic parameters. Data flagged as trace indicate that the presence of the

analyte is confirmed but the actual concentrations reported should be interpreted with caution. Basically, "T" indicates the limit of quantification. Both "W" and "T" are based on the precision of the analytical method which is in turn based on replicate measurements for the same analyte. For example, a blank sample is spiked at a low concentration with an analyte. Replicates of the sample are analysed and the "W" value is set at 2/3 of the standard deviation of the replicate measurements. Additional QA/QC includes the comparison of each sample run (which is generally 12 to 25 samples) against prepared standards. There are method blanks and recovery checks using spikes. An independent control standard is used to monitor accuracy and stability, duplicate samples are used to test within run precision, and calibration standards are used for a drift check. Details on QA/QC expectations are provided in the method manuals listed above.

In the case of PCDD/Fs and dioxin-like PCBs, a "sample run" usually consisted of 10 samples. An analyte was considered to be above the detection limit when the result met standard peak definition (usually 3-5 times signal:noise ratio) or was greater than five times a corresponding positive result determined to be present in the method blank used within that specific sample set. "W" and "T" values do not apply to these analytical procedures. Data that do not meet peak definition and/or are less than five times the method blank are flagged as "<".

Toxicity Equivalency Factors (TEFs) have been used to express the toxicity of different dioxins and furans and dioxin-like PCBs (DL-PCBs) on a common basis. The World Health Organization (WHO) TEFs for the protection of fish were used for the calculations for both sediment and mussel value (van den Berg et al., 2006). Concentrations of individual isomers were converted to toxicity equivalents of 2,3,7,8-TCDD and then summed to yield a total toxic equivalent (TEQ). TEQs were calculated to express toxicity of the compounds as a single number to facilitate comparisons of mussel tissue and sediment dioxin/furan concentrations among stations and through time. Sediment TEQ concentrations can be compared with the Canadian Council of Ministers of the Environment (CCME) interim sediment guideline of 21.1 pg TEQ/g.

Using SPMDs to Estimate Water Concentrations

The amount of accumulated chemical in the SPMDs is proportional to the ambient concentrations of the dissolved phase of the chemical. However, temperature, biofouling and water current velocity have been shown to affect uptake rates (Huckins *et al.* 1996; Petty *et al.* 2000; Vrana and Schuurmann 2002; Booij *et al.* 2006; Wang *et al.* 2009). Huckins *et al.* (1996) showed that sampling rates increased with ambient temperature and hydrophobicity (up to about a log K_{ow} of 6), but, other studies have also shown sampling rates to decrease for compounds that have a log K_{ow} of greater than 6 (Petty et al. 2000), and that temperature may not have a significant impact on uptake rates (Booij *et al.* 2003).

In the Niagara River survey, temperature generally ranged from 20 to 25 °C at most stations (Appendix B) and there was minimal bio-fouling of the SPMDs at all sites. Although not measured, visual observations of the water currents at each station

suggested that velocity likely did vary. Even if water current rates were available, the SPMDs were, at times, covered by large rocks as camouflage, which would alter the flow in the immediate vicinity of the SPMD. Differences in uptake rates due to these site by site variations in water current can affect the accurate estimates of water concentrations of the compounds of interest among the sites. However, large differences in contaminant concentrations among sites that would identify sources should not be affected by these site to site variations.

One method to account for these differences is to use Performance Reference Compounds (PRCs) which are standardized compounds added to the triolein (Huckins *et al.* 2002). The effects of environmental variables (e.g. temperature, water current) on the uptake rates of the compounds of interest can be approximated by the effects of these variables on the loss rates of the PRCs. PRCs for PCB congeners 14, 29 and 50 were added to the SPMDs and their concentrations were measured after deployment. This information was entered into the United States Geological Survey (USGS) SPMD Water Concentration Estimator.

Water concentrations estimated in this way were compared to NYSDEC, EPA, ECCC or MECP water quality criteria/objectives (WQC) (which ever was most conservative), to determine if the presence of these compounds could be potentially problematic to biota. Additionally, the SPMD estimated concentrations were compared with the US/DS measured water quality data at NOTL which was reported for July 2015 coinciding with the deployment of the SPMDs. These comparisons are useful to identify locations that could be important sources of contaminants. However, many of the contaminants are hydrophobic (e.g. PCBs), and are likely bound to sediment. Since SPMDs measure the concentration of the compounds in the dissolved phase only, they do not account for the contaminant concentrations on particulate matter. Accordingly, impacts on the benthic community and food chain effects could be underestimated if concentrations are just below or similar to the criteria since the particulate phase is unaccounted. This underestimation of possible risk is compounded because WQC tend to be based on whole water concentrations which include both the dissolved phase and particulate phase concentrations.

Results

Balsam Lake Control Mussels, SPMDs and SPMD Field and Lab Blanks

Balsam Lake

Trace concentrations of congener specific PCBs were not detected in the Balsam Lake mussels in 2015. This is not surprising given that the historically low tissue concentrations detected in previous surveys were close to the analytical detection limits (2006-2012: Total PCBs (sum of 52 congeners) range: 0.6 – 6 ng/g wet wt.). Atmospheric deposition was suspected as the likely PCB source to the lake in previous surveys since there was no local point source (Johnson *et al.*, 2005; MacDonald and Metcalfe 1991). The corresponding PCB concentration in sediment collected in 2006 from the same area where the mussels were collected was also low at 4 ng/g dry wt.

and not indicative of a point source (Richman *et al.* 2011). Organochlorine pesticides and chlorinated compounds were all below the detection limit in the Balsam Lake mussels with the exception of trace concentrations of p,p'-DDE (2 ng/g and 4 ng/g) in two of the five mussels analysed (Appendix D1).

The mean total PCB concentration in the SPMDs was 5.2 ng/SPMD (standard deviation (SD) 0.7 ng/SPMD). The mean total PCB water concentration estimated using the USGS SPMD Water Concentration Estimator was 0.03 ng/L (SD 0.006 ng/L). For comparison, the Ontario Provincial Water Quality Objective for an unfiltered water sample is 1 ng/L. The NYSDEC Water quality Criteria used as a benchmark for the NRTMP is 0.001 ng/L. The homologue pattern for the SPMD was consistent with the profile for the caged mussels in 2006-2012 also suggesting atmospheric deposition as the sources. The SPMD data showed low concentrations of 4,4'- DDE (mean: 2 ng/SPMD; estimated water concentration was 0.01 ng/L (SD 0.002 ng/L), and low concentrations of 4,4'-DDD, HCB, trans-nonachlor (a component of the pesticide chlordane), endosulphan sulphate, and heptachlor epoxide (all means < 1.5 ng/SPMD), and dieldrin (mean 2.0 ng/SPMD) (Appendix F). Estimated water concentrations for these organochlorinated pesticides ranged from 0.001 to 0.01 ng/L (Table 1).

Field Blanks

SPMD field blanks were exposed to the air at three stations for the duration of sample deployment and retrieval (Ushers Creek, Gratwick Riverside Park (GRP), and Bloody Run Creek). The detection of contaminants represents the potential for the SPMDs to adsorb contaminants from the atmosphere. The field blanks had low concentrations (< 0.2 ng/SPMD) for delta HCH, dieldrin (<0.05 ng/SPMD) and PCBs (5.2 – 6.3 ng/SPMD). The only compounds that were consistently detected in the field blanks were 1,4 dichlorobenzene (mean 12.5 ng/SPMD; SD 1.7 ng/SPMD), 1,2 dichlorobenzene, 1,3 dichlorobenzene and 1,2,3 trichlorobenzene (< 3 ng/SPMD). However, these compounds were also present in the lab blanks at similar concentrations and suggest laboratory contamination (Appendix F). SPMD data presented in this report were not blank subtracted.

The PCB homologue pattern in the field blanks was similar to the Balsam Lake SPMD pattern (Figure 2). All three field blanks and Balsam Lake had the trichlorobiphenyls as the dominant homologue. Since the concentration of total PCBs in the SPMD field blanks was similar to the Balsam Lake SPMDs, it is possible the Balsam Lake samples represented exposure to the atmosphere during deployment/retrieval rather than available PCBs in the water. However, the source of PCBs to the water is likely atmospheric as well. PCB congeners were all non-detect in the lab blanks.

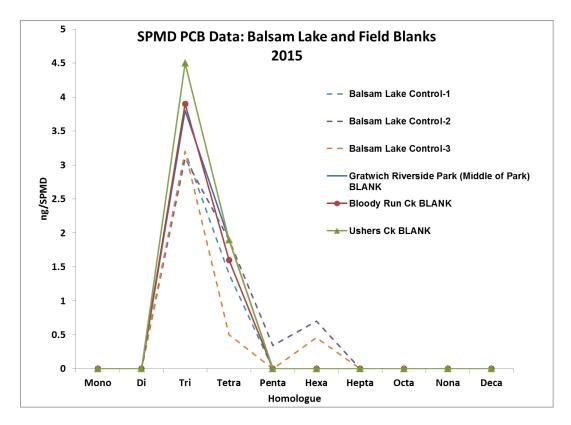


Figure 2: PCB homologue distribution patterns in SPMDs deployed in water in Balsam Lake (dashed lines), and SPMD field blanks exposed to the air during deployment and retrieval, 2015 (solid lines).

Caged Mussel and SPMD Data: Niagara River

Organochlorine Pesticides

With the exception of p,p'- DDE, organochlorine pesticides(OC) have not been routinely detected in caged mussels. Accordingly, the SPMD data provide the best evidence of the presence of these compounds at specific locations in the Niagara River. All raw SPMD data are provided in Appendix F. Water concentrations estimated using the USGS SPMD Water Concentration Estimator are provided in Table 1. The relative patterns of contamination among stations (i.e. locations with high or low concentrations) were consistent between the raw SPMD data (ng/SPMD) and the estimated water concentrations (ng/L).

Overall, SPMD data showed OC pesticides were present at low concentrations throughout the Niagara River, however, criteria for dieldrin, DDT metabolites (4'4,-DDE and 4'4,-DDD), α -HCH (isomer of lindane) and mirex were exceeded at multiple stations (Table 1). This is consistent with the ECCC US/DS water quality monitoring dataset (Hill, 2018) which also showed exceedances in criteria in the water at NOTL for the above chemicals (with the exception of α -HCH). Additionally ECCC found that concentrations of lindane, chlordane, α -endosulphan and mirex were higher in water at NOTL than FE indicating sources of these contaminants in the Niagara River.

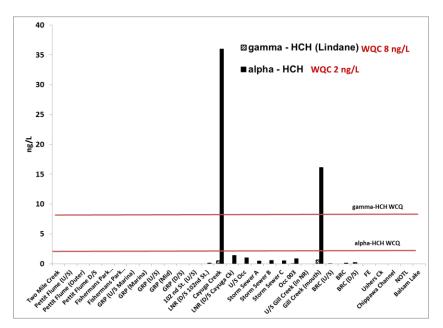
Concentrations were compared with						tio of th	e wate	er conc	entratio	n estin	nate to t	he criter	ia.						
Values that exceed the criteria were I	highlighted in red		,		ownstream														
			2 Mile Ck			Pettit			Pettit			Pettit		Fisherman	S		Fishermans		
						Flume			Flume			Flume		Park			Park		
						U/S			(Outer)			D/S		U/S			D/S		
Estimated Water Concentration	Water Quality				Exceedence														
	Criteria	Agency	mean	SD	Factor (EF)	mean	SD	EF	mean	SD	EF	mean	SD	EF mean	SD	EF	mean	SD	EF
	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	ng/L	ng/L		ng/L	ng/L	
1,3-Dichlorobenzene	2500	MECP	0.90	0.23		0.29	0.51		141	18.0		2.2	0.5	1.9	0.07		3.1	0.46	
1,4-Dichlorobenzene	4000	MECP	7.8	0.91		2.4	4.20		300	69.8		12.1	1.9	7.9	0.42		18	3.99	
1,2-Dichlorobenzene	3000	NYSDEC	1.0	0.04		0.43	0.75		72	14.3		1.6	0.4	1.2	0.14		2.0	0.70	
1,3,5-Trichlorobenzene	650	MECP	0.02	0.00		0.002	0.00		2.9	0.3		0.05	0.00	0.03	0.00		0.06	0.00	
1,2,4-Trichlorobenzene	500	MECP	0.16	0.03		0.08	0.01		24	2.9		0.27	0.02	0.13	0.01		0.72	0.01	
1,2,3-Trichlorobenzene	900	MECP	0.04	0.01					12	1.5		0.09	0.01	0.02	0.00		0.20	0.02	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene			0.03	0.00		0.02	0.00		6.9	0.6		0.12	0.01	0.06	0.00		0.14	0.01	
1,2,3,4-Tetrachlorobenzene	100	MECP	0.03	0.00		0.01	0.00		11	1.2		0.15	0.01	0.02	0.00		0.17	0.01	
Hexachlorobutadiene	10	NYSDEC	0.01	0.00					0.07	0.01		0.001	0.00	0.001	0.00		0.001	0.00	
Pentachlorobenzene	30	MECP	0.07	0.00		0.04	0.00		6.4	0.5		0.15	0.02	0.07	0.00		0.25	0.01	
Hexachlorobenzene	0.03	NYSDEC	0.14	0.01	5	0.03	0.00	1	2.7	0.2	89	0.14	0.01	5 0.12	0.01	4	0.25	0.02	8
HCH, gamma	8	NYSDEC																	
HCH, alpha	2	NYSDEC																	
HCH, beta																			
HCH, delta			0.01	0.00		0.009	0.00		0.003	0.01		0.003	0.00	0.002	0.00		0.002	0.00	
Aldrin	2	NYSDEC																	
Octachlorostyrene	0.006	NYSDEC	0.002	0.00					0.02	0.00	3								
2,4'-DDE			0.01	0.01		0.002	0.00												
4.4'-DDE	0.007	NYSDEC	0.09	0.01	13	0.04	0.00	5	0.08	0.01	11	0.03	0.00	4 0.03	0.00	5	0.04	0.01	6
2,4'-DDD			0.07	0.01		0.01	0.01		0.06	0.00		0.008	0.00				0.007	0.01	
4.4'-DDD	0.08	NYSDEC	0.22	0.01	3	0.03			0.25	0.01	3	0.03		0.03	0.00		0.03	0.00	
2,4'-DDT	0.00		0.03	0.00		0.00	0.00			0.0.		0.00	0.00	0.00	0.00		0.00	0.00	
4.4'-DDT	0.011	NYSDEC	0.04	0.00	3				0.02	0.01	1.4								
Mirex	0.001	NYSDEC	0.03	0.05	30				0.02	0.01									
Chlordane, alpha (cis)	2	NYSDEC	0.62	0.03		0.07	0.00		0.56	0.01		0.09	0.01	0.09	0.00		0.08	0.01	
Chlordane, gamma (trans)	8	NYSDEC	0.02	0.00		0.01	0.00		0.07	0.01		0.03	0.00	0.03	0.00		0.00	0.00	
Nonachlor, trans-		MIGDEO	0.00	0.00		0.01	0.00		0.05	0.00		0.01	0.00	0.01	0.00		0.01	0.00	
Nonachlor, cis-			0.02	0.00		0.001			0.03	0.00		0.003		0.003	0.00		0.003	0.00	
Heptachlor	0.2	NYSDEC	0.02	0.00		0.004	0.00		0.01	0.00		0.000	0.00	0.000	5.00		0.000	0.00	
Heptachlor Epoxide	0.2	NYSDEC	0.08	0.00		0.03	0.00		0.03	0.00		0.03	0.00	0.02	0.00		0.01	0.01	
alpha-Endosulphan	3	MECP (proposed)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	0.02	5.00		0.01	0.01	
beta-Endosulphan	J	me or (proposed)	0.04	0.07															
Endosulphan Sulphate			0.06	0.11		0.01	0.01		0.18	0.2							0.02	0.03	
Dieldrin	0.0006	NYSDEC	0.06	0.01	390		0.01	101	0.18	0.2	126	0.04	0.00	69 0.05	0.00	81	0.02	0.03	68
Endrin	2	NYSDEC	0.25	0.01	390	0.00	0.01	101	0.00	0.00	120	0.04	0.00	0.00	0.00	01	0.04	0.02	00
	30		0.03	0.03													0.02	0.03	
Methoxychlor Total PCB	0.001	NYSDEC	0.03 8.7	0.03	8668	3.0		2977	107		106815	2.6		2636 2.9		2865	2.7		2651

Table 1: Continued.																										
			GRP			GRP			GRP			GRP			GRP			102 nd St.			LNR	—		Cayuga Ck		
		(Gratw)	ick Riverside	Park)		(Marina))		(U/S)			(Mid)			(D/S)			(U/S)		(1	Little Niagara Riv	er)		eujugu en		
			(U/S Marina)	i any		(111011110)	/		(0,0)			((2,0)			(0,0)		(-	(D/S 102nd St.)	1				
Estimated Water Concentration	Water Quality																									
	Criteria	Agency	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	FF	mean	SD	EF	mean	SD	EF	mean	SD	EF
	ng/L	Ageney	ng/L	ng/L		ng/L	ng/L		ng/L			ng/L				ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	
1.3-Dichlorobenzene	2500	MECP	1.9	0.8		12	2.5		2.6	0.7		2.4	0.8		1.3	1.2		2.1	0.4		5.1	4.6		2.0	1.9	
1,4-Dichlorobenzene	4000	MECP	6.9	1.6		39	7.8		11	1.9			1.2		7.1	6.2		8.0	0.5		11	9.6		8.0	7.0	
1.2-Dichlorobenzene	3000	NYSDEC	0.56	0.5		4.9	1.2			0.50			0.49			0.94		1.0	0.11		0.83	0.73		1.5	1.39	
1.3.5-Trichlorobenzene	650	MECP	0.02	0.00		0.16	0.03			0.00			0.00			0.00		0.02	0.00		0.12	0.00		0.15	0.01	
1,2,4-Trichlorobenzene	500	MECP	0.08	0.00		0.66	0.05			0.02		0.25			0.08			0.11	0.01		0.81	0.01		0.66	0.01	
1,2,3-Trichlorobenzene	900	MECP				0.07	0.06		0.02				0.00		0.01			0.00	0.01		0.16	0.01		0.06	0.02	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene			0.03	0.00		0.20	0.04			0.00		0.04			0.02			0.11	0.02		0.51	0.03		0.46	0.03	
1,2,3,4-Tetrachlorobenzene	100	MECP	0.02	0.00		0.16	0.03		0.03			0.02				0.00		0.02	0.00		1.7	0.03		0.70	0.08	
Hexachlorobutadiene	10	NYSDEC										0.001	0.00					0.001	0.00		0.001	0.00		0.01	0.01	
Pentachlorobenzene	30	MECP	0.05	0.01		0.17	0.05		0.06	0.00		0.06	0.00		0.05	0.00		0.05	0.00		1.20	0.07		0.47	0.05	
Hexachlorobenzene	0.03	NYSDEC	0.08	0.01	3	0.17	0.05	6	0.08	0.00	3	0.08	0.00	3	0.06	0.01	2	0.08	0.00	3	0.27	0.01	9	0.15	0.03	5
HCH, gamma	8	NYSDEC																						0.45	0.39	
HCH, alpha	2	NYSDEC																			0.09	0.16		36	0.62	18
HCH, beta																								6.3	5.43	
HCH, delta																		0.004	0.01		0.01	0.00		0.61	0.08	
Aldrin	2	NYSDEC																								
Octachlorostyrene	0.006	NYSDEC				0.01	0.01	1.4																		
2,4'-DDE																										
4,4'-DDE	0.007	NYSDEC	0.03	0.00	4	0.20	0.05	28	0.03	0.00	4	0.04	0.00	5	0.03	0.00	4	0.03	0.00	4	0.03	0.00	5	0.13	0.02	19
2,4'-DDD									0.01				0.01			0.00		0.01	0.00		0.03	0.00		0.04	0.01	
4,4'-DDD	0.08	NYSDEC	0.03	0.00		0.13	0.12	2	0.03	0.00		0.03	0.00		0.03	0.01		0.03	0.00		0.12	0.00	1.4	0.18	0.02	2
2,4'-DDT																										
4,4'-DDT	0.011	NYSDEC													0.001	0.00		0.001	0.00		0.004	0.00				
Mirex	0.001	NYSDEC																								
Chlordane, alpha (cis)	2	NYSDEC	0.07	0.00		0.18	0.03		0.08	0.00		0.08	0.00		0.08	0.01		0.08	0.00		0.08	0.01		0.26	0.01	
Chlordane, gamma (trans)	8	NYSDEC	0.01	0.00		0.04	0.01		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.04	0.00	
Nonachlor, trans-			0.01	0.00		0.02	0.01		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.03	0.00	
Nonachlor, cis-			0.002	0.00		0.01	0.00					0.003	0.00		0.002	0.00		0.002	0.00		0.002	0.00		0.01	0.00	
Heptachlor	0.2	NYSDEC													0.00	0.00										
Heptachlor Epoxide	0.3	NYSDEC	0.04	0.00		0.01	0.01		0.03	0.00		0.04	0.00		0.03	0.00		0.03	0.00		0.02	0.00		0.03	0.00	
alpha-Endosulphan	3	MECP (proposed)																								
beta-Endosulphan																										
Endosulphan Sulphate																										
Dieldrin	0.0006	NYSDEC	0.05	0.00	91	0.06	0.01	96	0.05	0.00	83	0.05	0.00	90	0.06	0.01	92	0.05	0.00	83	0.05	0.00	77	0.06	0.01	103
Endrin	2	NYSDEC																								
Methoxychlor	30	NYSDEC																								
Total PCB	0.001	NYSDEC	42	1.9	42137	47	15.1	46773	9.7	0.48	9723	7.2	0.33	7189	4.8	0.71 4	4776	3.9	0.17	3910	5.2	0.21	5196	2.1	0.44	2125

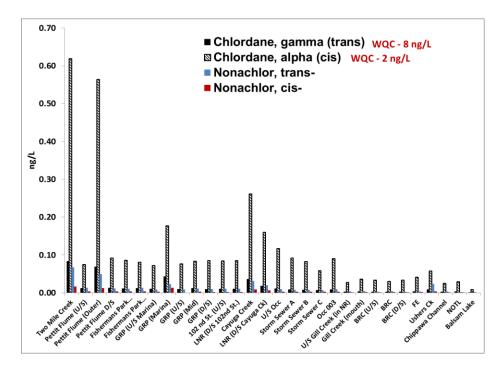
Table 1: Continued.																										
			LNR			U/S Occ			Storm			Storm			Storm			Occ 003			U/S Gill Ck.			Gill Ck.		
			(D/S Cayuga Ck)			0,0 000			Sewer			Sewer			Sewer			000 000		((in Niagara Rive	r)		(mouth)		
			(D, C Cu) ugu Ch)						A			В			C					,	(in radgard rare	,		(
Estimated Water Concentration	Water Quality																									
	Criteria	Agency	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF	mean	SD	EF
	ng/L	3, 1,	ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	
1,3-Dichlorobenzene	2500	MECP	0.88	1.5		2.1	0.27		1.7	1.6		1.2	1.2		1.6	1.4		74	6.4		0.81	0.73		15	1.5	
1,4-Dichlorobenzene	4000	MECP	3.3	5.7		7.7	0.33		4.8	4.2		7.3	1.0		6.7	0.8		46	2.5		2.8	2.44		34	2.5	
1,2-Dichlorobenzene	3000	NYSDEC	0.23	0.40		0.57	0.51			0.54		0.38	0.66		0.66	0.57		5.3	0.21		0.48	0.42		15.3	1.4	
1,3,5-Trichlorobenzene	650	MECP	0.04	0.01		0.02	0.00		0.01	0.01		0.03	0.00		0.04	0.00		0.5	0.05		0.004	0.00		0.1	0.00	
1,2,4-Trichlorobenzene	500	MECP	0.13	0.02		0.06	0.00		0.07	0.01		0.08	0.01		0.12	0.01		13	1.1		0.02	0.02		2.5	0.12	
1,2,3-Trichlorobenzene	900	MECP	0.03	0.00		0.01	0.01		0.01	0.01		0.01	0.01		0.02	0.01		1.8	0.13		0.004	0.00		0.6	0.01	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene			0.12	0.01		0.05	0.00		0.06	0.00		0.07	0.00		0.16			2.0	0.12		0.03	0.03		0.3	0.03	
1,2,3,4-Tetrachlorobenzene	100	MECP	0.19	0.02		0.05	0.00		0.14	0.01		0.16	0.01		0.22	0.01		2.3	3.9		0.02	0.00		0.2	0.01	
Hexachlorobutadiene	10	NYSDEC	0.001	0.00		0.001	0.00		0.01	0.01		0.01	0.01		0.02	0.00		7.7	1.8		0.01	0.00		4.7	0.44	
Pentachlorobenzene	30	MECP	0.18	0.02		0.08	0.01		0.16	0.03		0.21	0.02		0.35	0.03		3.9	0.59		0.02	0.00		0.2	0.03	
Hexachlorobenzene	0.03	NYSDEC	0.08	0.01	3	0.07	0.01	2	0.06	0.00	2	0.07	0.00	2	0.42	0.04	14	1.7	0.23	56	0.03	0.01	1	0.1	0.02	5
HCH, gamma	8	NYSDEC																0.1	0.05					0.6	0.55	
HCH, alpha	2	NYSDEC	1.4	0.17		0.97	0.07		0.47	0.43		0.53	0.07		0.48	0.01		0.8	0.09					16	0.16	8
HCH, beta															0.43	0.08		0.7	0.16							
HCH, delta			0.03	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.0	0.00		0.01	0.00		0.2	0.01	
Aldrin	2	NYSDEC																						0.001	0.00	
Octachlorostyrene	0.006	NYSDEC	0.001	0.00		0.003	0.00		0.004	0.00		0.005	0.00		0.06	0.00	9	0.2	0.03	30	0.004	0.00		0.01	0.00	1.5
2,4'-DDE																										
4,4'-DDE	0.007	NYSDEC	0.05	0.01	7	0.03	0.00	5	0.02	0.00	3	0.02	0.00	3	0.02	0.00	3	0.03	0.00	4	0.01	0.01	1.1	0.02	0.00	2
2,4'-DDD			0.02	0.00		0.01	0.00		0.01	0.00		0.003	0.00		0.002	0.00		0.01	0.00							
4,4'-DDD	0.08	NYSDEC	0.07	0.01		0.03	0.00		0.02	0.00		0.02	0.00		0.02	0.00		0.02	0.00		0.01	0.00		0.01	0.00	
2,4'-DDT																					0.002	0.00		0.002	0.00	
4,4'-DDT	0.011	NYSDEC							0.003	0.00																
Mirex	0.001	NYSDEC	0.03	0.00	26	0.01	0.01	6							0.06	0.01	61	0.6	0.26	591						
Chlordane, alpha (cis)	2	NYSDEC	0.16	0.01		0.12	0.00		0.09	0.01		0.08	0.01		0.06	0.01		0.1	0.00		0.03	0.00		0.04	0.00	
Chlordane, gamma (trans)	8	NYSDEC	0.02	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.003	0.00		0.004	0.00	
Nonachlor, trans-			0.02	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.01	0.00		0.004	0.00		0.005	0.00	
Nonachlor, cis-			0.01	0.00		0.003	0.00		0.003	0.00		0.003	0.00		0.003	0.00		0.003	0.00		0.001	0.00		0.002	0.00	
Heptachlor	0.2	NYSDEC																								
Heptachlor Epoxide	0.3	NYSDEC	0.02	0.00		0.03	0.00		0.03	0.00		0.03	0.00		0.02	0.00		0.03	0.00		0.03	0.00		0.03	0.00	
alpha-Endosulphan	3	MECP (proposed)																								
beta-Endosulphan																										
Endosulphan Sulphate																										
Dieldrin	0.0006	NYSDEC	0.04	0.00	68	0.05	0.00	76	0.05	0.00	82	0.05	0.00	78	0.04	0.00	66	0.05	0.00	77	0.05	0.01	76	0.05	0.01	78
Endrin	2	NYSDEC																								
Methoxychlor	30	NYSDEC										0.004	0.01													
Total PCB	0.001	NYSDEC	3.3	0.56	3308	3.6	0.24	3589	2.9	0.13	2932	2.8	0.22	2825	2.9	0.05	2872	71	27.00	71371	1 0.19	0.05	190	3.2	0.35	316

Table 1: Continued.																									
			BRC			BRC			BRC			FE			Ushers Ck.		Chippawa	3		NOTL			Balsam		
			(U/S)	(1	Blood	ly Run	Creek)	(D/S)		(F	Fort Er	ie)				Channel		agar	a on th	e Lak	e)	Lake		
	W-1 0																								
Estimated Water Concentration	Water Quality			SD	FF		SD	EF		00		mean	SD			SD EF		00		mean	00			SD	
	Criteria ng/L	Agency	mean	ng/L	EF	mean ng/L	ng/L	EF	mean ng/L	ng/L	EF	ng/L	ng/L	EF	mean ng/L	ng/L	mean ng/L	ng/L	EF	ng/L	ng/L	EF	mean ng/L	ng/L	
1.3-Dichlorobenzene	2500	MECP		0.04		0.56			1.8	0.28		0.46	<u> </u>		0.26	0.46	0.30	0.52		1.35	<u> </u>		0.95	0.30	-
1,4-Dichlorobenzene	4000	MECP		0.04			0.79		4.2	0.20		4.4	0.40		4.0	0.54	2.7	2.39			0.23		4.1	0.30	
1,2-Dichlorobenzene	3000	NYSDEC	0.55			0.65			4.2	0.00			0.23		0.69	0.54	0.18	0.31		0.29			0.70	0.71	
1,3,5-Trichlorobenzene	650	MECP	0.55	0.76		0.05				0.01		0.37	0.32		0.09	0.70	0.16	0.31		0.29	0.50		0.70	0.04	
1,2,4-Trichlorobenzene	500		0.07	0.00		0.04				0.00										0.07	0.00				
		MECP	0.07	0.00																0.07	0.00				
1,2,3-Trichlorobenzene	900	MECP	0.05	0.00		0.01	0.01		0.06			0.001	0.00		0.04	0.04	0.001	0.00		0.03	0.00				
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	400					0.32				0.00					0.01	0.01	0.001	0.00							
1,2,3,4-Tetrachlorobenzene	100	MECP	0.09			0.38				0.00		0.002	0.00		0.003	0.00				0.06					
Hexachlorobutadiene	10	NYSDEC	0.01			0.20				0.00		0.000	0.00		0.04	0.04	0.004	0.00		0.01			0.004	0.00	
Pentachlorobenzene	30	MECP	0.12		~	2.0	0.23	40	1.0	0.03	~7	0.006			0.04	0.01	0.004	0.00		0.05		•	0.001	0.00	
Hexachlorobenzene	0.03	NYSDEC		0.01	9	1.2	0.17	42	0.80		27	0.01	0.00		0.01	0.00	0.01	0.00		0.06	0.01	2	0.01	0.00	
HCH, gamma	8	NYSDEC	0.06	0.09					0.172	0.24															
HCH, alpha	2	NYSDEC				0.10	0.15																		
HCH, beta																									
HCH, delta			0.004	0.01		0.006	0.01		0.004	0.01										0.003	0.01				
Aldrin	2	NYSDEC																							_
Octachlorostyrene	0.006	NYSDEC	0.06	0.00	9	0.07	0.01	11	0.07	0.00	12									0.02	0.00	4			
2,4'-DDE												0.00													
4,4'-DDE	0.007	NYSDEC	0.01		1.3	0.03	0.00	4	0.01	0.00	2	0.38	0.04	55	0.10	0.03 14	0.03	0.00	5	0.01	0.00	2	0.01	0.002	1.
2,4'-DDD						0.002	0.00		0.001	0.00		0.02	0.00		0.01	0.00	0.003								
4,4'-DDD	0.08	NYSDEC	0.01	0.00		0.01	0.00		0.01	0.00		0.10	0.01	1.2	0.03	0.01	0.02			0.01	0.00		0.001	0.00	
2,4'-DDT			0.002	0.00					0.002	0.00		0.01	0.00												
4,4'-DDT	0.011	NYSDEC				0.005	0.00		0.002	0.00		0.02	0.00	2	0.01	0.00	0.004								
Mirex	0.001	NYSDEC				0.01	0.00	14	0.01	0.00	8														
Chlordane, alpha (cis)	2	NYSDEC	0.03	0.00		0.03	0.00		0.03	0.00		0.04	0.00		0.06	0.01	0.02	0.00		0.03	0.00		0.01	0.01	
Chlordane, gamma (trans)	8	NYSDEC	0.002	0.00		0.003	0.00		0.003	0.00		0.004	0.00		0.01	0.00	0.003	0.00		0.003	0.00		0.001	0.00	
Nonachlor, trans-			0.003	0.00		0.004	0.00		0.003	0.00		0.003	0.00		0.02	0.01	0.004	0.00		0.002	0.00		0.002	0.00	
Nonachlor, cis-			0.001	0.00		0.002	0.00		0.001	0.00		0.002	0.00		0.003	0.01	0.001	0.00		0.001	0.00				
Heptachlor	0.2	NYSDEC																		0.01	0.01				
Heptachlor Epoxide	0.3	NYSDEC	0.02	0.00		0.02	0.01		0.02	0.00		0.02			0.01	0.00	0.02	0.00		0.02	0.00		0.01	0.00	
alpha-Endosulphan	3	MECP (proposed)				0.16	0.02																		
beta-Endosulphan						0.07	0.10																		
Endosulphan Sulphate																									
Dieldrin	0.0006	NYSDEC	0.05	0.00	77	0.04	0.00	65	0.05	0.00	76	0.05	0.00	81	0.03	0.01 51	0.04	0.00	71	0.04	0.00	63	0.01	0.00	2
Endrin	2	NYSDEC									-														
Methoxychlor	30	NYSDEC																							
Total PCB	0.001	NYSDEC	0.20	0.02	200	11	0.26	1067	0.52	0.05	517	0.12	0.00	122	0.09	0.01 86	0.08	0.02	76	0.41	0.05	112	0.03	0.006	2-

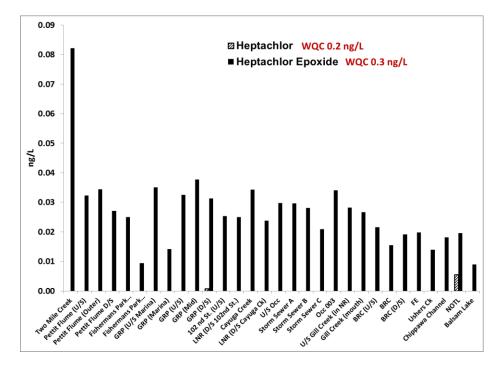
In contract, the US/DS water quality data identified Lake Erie as a source of metabolites of DDT and dieldrin to the Niagara River, in addition to sources within the Niagara River (Hill and Klawunn 2009; Hill, 2018).

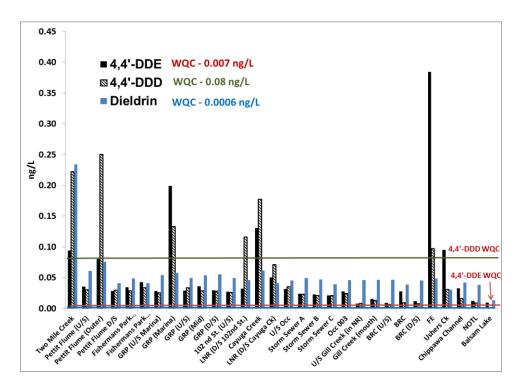

Generally, pesticides and their by-products and isomers (e.g., lindane and α -HCH; heptachlor epoxide; chlordane and trans and cis isomers), were present at the highest concentrations in SPMDs in tributaries such as Gill Creek, Two Mile Creek and Cayuga Creek suggesting that these tributaries are sources to the Niagara River (Figures 3-5). ECCC water quality data for the month of July 2015 at NOTL (concurrent with the SPMD deployment period) was compared with estimated concentrations of contaminants in SPMDs deployed at stations in this study to highlight these areas as sources. Estimated concentrations of α -HCH at Cayuga Creek were 131 times higher than concentrations measured at NOTL in the water by ECCC. Estimated concentrations of α -chlordane at Two Mile Creek and the Pettit Flume were 61 and 55 times greater than NOTL water concentrations respectively. The SPMD data indicated that historically there was also widespread use of some of these persistent compounds including DDT and dieldrin, since many of the pesticides were present at all sites at concentrations that were similar on both sides of the river.

The highest SPMD concentrations of 4,4'-DDE were present at Fort Erie (Figure 6). The Fort Erie SPMD data was consistent with the caged mussel data for 4,4'-DDE (Appendix D1) and consistent with data from earlier surveys. A likely explanation for relatively higher 4,4'-DDE concentrations at Fort Erie is that from 1952 to 1967, DDT was applied to trees and shrubs in Fort Erie every two weeks from June through to the end of September to control caddisflies (Fredeen, 1971). The area sprayed included 8 km of river bank and shrubbery and trees extending about 1 km from the river along every street. Additionally, an area extending beyond the city limits for about 1.6 km north and a large park to the south of Fort Erie were also routinely sprayed with DDT. The estimated water concentration from the SPMDs were 19 times higher than the concentrations measured in water at NOTL by the ECCC US/DS program suggesting that this area is a source of 4,4'-DDE to the river due to the historical sraying. Further investigation of the Fort Erie site will continue in 2018 for the purpose of investigating/differentiating the legacy contamination from any potential, ongoing sources of DDT and metabolites.


The highest concentration of the insecticide mirex was present in SPMDs deployed near the **Occidental Chemical Corporation** Buffalo Avenue Plant (herein referred to as Occidental and/or OCC), at their 003 sewer outfall (Figure 7). Occidental is located adjacent to the Niagara River upstream of the Niagara River's confluence with Gill Creek. The facility (formally known as Hooker Chemical Co. which began operation in 1903), has manufactured over 250 chemical products including Mirex. Permitted wastewater is discharged to the river from the 003 outfall. As well, there were at least 10 hazardous waste sites located on the property which were known to leach contaminants into the groundwater (NRTC, 1984) until the 1990s when extensive remediation was undertaken at various locations on the property to contain and reduce the movement of these contaminants. Recent monitoring using caged mussels and SPMDs at historical

sewers located along the Niagara River have not detected contaminants, or they have been present at low concentrations. However, Sewer 003 is an active outfall servicing the Occidental facility and is an ongoing source of contaminants to the River (See section on chlorinated benzenes/ industrial compounds and PCBs: Figures 8-12, 15, 19-20). The presence of mirex in the Niagara River at this site suggested that mirex is possibly entering into the river either through runoff in the vicinity of the Occidental 003 sewer or directly from the sewer. A comparison of the SPMD estimated water concentration of mirex at the 003 sewer outfall with the ECCC annual mean measured concentration of mirex in the water at NOTL (from 2005-2015) showed that the mirex concentration near the sewer was 174 times greater than the concentration in water at NOTL. The 10 year annual mean water concentration at NOTL was used since the concentration for the month of July 2015 was below the detection limit.


The presence of mirex in SPMDs at the 003 sewer, in the Little Niagara River (LNR) at a station downstream of 102nd St. Hazardous Waste Site, and at Bloody Run Creek was consistent with historical caged mussel data collected since the 1980's (Richman *et al.* 2011). In 2012 the highest concentration of mirex in SPMDs was present in the LNR and associated stations. Occidental was the sole producer of mirex until 1976 when its use was restricted by both Canadian and U.S. legislation (Apeti and Lauenstein, 2006; Interagency Task Force on Hazardous Waste, 1979). Additionally, Hooker Chemical disposed of waste into the 102nd Street Hazardous Waste Site and Hyde Park Hazardous Waste Site (which contaminated Bloody Run Creek), when they were in operation.


Figure 3: Estimated water concentrations (ng/L) for organochlorine pesticides (lindane and isomer alpha HCH) in SPMDs, Niagara River, 2015. WQC (Water Quality Criteria). **NOTE**: on all figures stations are listed from upstream to downstream. Canadian sites begin at Fort Erie (FE) and extend to the end of the X axis. GRP: Gratwick Riverside Park; LNR: Little Niagara River; BRC: Bloody Run Creek; NOTL: Niagara-on-the-Lake.

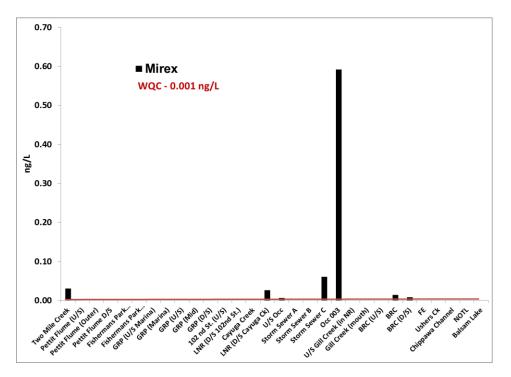
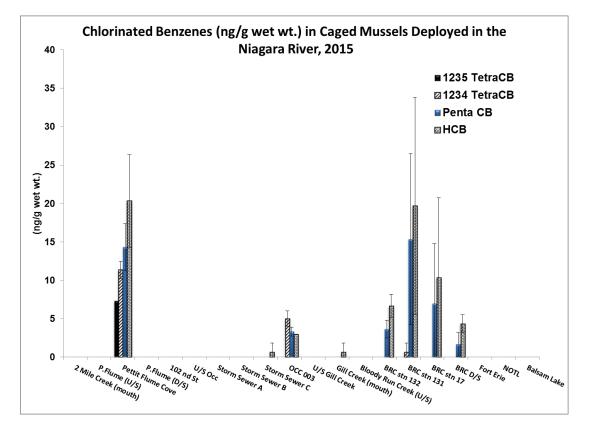
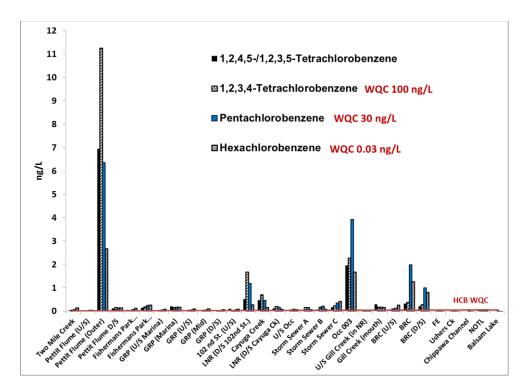
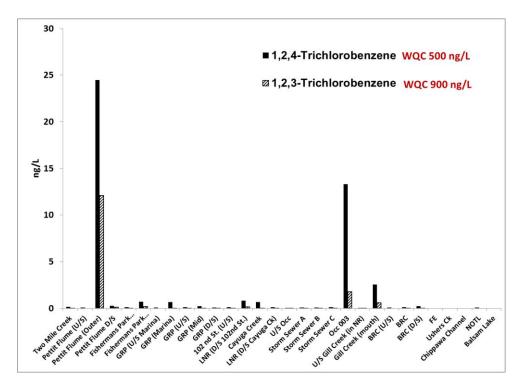

Figure 4: Estimated water concentrations (ng/L) for organochlorine pesticides (chlordane and isomers) in SPMDs, Niagara River, 2015.

Figure 5: Estimated water concentrations (ng/L) for organochlorine pesticides (heptachlor and heptachlor epoxide) in SPMDs, Niagara River, 2015.


Figure 6: Estimated water concentrations (ng/L) for organochlorine pesticides (DDT metabolites and dieldrin) in SPMDs, Niagara River, 2015.


Figure 7: Estimated water concentrations (ng/L) for organochlorine pesticides (mirex) in SPMDs, Niagara River, 2015.

Chlorinated Benzenes and Industrial Compounds


The ECCC US/DS water monitoring dataset (2005-2015; Hill, 2018) identified several organic contaminants that exceed the most stringent water quality criteria and/or showed evidence of statistically significant Niagara River sources: e.g., hexachlorobenzene (HCB), pentachlorobenzene, octachlorostyrene (OCS), and hexachlorobutadiene (HCBD). Multiple sources in the river have been identified using the caged mussel and SPMD dataset. A relative comparison of chlorinated benzene concentrations among stations for both mussels and SPMDs identified the Pettit Flume, Occidental (Sewer 003), Bloody Run Creek and to a lesser extent the 102nd St. Hazardous Waste Site as sources of these contaminants (Figures 8 –10). Sources of octachlorostyrene (OCS) were Occidental Sewer 003 and Bloody Run Creek (WQC exceeded at these locations), and hexachlorobutadiene (HCBD) sources were Occidental and Gill Creek (Figures 11-13). The WQC for hexachlorobenzene (HCB) was exceeded at all stations on the US side of the river and at NOTL on the Canadian side, however, the highest concentrations were present in both mussels and SPMDs at the Pettit Flume, Occidental Sewer 003, and Bloody Run Creek .

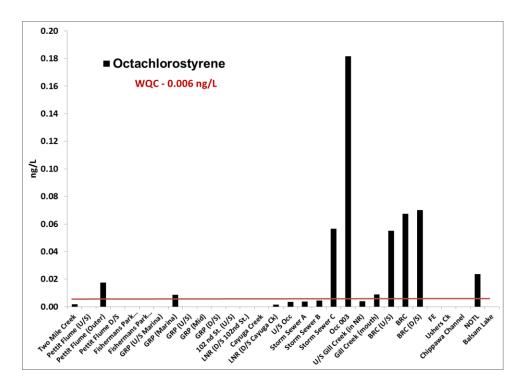

Figure 8: Mean (+/- SE) concentrations of chlorinated benzenes in caged mussels deployed in the Niagara River 2015).

Figure 9: Estimated water concentrations (ng/L) for chlorinated benzenes in SPMDs deployed in the Niagara River, 2015.

Figure 10: Estimated water concentrations (ng/L) for trichlorobenzenes from SPMDs deployed in the Niagara River, 2015.

Figure 11: Estimated water concentrations (ng/L) for OCS from SPMDs deployed in the Niagara River, 2015.

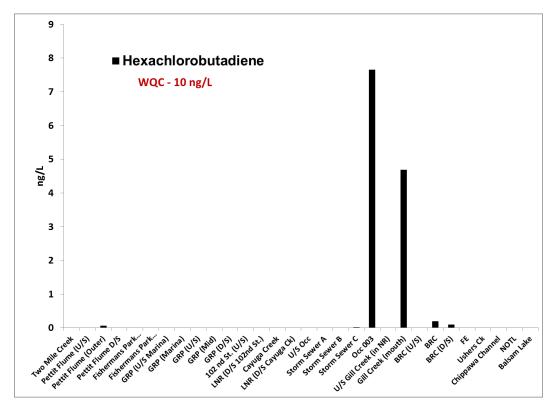
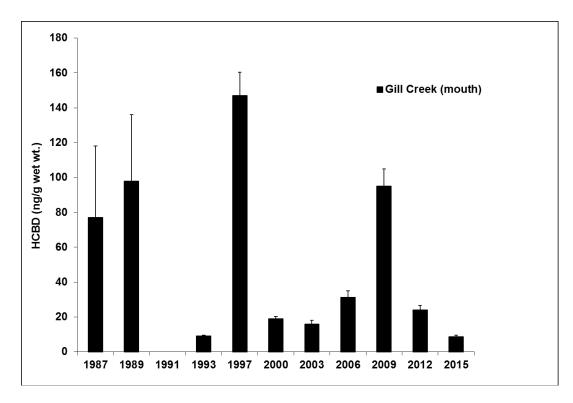
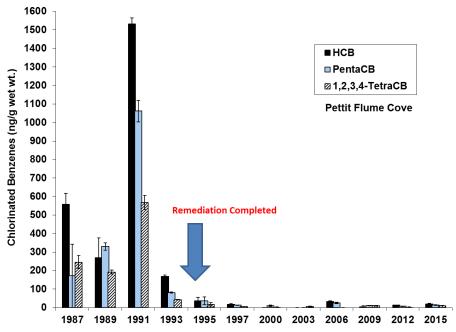
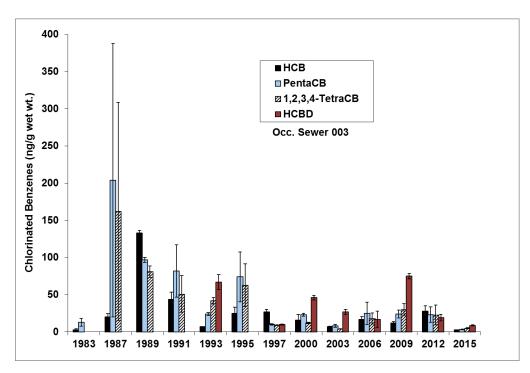
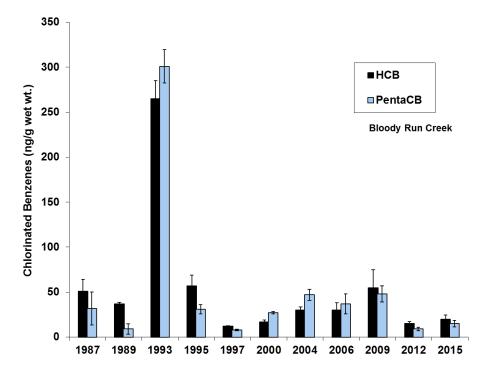




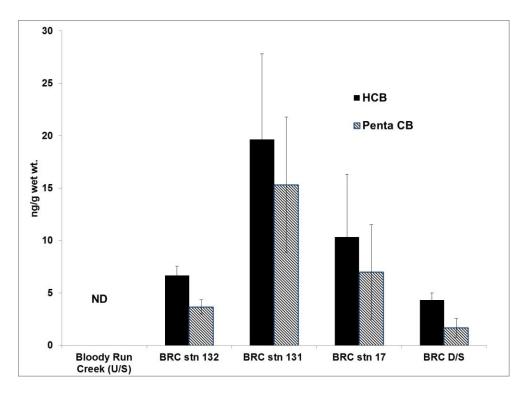
Figure 12: Estimated water concentrations (ng/L) for HCBD from SPMDs deployed in the Niagara River, 2015


Figure 13: Mean (+/- SE) concentrations of HCBD in caged mussels deployed at the mouth of Gill Creek through time (1987-2015).

The **Pettit Flume** is a storm sewer in North Tonawanda that received waste water from the Occidental Chemical Corporation's Durez Division plant and hazardous waste site (Geologic Testing Consultants Ltd., 1984). The storm sewer discharges from the shore into a cove of the Niagara River. Remediation of the site from 1990 to 1995 included on-site containment of contaminants, removal of contaminated sediment from sewer lines, and sediment removal from the cove. The sediments were contaminated with inorganic and organic wastes including chlorinated phenols, chlorotoluene, dioxins and furans and phenol tar containing chlorinated benzenes (Interagency Task Force on Hazardous Waste, 1979; US EPA and NYSDEC, 2004). Prior to the remediation of the cove, tetrachlorobenzene, pentachlorobenzene and HCB were detected at high concentrations in mussels (Figure 14). Post remediation monitoring consistently showed that concentrations in mussels have remained low relative to preremediation. Nevertheless, the mussel and SPMD data continue to identify the Pettit Flume as a source of chlorinated benzenes relative to other locations in the river. The estimated water concentration based on the SPMD data for HCB at the Pettit Flume was 36 times greater than the ECCC measured water concentration in July 2015 at NOTL and 89 times greater than the most stringent water quality criteria. For pentachlorobenzene and 1,2,3,4-tetrachlorobenzene the estimated water concentrations from the SPMD data were also greater than concentrations measured in water at NOTL, however, these concentrations were 5 and 9 times lower than the water quality criteria respectively.

Figure 14: Mean (+/- SE) concentrations of organic compounds in caged mussels deployed at the Pettit Flume Cove through time (1987-2015).


Occidental's Buffalo Avenue Plant first described above when referring to it as a source of mirex to the Niagara River, also discharges chlorinated benzenes and other industrial compounds in its permitted wastewater (Figures 8-12 and 15).


Figure 15: Mean (+/- SE) concentrations of chlorinated organic compounds in caged mussels deployed at the Occidental Chemical Corp. Sewer 003 through time (1983-2015).

Estimated water concentrations at the 003 sewer for OCS and HCBD were 17 and 54 times higher than the measured water at NOTL. Long term monitoring data using caged mussels was consistent with the SPMD data in identifying this outfall as a source of these contaminants of concern.

Hyde Park: a 6.1 hectare hazardous waste disposal site, was operated by the Hooker Chemical Co. (now Occidental Chemical Corp.) from 1953 to 1975 (NRTC, 1984). Approximately 55,000 tons of halogenated wastes including chlorinated benzenes, toluenes and phenols were buried at this site (Interagency Task Force on Hazardous Waste, 1979). Bloody Run Creek (BRC), which runs adjacent to the waste site, drains storm water run-off and overburden leachate overflow from the site and discharges it into the lower Niagara River. Despite the remediation at the Hyde Park site and the upper section of the Creek throughout the early 1990's, the lower section continues to be a source of contaminants to the Niagara River. Chlorobenzenes which include 1,2,3,4-tetrachlorobenzene, pentachlorobenzene and HCB have been detected in mussels deployed at BRC site since 1987 (Figure 16 & 17). There has been variation in contaminant concentrations measured in mussels through time likely due to fluctuations in surface runoff from the contaminated soil in the gorge, but the compounds present at this site have remained consistent and bioavailable. The reason for the high concentrations of HCB and pentaCb measured in 1993 is unknown and could possibly have been related to high precipitation and increased runoff during the deployment period. Interestingly, a review of the US/DS suspended sediment data for July of 1993 also showed an increase in HCB at NOTL relative to the annual mean HCB concentration suggesting an episodic event that may have also been captured by the caged mussels (Burniston et al 2015).

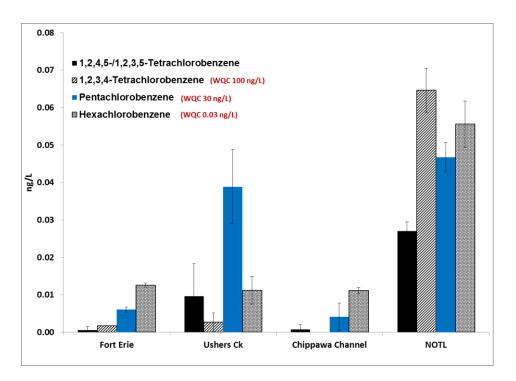

Figure 16: Mean (+/- SE) concentrations of chlorinated organic compounds in caged mussels deployed at Bloody Run Creek through time (1987-2015).

Figure 17: Mean (+/- SE) concentrations of hexachlorobenzene and pentachlorobenzene in caged mussels deployed at Bloody Run Creek and upstream and downstream of the contaminated area, 2015. ND (non-detect)

At the **Canadian Sites**, the highest estimated water concentrations of pentachlorobenzene (mean 0.05 ng/L; SD 0.0 ng/L), hexachlorobenzene (mean 0.06 ng/L; SD 0.01 ng/L), and 1,2,3,4-tetrachlorobenzene (mean: 0.06 ng/L; SD 0.01 ng/L), were detected in SPMDs at NOTL (Figure 18). This is consistent with the 2012 study and not surprising since contaminants detected from US sources on the upper river will be mixed with the relatively cleaner water from the Canadian side as the water passes over the falls, and then detected on the Canadian side at the mouth of the river. This is also consistent with the ECCC US/DS water quality data where contaminants with sources within the Niagara River such as the contaminants listed above were detected only at NOTL and not at the upstream (Fort Erie) site (Hill and Klawunn 2009; Hill, 2018).

Figure 18 shows an increase in pentachlorobenzene at Ushers Creek relative to Fort Erie and Chippawa Channel suggestive of a possible source. There are no industrial sources on Ushers Creek but there is a golf course. Pentachlorobenzene is present as an impurity in fungicides and in several herbicides, and pesticides currently in use in Canada (Canada.ca Fact sheet) suggesting that the golf course could be a potential source. However, to put the SPMD estimated water concentration in perspective, it is four times lower than the ECCC measured concentration at NOTL. For comparison to other identified sources in the Niagara River, the concentration at Ushers Creek is 160 times lower than concentrations estimated for the Petite Flume cove and 98 times lower than the concentration estimated at Occidental sewer 003.

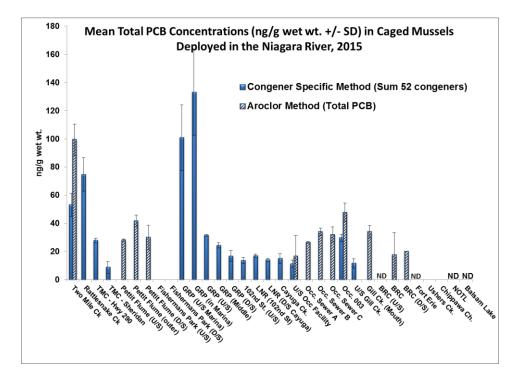
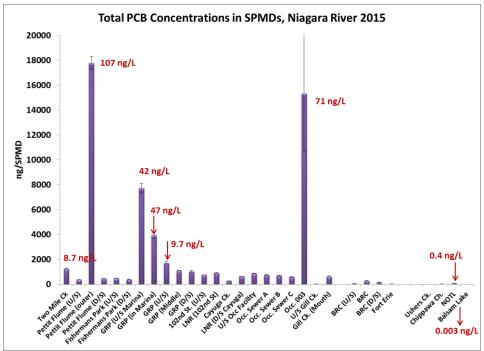


Figure 18: Chlorinated Benzenes in SPMDs (ng/L) (mean +/- SD) deployed on the Canadian side of the Niagara River, 2015.


Total PCB (Polychlorinated Biphenyls)

The caged mussel and SPMD data identified the sites within the Niagara River that are potential sources of PCBs (Figures 19 & 20). Generally, the two datasets were consistent; however, PCBs are highly hydrophobic and depending on the Aroclor, will mostly be present in the particulate phase rather than the dissolved phase. Accordingly, the caged mussel PCB concentrations likely reflected PCB contamination in both the sediment and water column due to their feeding behaviour, while the SPMDs would only be reflecting PCBs in the dissolved-phase in water; the lower chlorinated homologues. Additionally, since mussels are live biomonitors they may react to an unfavourable environment by shutting down and thereby reduce their capacity to accumulate the contaminants compared with the SPMDs.

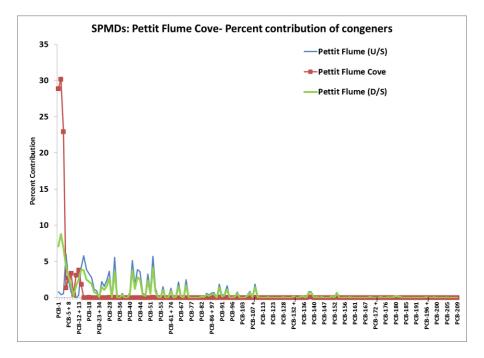

The 2015 data for PCBs at all sites were consistent with historical datasets identifying the same locations as sources of PCBs. Mussels and/or SPMDs identified Occidental Sewer 003 and Two Mile Creek as sources of PCBs as well as a PCB source(s) upstream of Gratwick Riverside Park. The SPMDs also had high concentrations of total PCBs at the Pettit Flume, however, a review of the data show a highly unusual congener distribution driven by mono and dichlorobiphenyls (PCB-1, 2 and 3): a pattern that was also observed in 2012 which confirms that it was not an anomaly for this site (Figure 21). The caged mussels are not analysed for these congeners so this site was not identified as a significant source using that dataset. The homologue pattern may reflect the presence of Aroclor 1221 although a source has not been determined. Listed industrial uses of A1221 were as a dielectric fluid in capacitors, in gas transmission turbines, as a plasticizer in rubber, and in adhesives.

Figure 19: Mean (+/- SD) total PCB concentrations in caged mussels (analysis congener specific method (sum of 52 congeners ND<5 ng/g) and/or Aroclor method (ND<20 ng/g)) deployed at sites along the Niagara River in 2015. ND (non-detect). Mussels were not deployed at Fisherman's Park, Ushers Creek or Chippawa Channel.

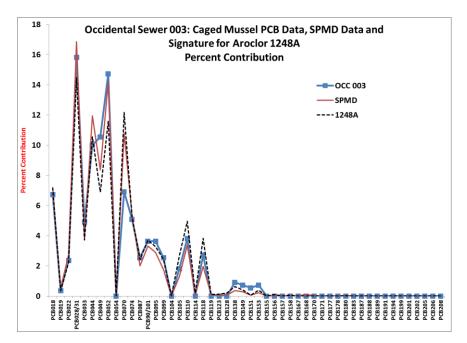
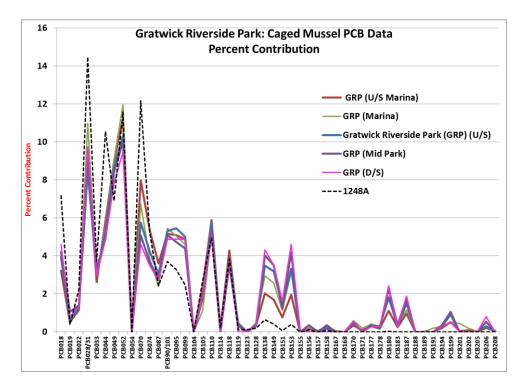


Figure 20: Mean (+/- SD) total PCBs (sum of 209 congeners) for SPMDs deployed in the Niagara River, 2015 with estimated water concentrations (ng/L). For reference, the WQC for total PCBs is 0.001 ng/L (NYSDEC).


Figure 21: Congener pattern (percent contribution of each congener to total PCBs) for SPMDs deployed in the Pettit Flume Cove, and U/S and D/S of the cove, (208 congeners), 2015.

The congener pattern for PCBs detected in mussels and SPMDs at the OCC. Sewer 003 resembled Aroclor 1248 and was consistent with data from 2012 identifying this sewer outfall as a source of bioavailable PCBs (Figure 22).

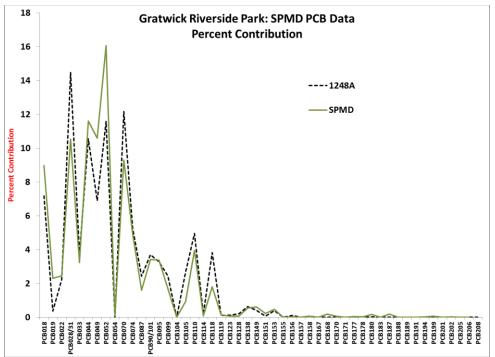


Figure 22: Congener pattern (percent contribution of each congener to total PCBs) for caged mussels, SPMDs and the pattern for Aroclor 1248A. The number of congeners presented for SPMDs and Aroclor 1248 were reduced to match the 52 congeners analysed in mussels.

Gratwick Riverside Park (GRP) is located along the shore of the Niagara River in the city of North Tonawanda. It is 53 acres and was used, prior to the 1970's, as a landfill that accepted municipal and industrial waste as well as metallurgical slag, and phenolic waste from the Occidental Durez site. It was identified as a State Superfund site and remedial actions began in 1999. The goal of the remediation was to provide shoreline protection, install a slurry wall between the site and the river to act as a hydraulic barrier and prevent the movement of contaminants to the river, cap the site so that it can be used as a park and collect and treat contaminated groundwater. Remediation of the site was completed by 2003 (USEPA and NYDEC 2003). The 2012 SPMD and caged mussel data identified PCBs at the upper end of the Park as being higher than most other sites in the river suggesting two possibilities: 1) PCBs were still leaching into the river from the former waste site; 2) there were other sources of PCBs upstream of GRP. In the 2015 survey, additional sampling stations were located immediately upstream of GRP in a marina, and about 135 m further upstream of GRP along the Niagara River shoreline. Both SPMD and caged mussel data had PCB concentrations that were higher at these two stations than concentrations measured at the GRP station which suggested that there were sources of PCBs upstream of GRP. Mean estimated water concentrations from the SPMDs were 42 ng/L and 47 ng/L at these upstream stations compared with 9 ng/L at GRP. Concentrations continued to decrease with increasing distance downstream of the area with high PCB concentrations (Figures 19 & 20). The congener patterns in mussels and SPMDs for all the sites associated with this location were the same suggesting a common source. The pattern in the mussels somewhat reflected Aroclor 1248, although there were some differences (PCB 21/33, 44 and 70), up until congener 119, but then the higher chlorinated congeners were also elevated in the caged mussels and so in total, the pattern reflected a combination of Aroclor 1248 and possibly Aroclor 1254 (Figures 23; Appendix G). The SPMD congener data has a similar pattern to Aroclor 1248 as well (Figure 24). Fisherman's Park, about 800 m further upstream, had low concentrations of PCBs in SPMDs (mussels were not analysed for PCBs at that site) (Figure 20) which suggests that the source is likely between Fishermans Park and GRP.

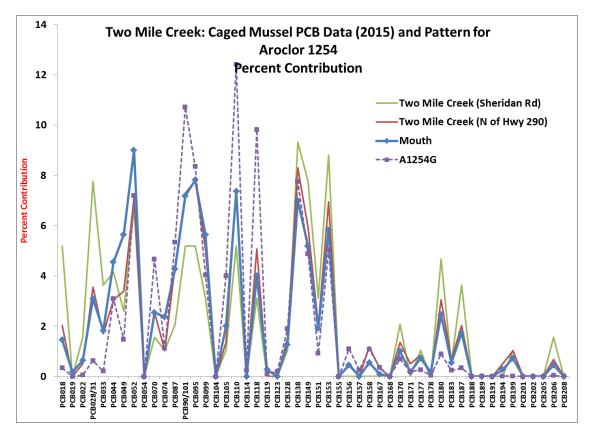


Figure 23: Congener patterns (percent contribution of each congener to total PCB concentration) in the caged mussels deployed along the shoreline U/S and D/S of GRP compared with the pattern for Aroclor 1248.

Figure 24: Congener patterns (percent contribution of each congener to total PCB concentration) in the SPMD deployed at the GRP station U/S of the marina compared with the pattern for Aroclor 1248.

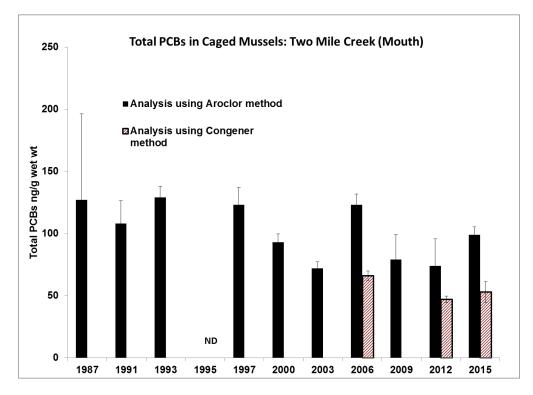
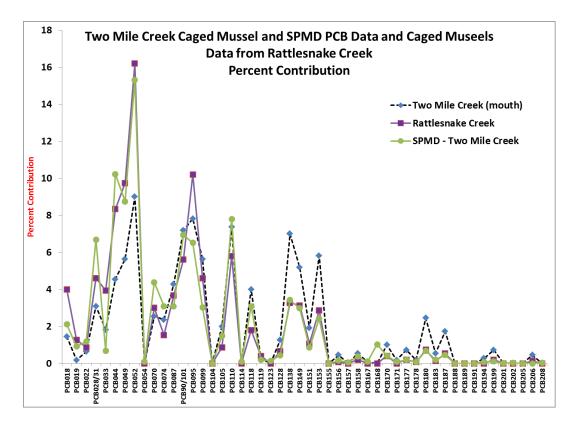
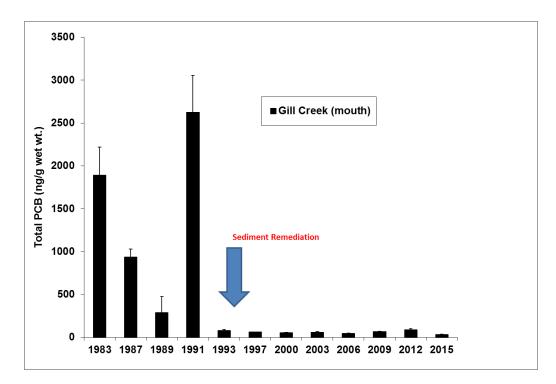

Two Mile Creek has been identified by NYSDEC as a PCB contaminated site due to historic and ongoing active sources (e.g., runoff from landfills, inactive hazardous waste sites, storm sewers and industries located upstream) (Niagara River Secretariat 2002). Mussels were deployed at three sites in Two Mile Creek: At the head of the river at Sheridan Rd., downstream of Hwy 290, and at the mouth of the creek upstream of Niagara Street. Congener patterns in the mussels were similar within the creek at all three sites, although there were some differences likely due to the multiple sources at different locations along the length of the creek (Figure 25). The congener pattern most resembled Aroclor 1254 compared with the other Aroclors, although the increase in percent contribution for higher chlorinated congeners suggests input from Aroclor 1260 as well. The mean total PCB concentration for the station located at the head of the creek was lower than at the two downstream stations (sum of 52 congeners, total PCBs: 8.8 ng/g wet wt., SD 4.2 ng/g) compared with 28 ng/g wet wt. (SD 1.5 ng/g) at station Hwy 290 and a range from 44 to 60 ng/g (wet wt.) for mussels deployed at the creek mouth.

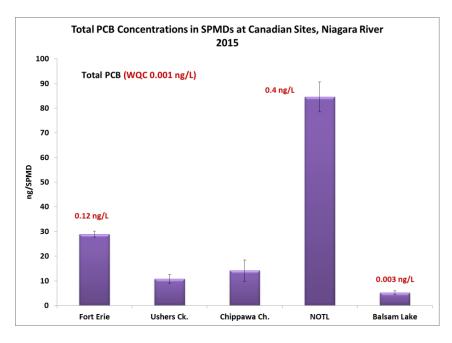
Figure 25: Congener patterns (percent contribution of each congener to total PCB concentration) in the caged mussels deployed along Two Mile Creek (2015) compared with the pattern for Aroclor 1254.


The mouth of Two Mile Creek has also been monitored since 1987 using caged mussels analysed by the Aroclor method. Mussels analysed using this method had higher concentrations than the congener specific method discussed above (mean Aroclor method: 99

ng/g SD 11 ng/g), however, there has been no change through time in mussel tissue concentrations regardless of the analytical method (Figure 26). This is not unexpected since there has not been any remediation at the mouth of the creek.


Figure 26: Mean (+/- SE) total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Two Mile Creek through time (1987-2015) and congener specific method (2006-2015).

A PCB contaminated tributary, Rattlesnake Creek, flows intermittently into the lower portion of Two Mile Creek (caged mussels sum of 52 congeners: 75 ng/g wet wt. SD 12 ng/g). These data were consistent with the data from 2009 (82 ng/g wet wt. SD 3 ng/g). The congener pattern for mussels deployed in Rattlesnake Creek is different from the pattern at the mouth of Two Mile Creek suggesting another distinct source within this watershed (Figure 27). Mussels deployed in Rattlesnake Creek had a higher percent contribution from the lower chlorinated congeners (e.g., PCB-31 to 52) than Two Mile Creek, and a lower percent contribution from the higher chlorinated congeners compared with Two Mile Creek (e.g., most congeners from PCB-110 to PCB-208). The unusual pattern for the lower chlorinated congeners (high percent contribution from PCB-44, 49 and 52) and low contribution from PCB -110, 118, 138, 149, makes it difficult to match the Rattlesnake Creek PCBs with any specific Aroclor. The pattern may be a reflection of PCB volatilization and/or dechlorination. This unusual pattern for PCB-44 to 52, was replicated in mussels at the mouth of Two Mile Creek and provides a line of evidence that suggested that Rattlesnake Creek is a possible source of PCBs to Two Mile Creek. The similarity in the congener pattern in the Two Mile Creek SPMDs with Rattlesnake Creek mussels (2009 and 2015) (Figure 27) provides a second line of evidence, and suggested the need for a PCB track-down study to determine the contributions and loadings of various PCB sources within the watershed to Two Mile Creek.


Figure 27: PCB congener patterns (percent contribution of each congener to total PCB) in caged mussels deployed in Rattlesnake Creek and Two Mile Creek, and the SPMD deployed at the mouth of Two Mile Creek, 2015. The number of congeners presented for SPMDs were reduced to match the 52 congeners analysed in mussels.

Gill Creek: Gill Creek discharges into the Niagara River just above Niagara Falls on the U.S. side. The creek received contaminants from the Olin Chemical Corporation (Buffalo Avenue Plant) and the E. I. Dupont Company upstream of the mouth. Additionally, NYSDEC identified over 100 sources of contaminants within the watershed. Gill creek was a major contributor of PCBs to the Niagara River; estimated to have contributed as much as 20% of the total PCB load (USEPA and NYSDEC, 1994). Remediation of PCB contaminated sediment in Gill Creek upstream of the mouth was completed in 1992. Additional sediment remediation was completed further upstream in 1998. Concentrations of total PCBs in caged mussels deployed at these two sites have decreased post remediation and remain consistently low through time (2015 mean: 34 ng/g +/- SE 2.5 ng/g wet wt.) (Figure 28).

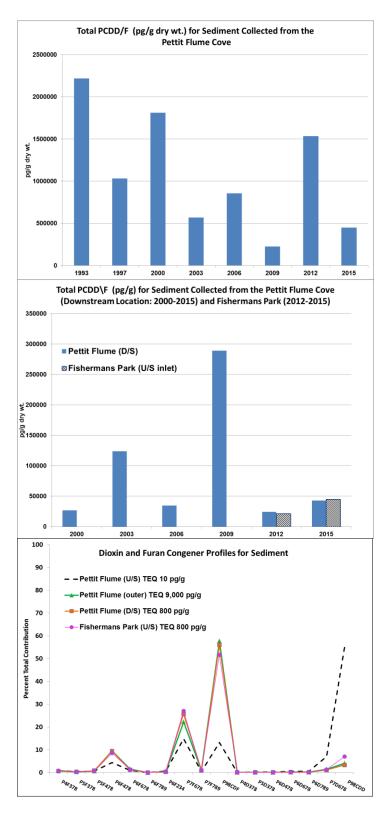
Figure 28: Mean (+/- SE) total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Gill Creek through time (1983-2015).

Canadian Sites: Total PCB concentrations (measured using the congener specific method) in caged mussels deployed at Fort Erie were below the detection limit, and at NOTL ranged from 1.4 to 2.3 ng/g (wet wt.). NOTL had the highest PCB concentrations in SPMDs compared with the other Canadian sites (Figure 29; Appendix F). The higher PCB concentration at NOTL was likely due to the contributions of PCBs from the US side as discussed earlier for OCS, tetra, penta, and hexachlorobenzene since PCB concentrations in mussels, and estimated water concentrations from the SPMDs deployed at Canadian sites have historically been lower than those reported at US sites suspected of being sources (Figures 20).

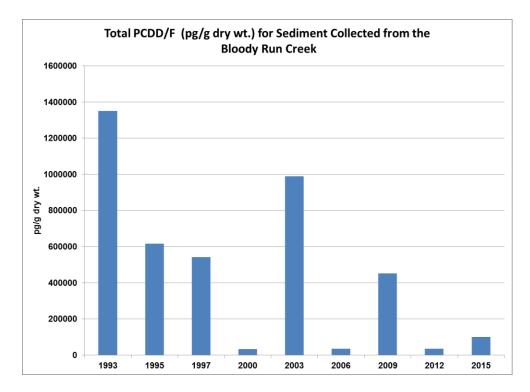
Figure 29: Mean +/- SD total PCBs (sum of 209 congeners) for SPMDs (**ng/SPMD**) deployed on the Canadian side of the Niagara River, 2015 with estimated water concentrations (ng/L) compared with the most stringent water quality criteria (WQC).

Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans

Pettit Flume and Fisherman's Park: In contrast to the reductions in chlorinated benzenes in mussels, high concentrations of dioxins and furans have been measured in sediment and mussels deployed in the cove consistently since 1993 suggesting the presence of a source that had eluded the remediation in the early 1990's and additional sediment remedial efforts in 2000 (US EPA and NYSDEC 2002). The sediment collected in 2015 from the cove was highly contaminated with dioxins and furans with a TEQ of 8.830 pg/g (Appendix D3). Sediment collected in previous surveys (1993-2012) had total TEQ concentrations that ranged from 3800 to 48,000 pg/g (Richman et al. 2011) (Figure 30; Appendix E). The CCME interim sediment guideline is 21.1 pg TEQ/g for comparison. The dioxin and furan isomer patterns in sediments from the cove were unique to the cove when compared to other sites in the Niagara River (i.e., concentration of octachlorodioxin was low relative to other isomers). The Pettit Flume outfall is identified as the source of contamination since sediment collected from a site immediately upstream of the cove in past surveys (1993-2015) has typically had low PCDD/F contamination (total TEQ ranged from 10 to 37 pg/g) and isomer patterns in the upstream sediment samples did not match the unique Pettit Flume profile (Richman 2013).


The continued presence of contaminants in the cove was possibly due, in part, to residual contamination in the sewer system. Camera inspections (authorized by Occidental) of the sewer line in 2008 and 2009 identified sediment deposits throughout the sewer. Chemical analysis of the sediment detected contaminants associated with the waste deposited in the cove. A decision to manually vacuum the sediment deposits

and line portions of the sewer with resin coated liner tubes to prevent further infiltration of contaminated water and sediment was announced by NYSDEC in October 2013 (NYSDEC Fact Sheet 2013). Some of this work was completed in 2014 and may have led to the lower concentrations measured in the sediment in 2015. However, the sediment contamination of the cove has proven to be heterogeneous and additional data would be required to confirm that a decrease in surface sediment concentration was consistent throughout the area. PCDD/Fs were also measured in caged mussels deployed in the cove suggesting that they are bioavailable (Appendix D3).


Further remediation of the dioxin contaminated cove sediment has not been announced to date. However, PCDD/Fs at high concentrations (840 pg TEQ/g) and isomer patterns consistent with those observed in cove sediments were also found in sediment collected from stations located at the downstream end of the cove and at Fisherman's Park about 0.5 km downstream of the cove. Data collected since 2000 has been consistent in showing that contaminated sediment may be migrating out of the cove into the Niagara River (Figure 30).

Bloody Run Creek (BRC): Sediment collected from the shoreline of the Niagara River in the vicinity of Bloody Run Creek between 1993 and 2015 had consistently high concentrations of PCDD/Fs although concentrations have increased and decreased randomly confirming the heterogeneous spatial pattern of contamination along the shoreline (Appendix E; Figure 31). The TEQ has ranged from 3,300 pg TEQ/G to 120,000 pg TEQ/g. In 2015 additional sediment stations located along the shoreline in the vicinity of BRC and upstream and downstream of the historical stations were sampled. Some of these samples were analysed using a new MECP screening method used to identify areas that may be contaminated with PCDD/F. All historical sampling locations had sediment analysed using the routine method (Appendix D3). The dioxins and isomer patterns found in Bloody Run Creek sediments were distinct from those seen at other sites in the Niagara River with lower concentrations of octachlorodioxin relative to the 1,2,3,4,6,7,8-heptachlorodioxin. Furthermore, all the tetra dioxin was in the form of 2,3,7,8-TCDD, the most toxic form of dioxin. The unique congener pattern present in the sediment was also present in the SPMDs and caged mussels demonstrating bioavailability of the contaminants.

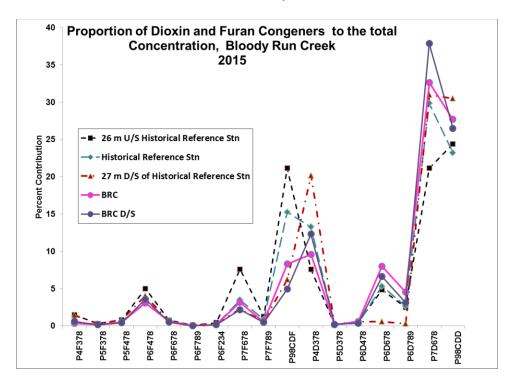

Sediment collected in 2012 from the "upstream" reference site (about 90 m upstream of BRC) had a relatively high TEQ (346 pg TEQ/g), compared to previous years, and the congener pattern was consistent with the BRC pattern and not the typical "upstream pattern" characteristic of this station. These data suggested that our sampling location was either not consistent with previous surveys or possibly, the BRC footprint was larger than previously suspected. Accordingly, additional sampling locations were added to the 2015 survey. In 2015 the historical upstream station had a total TEQ which was lower than 2012 (88 pg TEQ/g), but the congener pattern was a combination of the contaminated site and patterns more typical of upstream conditions (Figure 32). Given the range in PCDD/F concentrations through time it is possibly that sediment in this area is mobile due to frequent resuspension and settling because of the large fluctuation in water levels when the reservoir is closed and reopened on a daily basis.

Figure 30: Total PCDD/F trend through time data for the Pettit Flume cove and Fisherman's Park and congener patterns in sediment collected from the Pettit Flume and Fisherman's Park, 2015. Sediment was not collected from Fisherman's Park prior to 2012.

Figure 31: PCDD/F trend through time data for sediment collected from the Niagara River shoreline associated with Bloody Run Creek.

Figure 32: PCDD/F congener patterns in sediment collected from the Niagara River shoreline associated with Bloody Run Creek, 2015.

Conclusions & Recommendations

- The ECCC US/DS water monitoring data (2005-2015) (Hill et al. 2018) identified specific contaminants of concern that were suspected of having Niagara River sources since contaminant concentrations were higher at NOTL than Fort Erie. The deployment of caged mussels and SPMDs in 2015 in the nearshore provided data that identified sources of organic compounds to the Niagara River. These included:
 - Tributaries Two Mile Creek (PCBs, 4,4'-DDD, heptachlor epoxide, α-chlordane, dieldrin), Cayuga Creek (PCBs, 4,4'-DDD, 4,4'-DDE, α-HCH), and Gill Creek (α-HCH, HCBD).
 - The Pettit Flume cove (4,4'-DDD, α-chlordane, PCBs, trichlorobenzenes, 1,2,3,4 tetrachlorobenzene, 1,2,4,5/1,2,3,5-tetrachlorobenzene, pentachlorobenzene, HCB, and dioxins and furans).
 - Bloody Run Creek (1,2,3,4 tetrachlorobenzene, pentachlorobenzene, HCB, OCS, and dioxins and furans).
 - Occidental Chemcial Corp. (PCBs, trichlorobenzenes, 1,2,3,4 tetrachlorobenzene, 1,2,4,5/1,2,3,5-tetrachlorobenzene, pentachlorobenzene, HCB, OCS, HCBD, mirex).
 - GRP marina and upstream of the marina PCB, 4,4'-DDD, 4,4'-DDE.
 - With the exception of 4,4'-DDD and 4,4'-DDE at Fort Erie, no sources of organic contaminants were identified on the Canadian side of the river.
- Overall, water concentration estimates from SPMD data for most compounds on both side of the river were below Water Quality Criteria with the exception of PCBs, dieldrin, metabolites of DDT, HCB, mirex. Many of the contaminants being monitored are hydrophobic and are likely bound to sediment and may not be completely available for accumulation by the SPMDs. Accordingly, impacts on the benthic community and food chain cannot be fully assessed from this monitoring tool.
- High concentrations of PCBs in SPMDs deployed at the OCC Sewer 003 in 2012 and 2015 (estimated at 143 ng/L and 71 ng/L respectively) suggested that this outfall may be an important source of PCBs to the river. It is recommended that the discharge history of this outfall be reviewed to investigate whether the SPMD data reflects intermittent occurrences, or ongoing, long-term PCB discharges.
- High PCB concentrations were present in SPMDs deployed at two locations upstream
 of the Gratwick Riverside Park Hazardous Waste Site suggesting that there is/are
 upstream source(s) of PCBs to the river. The biomonitoring study conducted in 2018
 investigated the area between Fisherman's Park and GRP in an attempt to track down
 the source.

- Dioxin contaminated sediment samples collected from Fisherman's Park in both 2012 and 2015 suggested movement and transport of contaminated sediment from the Pettit Flume cove. Following source control of PCDD/F to the cove, a full site characterization of PCDD/F contamination in the cove is recommended followed by a review of potential sediment remedial options.
- A follow-up assessment of the high concentrations of metabolites of DDT at Fort Erie on the Canadian side of the Niagara River is recommended for 2018.

References

Apeti, D. A., Lauenstein, G.G. 2006. An assessment of mirex concentrations along the southern shorelines of the Great Lakes, USA. *Amer. J. Environ. Sci.* 2(3):95-103.

Booij, K., Hofmans, H.E., Fischer, C.V., and Van Weerlee, E.M. 2003. Temperaturedependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol. 37:361-366.

Booij, K., Smedes, F., Van Weerlee, E.M., and Honkoop, P. 2006. Environmental monitoring of hydrophobic organic contaminans: The case of mussels versus semipermeable membrane devices. Environ. Sci. Technol. 40:3893-3900.

Burniston, D.A., Klawunn, B., Hill, B., and Marvin, C.H. 2015. Polychlorinated dibenzo*p*-dioxins and dibenzofurans in Niagara River suspended sediments. Chemosphere 123:71-78.

Canada.ca: <u>https://www.canada.ca/en/health-canada/services/chemical-substances/fact-sheets/chemicals-glance/pentachlorobenzene.html</u>

Degger, N., Wepener, V., Richardson, B.J., and Wu, R.S.S. 2011. Brown mussels (*Perna perna*) and semi-permeable membrane devices (SPMDs) as indicators of organic pollutants in the South African marine environment. Marine Pollut. Bull. 63:91-97.

Fredeen, F.J.H. 1971. The abatement of nuisance species of Trichoptera with DDT applied to the resting sites of adults. The Canadian Entomologist. Vol 103:579-588.

Geologic Testing Consultants Ltd.1984. *Hydrogeologic evaluation of the Durez plant site.* Report to the Niagara River Steering Committee, Ontario Ministry of the Environment.

Herve, S., Prest, H.F., Heinonen, P., Hyotylainen, T., Koistinen, J., and Paasivirta, J.1995. Lipid-filled semipermeable membrane devices and mussels as samplers of organochlorine compounds in lake water. Environ. Sci. Pollut. Res. Int. 2:24-30.

Hill, B., Klawunn, P. 2009. Niagara River upstream/downstream monitoring program report: 2001-2002 to 2004-2005. Environment Canada (EC).

Hill, B. 2018. Niagara River Upstream/Downstream Monitoring Report 2005-2006 to 2014-2015. Environment and Climate Change Canada. For: Niagara River Monitoring Committee.

Huckins, J.N., Petty, J.D., Lebo, Orazio, C.E., Prest, H.F., Tillitt, D.E., Ellis, G.S., Johnson, B.T., and Manuweera, G.K. 1996. Semipermeable membrane devices (SPMDs) for the concentration and assessment of bioavailable organic contaminants in aquatic environments. In Ostrander, G.K. (ed.) Techniques in aquatic toxicology. CRC Lewis Publishers. Chapter 34.

Huckins, J.N., Petty, J.D., Lebo, J.A., Almeida, F.A., Booij, K., Alverez, D., Cranor, W.L., Clark, R.C., Mogensen, B.B. 2002. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. *Environ. Sci. Technol.* 36:85-91.

Interagency Task Force on Hazardous Waste, 1979. Draft report on hazardous waste disposal in Erie and Niagara counties, New York.

Johnson, G.W., Quensen III, J. F., Chiarenzelli, J.R., Hamilton, C. 2005. Polychlorinated biphenyls. In *Environmental forensics*. *eds.* R. Morrison and B. Murphy, pp-187-221. Academic Press.

Kauss, P.B. and Hamdy, Y.S.1991. Polycyclic aromatic hydrocarbons in surficial sediments and caged mussels of the St. Marys River, 1985. *Hydrobiologia*. 219:37-62.

Lobel, P.B., Bajdik, C.D., Belkhhode, S.P., Jackson, S.E., Longerich, H.P. 1991. Improved protocol for collecting Mussel Watch specimens taking into account sex, size, condition, shell shape and chronological age. *Arch. Environ. Contam. Toxicol.* 21(3):409-414.

Macdonald, C.R., Metcalfe, C.D. 1991. Concentration and distribution of PCB congeners in isolated Ontario lakes contaminated by atmospheric deposition. *Can. Fish. Aquat. Sci.* 48:371-381.

Metcalfe, J.L., Charlton, M.N. 1990. Freshwater mussels as biomonitors for organic industrial contaminants and pesticides in the St. Lawrence River. *Science of the Total Environment.* 97/98:595-615.

Muncaster, B.W., Innes, D.J., Hebert, P.D.N., Haffner, D.1989. Patterns of organic contaminant accumulation by freshwater mussels in the St. Clair River, Ontario. *J. Great Lakes Res.*15(4):645-653.

NYSDEC Fact Sheet: State Superfund Program, Durez Update: Pettit Creek Flume (PCF) - Sewer Cleaning Activities October 2013.

NRTC, 1984. *Report of the Niagara River Toxics Committee.* Environment Canada, USEPA II, Ontario Ministry of the Environment and New York State Department of Environmental Conservation, October.

Ontario Ministry of the Environment_2008a. *The determination of polychlorinated biphenyls (PCB), organochlorines (OC) and chlorobenzenes (CB) in fish clams and mussels by gas liquid chromatography-electron capture detection* (GLC-ECD). PFAOC-E3136. Laboratory Services Branch, Etobicoke, Ontario.

2008b. The determination of polychlorinated biphenyl congeners (PCBs) in fish clams and mussels by gas liquid chromatography-electron capture detection (GLC-ECD). PCBC-E3411. Laboratory Services Branch, Etobicoke, Ontario.

_____2008c. The Determination of Polychlorinated Dibenzo-P-Dioxins, Polychlorinated Dibenzofurans and Dioxin-Like Polychlorinated Biphenyls (DLPCBS) In Environmental Matrices by Gas Chromatography-High Resolution Mass Spectrometry (GC-MS). (DFPCB-E3418) Laboratory Services Branch, Etobicoke, Ontario.

_____2008d. The Determination of Particle Size Distribution on Sediments Particulate Matter and Liquids by Coulter Model LS230 Particle Size Analyzer, LLPART-E3328A. Laboratory Services Branch, Quality Management Office. Etobicoke, Ontario.

_____2008e. The determination of total carbon in soil and sediments by the thermal oxidation and infrared detection. CARBONTC-E3142A. Laboratory Services Branch, Etobicoke, Ontario.

_____2015. A Modified QuEChERS Method for the Determination of Polychlorinated Dibenzo-*p*-Dioxins and Polychlorinated Dibenzofurans in Sediments by Gas Chromatography—High Resolution Mass Spectrometry (GC-HRMS). (E3535) Laboratory Services Branch, Etobicoke, Ontario.

Pennak, R.W. 1978. *Fresh-water Invertebrates of the United States.* 2nd Edition. John Wiley & Sons, Inc., Toronto, Ontario.

Petty, J.D., Orazio, C.E., Huckins, J.N., Gale, R.W., Lebo, J.A., Meadows, J.C., Echols, K.R., and Cranor, W.L. 2000. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J of Chromatography A. 879:83-95.

Peven, C.S., Uhler, A.D., and Querzoli, F.J. 1996. Caged mussels and semipermeable membrane devices as indicators of organic contaminant uptake in Dorchester and Duxbury Bays, Massachusetts. Environ. Toxicol. and Chem. 15:144-149.

Prest, H.F., Jarman, W.M., Burns, S.A., Weismuller, T., Martin, M., and Huckins, J.N. 1992. Passive water sampling via semipermeable membrane devices (SPMDs) in concert with bivalves in the Sacramento/San Joaquin River Delta. Chemosphere 25:1811-1823.

Prest, H.F., Richardson, B.J., Jacobson, L.A., Vedder, J., and Martin, M. 1995. Monitoring organochlorines with semi-permeable membrane devices (SPMDs) and mussels (*Mytilus edulis*) in Corio Bay, Victoria, Australia. Marine Pollut. Bull. 30:543-554.

Richardson, B.J., Zhengm G.J., Tse, S.C., and Lam, P.K.S. 2001. A comparison of mussels (*Perna viridis*) and semi-permeable membrane devices (SPMDs) for monitoring chlorinated trace organic contaminants in Hong Kong coastal waters. Chemosphere 45:1201-1208.

Richman, L., Somers, K., 2005. Can we use zebra and quagga mussels for monitoring contaminants in the Niagara River? *Wat. Air and Soil Pollut*.167:155-178.

______,Somers, K., 2010. Monitoring metal and organic contaminant trends through time using quagga mussels (*dreissena bugensis*) collected from the Niagara River. *J of Great Lake Res.* 36:28-36.

_____, Milani, D. 2010. Temporal trends in near-shore sediment contaminant concentrations in the St. Clair River and potential long-term implications for fish tissue concentrations. *J. Great Lakes Res.* 36:722-735.

_____, Hobson, G., Williams, D.J., and Reiner, E. 2011. The Niagara River mussel biomonitoring program (*elliptio complanata*): 1983-2009. Journal of Great Lakes Research 37:213-225.

Richman, L.A. 2013. Niagara River Biomonitoring Study 2006/2009 Caged Mussels (*Elliptio complanata*) and Semi Permeable Membrane Devices (SPMDs). Ontario Ministry of Environment, Water Monitoring Section, Environmental Monitoring and Reporting Branch, January 2013. PIBS 9416.

Richman, L. A. 2015. Niagara River Biomonitoring Study 2012 Caged Mussels (*Elliptio complanata*) and Semi Permeable Membrane Devices (SPMDs), Ontario Ministry of Environment, Water Monitoring Section, Environmental Monitoring and Reporting Branch. <u>http://ourniagarariver.ca/document-library</u>

US EPA/NYSDEC, 1994. *Reduction of Toxic Loadings to the Niagara River from Hazardous Waste Sites in the United States: A Progress Report.* United States Environmental Protection Agency and the New York State Department of Environmental Conservation. USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2002. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: A progress report.

USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2003. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: June 2003.

USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2004. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: June 2004.

van den Berg, M., Bimbaum, L., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson., R., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241.

Vrana, B., and Schuurmann, G. 2002. Calibrating the uptake kinetics of semipermeable membrane devices in water:Impact of hydrodynamics. 2002. Environ. Sci. Technol. 36:290-296.

Wang, J., Yonghong, B., Phister, G., Henkelmann, B., Zhu, K., and Schramm, K. 2009. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 75:1119-1127.

Appendices

Station Location	Station #	Northing	Easting	Total PCB	Congener	Dioxins	Sediment	SPMDs
				OC pesticides	Specific PCBs	Furans		
				Chlorinated Benzenes				
Canadian sites								
Balsam Lake (Control)	18 01 0001	4938157	674831					
Fort Erie (FE)	05 02 203	4754908	670305	\checkmark	\checkmark			\checkmark
Ushers Creek	05 15 06	4767068	659995					\checkmark
Chippawa Channel	05 02 51	4768226	661232					\checkmark
Niagara on the Lake (NOTL)	05 11 09	4790824	657471	ν	√			\checkmark
American Sites								
Two Mile Creek	05 02 197	4764036	670595		\checkmark			\checkmark
Rattlesnake Creek	05 15 38	4763739	670555		\checkmark			
Two Mile Creek (Near Sheridan Rd) (historical – 2006)	05 15 36	4760793	671510		\checkmark		Dioxin	
Two Mile Creek (N of Hwy 290)	05 15 42	4762540	671147		\checkmark		Dioxin	
Pettit Flume - U/S	05 02 185	4766739	672260			\checkmark	Dioxin	\checkmark
Pettit Flume - Site B	05 02 186	4766806	672236			\checkmark	Dioxin	
Pettit Flume - D/S	05 02 187	4766795	672170			\checkmark	Dioxin	\checkmark
Fisherman's Park - U/S	05 02 01	4767294	671992			\checkmark	Dioxin	
Fishermans's Park - D/S	05 02 02	4767371	671979			\checkmark	Dioxin	\checkmark
Gratwick Riverside Park (GRP) - U/S of Marina	05 02 213	4768157	671730		\checkmark			V
Gratwick Riverside Park - U/S - in Marina	05 02 122	4768307	671761		\checkmark			
Gratwick Riverside Park - U/S	05 02 31	4768285	671655		\checkmark			
Gratwick Riverside Park - mid stn	05 02 214	4768683	671282		\checkmark			
Gratwick Riverside Park - D/S	05 02 199	4769277	670593		\checkmark			
102nd Street Upstream site (at outfall)	05 02 215	4770806	667256		\checkmark			
Little Niagara River (LNR) (D/S 102nd St. waste site)	05 02 095	4771208	666639		\checkmark			
Cayuga Creek	05 15 31	4771997	665978		\checkmark			
LNR (D/S Cayuga Creek)	05 02 96	4771057	665523		\checkmark			
U/S of Occidental Chem. Co.	05 02 97	4770936	662808		\checkmark			
D/S of Storm Sewer (A)	05 02 46	4770825	662238					
D/S of Storm Sewer (B)	05 02 94	4771020	662329					
D/S of Storm Sewer (C)	05 02 43	4770883	662101					
Occidental 003	05 02 42	4771074	662219		\checkmark			
Niagara River - U/S Gill Creek	05 02 98	4771388	661048					
Gill Creek - Mouth	05 02 37	4771395	660686		\checkmark			\checkmark
Bloody Run Creek (BRC) - "New" U/S	11 02 0026	4777883	659105				Dioxin	
Bloody Run Creek - U/S	11 02 0018	4777914	659122			\checkmark	Dioxin	
BRC: 27 m D/S of station 18	11 02 0027	4777908	659127				Dioxin	
BRC: 25M U/S of stn. 132	11 02 0028	4777940	659144				Dioxin	
BRC: Btwn stn 132 and stn 17	11 02 0030	4777965	659169				Dioxin	
BRC: on shore 10m E of Stn 0017	11 02 0029	4777978	659186				Dioxin	
Bloody Run Creek	11 02 0017	4777974	659171			\checkmark		
Bloody Run Creek	11 02 0131	4777962	659155			V		
Bloody Run Creek	11 02 0132	4777965	659160			V	Dioxin	\checkmark
Bloody Run Creek - "New" D/S 18 m U/S stn 25	11 02 0031	4777993	659191				Dioxin	
Bloody Run Creek - D/S	11 02 0025	4778024	659199			\checkmark	Dioxin	

Appendix B

2015 Niagara Ri			q					
Field Water Quality	/ Measure	ments						
Sonde = YSI 600 QS	n a a lik wata al ku							
Dissolved oxygen senso				notod				
Conductivity values are t	emperature o	ompensaleu,	except where	noleu				
Station Name	Station #	Depth (m)	Date	Cond. (µs/cm) (uncompensated)	Cond. (µs/cm) (Temp. compensated to 25°C)	Temp. (°C)	DO (%)	DO (mg/L)
Fisherman's Park U/S	05 02 0001	0.9	07-Jul-15	267	285.96	21.5	102	9.0
FISHEIMAN'S FAIR 0/3	05 02 0001	0.9	28-Jul-15	277	284.57	23.6	80.4	6.9
Fisherman's Park D/S	05 02 0002	0.9	07-Jul-15	271	294.50	20.8	87.8	7.8
FISHEIMAITS FAIR D/S	05 02 0002	0.9	28-Jul-15	283	290.73	23.6	71.4	6.1
Pettit Flume U/S	05 02 0185	1.2	07-Jul-15	260	281.97	20.9	98.3	
	00 02 0100	1.2	28-Jul-15	278	282.29	24.2	97.7	
Pettit Flume D/S	05 02 0187	0.6	07-Jul-15	263	284.63	21.0	97.3	
		0.0	28-Jul-15	279	282.22	24.4	100.8	8.4
Pettit Flume (Outer Site	05 02 0186	1.0	07-Jul-15	506	542.05	21.5	93.9	8.3
B)			28-Jul-15	484	501.14	23.2	112.6	9.6
Two Mile Creek (mouth)	05 02 0197	0.9	07-Jul-15	1570	1609.76	23.7	88.8	7.5
. ,			28-Jul-15	1312	1319.52	24.7	64.6	5.4
Two Mile Creek (near	05 15 0042	0.5	07-Jul-15	1512	1517.77	24.8	>190	
Hwy 290)			28-Jul-15	965	934.81	26.7	107.3	8.6
Two Mile Creek (near	05 15 0036	0.5	07-Jul-15	1803	1687.57	28.6	200?	
Sheridan)			28-Jul-15	1969	1785.78	30.4	164.1?	12.3
Rattlesnake Creek	05 15 0038	0.2	07-Jul-15	1704	1810.65	21.9	61.3	5.4
			28-Jul-15	2020	2023.85	24.9	20.2	1.7
Gratwick Riverside Park	05 02 0031	0.8	08-Jul-15	267	291.96	20.5	96.8	8.7
U/S			29-Jul-15	282	286.91	24.1	98.3	8.3
GRP (upstream of	05 02 0213	1.2	08-Jul-15	266	290.87	20.5	99.3	8.9
marina)			29-Jul-15	281	286.44	24.0	107.8	9.1
U/S GRP in Marina	05 02 0122	1.7	08-Jul-15	299	321.61	21.3	84.8	7.5
			29-Jul-15		Not measure			
GRP middle of the park	05 02 0214	0.9	08-Jul-15	271	290.90	21.4	101.9	9.0
			29-Jul-15	285	288.29	24.4	124.6	10.4
GRP D/S	05 02 0199	0.6	08-Jul-15	279	299.48	21.4	114	10.1
	00 02 0100	0.0	29-Jul-15	286	286.54	24.9	120.3	10.0
102nd St. U/S	05 02 0093	0.6	08-Jul-15	299	315.80	22.2	154	13.5
102110 31. 0/3	00 02 0093	0.0	29-Jul-15	293	289.15	25.7	137	11.2
Outfall U/S end of 102nd	05 02 0215	0.4	08-Jul-15	541	645.20	16.5	76.9	7.5
St.	00 02 02 10	0.4	29-Jul-15	354	368.71	22.9	90.6	7.8
Little Niagara River	05 02 0095	0.8	08-Jul-15	299	312.66	22.7	160	13.9
(near 102nd St.)	20 02 0000	0.0	29-Jul-15	298	289.74	26.5	152	12.2
_ittle Niagara River (D/S	05 02 0096	0.7	08-Jul-15	345	364.39	22.2	126	11.0
Cayuga Crk.)		÷.,	29-Jul-15		Not measure	d.		
Cayuga Crk. (within	05 15 0031	0.8	08-Jul-15	1194	1253.54	22.5	53.7	4.6
Crk.)		2.0	29-Jul-15	593	573.39	26.8	70.9	5.7

2015 Niagara R								
Field Water Quality	/ Measure	ments con	tinued					
Station Name	Station #	Depth (m)	Date	Cond. (µs/cm) (uncompensated)	Cond. (µs/cm) (Temp. compensated to 25°C)	Temp. (°C)	DO (%)	DO (mg/L)
LVS of Oppidental	05.02.0007	0.7	09-Jul-15	267	293.79	20.2	88.5	8.0
U/S of Occidental	05 02 0097	0.7	30-Jul-15	296	298.27	24.6	96.4	8.0
Occidental D/S Storm	05 00 00 40	0.5	09-Jul-15	264	289.89	20.3	88.2	8.0
Sewer A	05 02 0046	0.5	30-Jul-15	291	292.11	24.8	98.3	8.2
Occidental D/S Storm	05 02 0094	0.5	09-Jul-15	263	290.00	20.1	88.9	8.0
Sewer B	05 02 0094	0.5	30-Jul-15	291	293.23	24.6	96.6	8.0
Occidental D/S Storm	05 02 0044	0.5	09-Jul-15	261	288.40	20.0	91	8.2
Sewer C	05 02 0044	0.5	30-Jul-15	290	292.22	24.6	97.1	8.1
Occidental Sewer 003	05 02 0042	0.6	09-Jul-15	320	345.61	21.1	88	7.8
Occidental Sewer 003	05 02 0042	0.6	30-Jul-15	298	298.00	25.0	102	8.4
350 m U/S Gill Creek			09-Jul-15	248	275.77	19.7	95.1	8.7
mouth (in the Niagara River)	05 02 0098	0.5	30-Jul-15	271	275.71	24.1	109.9	9.2
	05 00 0007	4.5	09-Jul-15	266	293.92	20.0	92	8.4
Gill Creek (mouth)	05 02 0037	1.5	30-Jul-15	289	292.90	24.3	105.9	8.9
	44.00.0047	0.7	10-Jul-15	244	274.22	19.2	120	11.1
Bloody Run Creek	11 02 0017	0.7	31-Jul-15		Not measure	d.		
Bloody Bun Crook	11 02 0122	0.7	10-Jul-15	244	274.81	19.1	119	11.0
Bloody Run Creek	11 02 0132	0.7	31-Jul-15		Not measure	ed.		
Bloody Bun Crook	11 02 0131	0.7	10-Jul-15	246	277.65	19.0	115	10.7
Bloody Run Creek	11 02 0131	0.7	31-Jul-15		Not measure	d.		
Bloody Run Creek U/S	11 02 0018	0.4	10-Jul-15	243	274.27	19.0	115	10.7
Bloody Run Cleek 0/3	11 02 0018	0.4	31-Jul-15	Not me	easured. Found in correct lo	cation, but higl	h and dry.	
Bloody Run Creek D/S	11 02 0025	0.7	10-Jul-15	244	274.81	19.1	115.3	10.6
Bloody Run Creek D/S	11 02 0023	0.7	31-Jul-15		Not measure	ed.		
Fort Erie	05 02 0203	0.8	10-Jul-15	247	272.36	20.1	128	11.8
Foit Elle	05 02 0205	0.8	31-Jul-15	260	268.15	23.4	142.7	12.15
Lishara Grasik	05 45 0000	0.7	10-Jul-15	249	278.06	19.5	108	10.0
Ushers Creek	05 15 0006	0.7	31-Jul-15	269	274.21	24.0	127.9	10.8
	05.00.005.	0.7	10-Jul-15	246	274.13	19.6	110	10.1
Chippawa Channel	05 02 0051	0.7	31-Jul-15	265	272.77	23.5	118.3	10.1
			10-Jul-15	251	277.93	19.9	109	10.0
Niagara on the Lake	11 02 0009	1.0	31-Jul-15		Not measure	ed.		
			13-Jul-15	136	138.10	24.2	98	8.2
Balsam Lake Control	18 01 0001	1.6	04-Aug-15	119	125.94	22.1	92.2	8.0

Mussel Weights									
Station Name	Station #	Deployed	Retrieved	GL15XXXX	# Mussels	Wet Weight (g, tared)	Dry Weight (g, tared)	percent dry	percent wate
Fisherman's Park (U/S)		1 07-Jul-15	28-JUL-2015	1089	4	22.74	0		
Fisherman's Park (D/S)	2	2 07-Jul-15	28-JUL-2015	1090	4	25.81	0		
Pettit Flume (U/S)	185	5 07-Jul-15	28-JUL-2015	1091	1	5.65	0		
Pettit Flume (U/S)	185	5 07-Jul-15	28-JUL-2015	1092	1	5.81	0		
Pettit Flume (U/S)		5 07-Jul-15	28-JUL-2015	1093	1				
Pettit Flume (U/S)		5 07-Jul-15	28-JUL-2015	1094	4	-	0		
Pettit Flume (D/S)		7 07-Jul-15	28-JUL-2015	1095	1				
Pettit Flume (D/S)	187		28-JUL-2015	1096	1				
Pettit Flume (D/S)		7 07-Jul-15	28-JUL-2015	1097	1				
Pettit Flume (D/S)		7 07-Jul-15	28-JUL-2015	1098	4				
Pettit Flume Cove		5 07-Jul-15	28-JUL-2015	1099	1				
Pettit Flume Cove		5 07-Jul-15	28-JUL-2015	1100	1				
Pettit Flume Cove		5 07-Jul-15	28-JUL-2015	1101	1				
Pettit Flume Cove		5 07-Jul-15	28-JUL-2015	1102	4				
Two Mile Creek (mouth)		7 07-Jul-15	28-JUL-2015	1103	1	-			
Two Mile Creek (mouth)		7 07-Jul-15	28-JUL-2015	1104	1				
Two Mile Creek (mouth)	197		28-JUL-2015	1105	1			-	00
Two Mile Creek (mouth)	197		28-JUL-2015	1106 1107	6			14 14	86 86
Two Mile Creek (mouth)			28-JUL-2015		6				
Two Mile Creek (mouth)	197	-	28-JUL-2015	1108	6		-	15 15	85
Rattlesnake Creek Rattlesnake Creek		3 07-Jul-15 3 07-Jul-15	28-JUL-2015 28-JUL-2015	1109 1110	6			15	85 85
Rattlesnake Creek		3 07-Jul-13	28-JUL-2015	1110	6			13	86
Two Mile Creek (N of Hwy 290)		2 07-Jul-15	28-JUL-2015	1111 1112	6				87
Two Mile Creek (N of Hwy 290)		2 07-Jul-13 2 08-Jul-15	29-JUL-2015	1112	6				85
Two Mile Creek (N of Hwy 290)		2 08-Jul-15	29-JUL-2015	1113	6			15	85
Two Mile Creek (Nor Twy 250)		5 08-Jul-15	29-JUL-2015	1114	6			13	87
Two Mile Creek (Sheridan Rd)		5 08-Jul-15	29-JUL-2015	1115	6			13	86
Two Mile Creek (Sheridan Rd)	36		29-JUL-2015	1113	6			14	86
Gratwick Riverside Park (GRP) (U/S)	33	-	29-JUL-2015	1117	6			14	86
Gratwick Riverside Park (GRP) (U/S)	33	-	29-JUL-2015	1119	6			14	86
Gratwick Riverside Park (GRP) (U/S)	33		29-JUL-2015	1120	6			15	85
GRP (U/S Marina)	213		29-JUL-2015	1121	6			13	87
GRP (U/S Marina)		3 08-Jul-15	29-JUL-2015	1122	6			13	87
GRP (U/S Marina)		3 08-Jul-15	29-JUL-2015	1123	6			13	87
GRP (Marina)		2 08-Jul-15	29-JUL-2015	1124	6			14	86
GRP (Marina)		2 08-Jul-15	29-JUL-2015	1125	6			15	85
GRP (Marina)	122	2 08-Jul-15	29-JUL-2015	1126	6	49.59	7.57	15	85
GRP (Mid Park)	214	4 08-Jul-15	29-JUL-2015	1127	6	43.66	6.08	14	86
GRP (Mid Park)	214	4 08-Jul-15	29-JUL-2015	1128	6	45.83	6.02	13	87
GRP (Mid Park)	214	4 08-Jul-15	29-JUL-2015	1129	6	43.66	5.03	12	88
GRP (D/S)	199	9 08-Jul-15	29-JUL-2015	1130	6	41.53	5.44	13	87
GRP (D/S)	199	9 08-Jul-15	29-JUL-2015	1131	6	40.85	6.04	15	85
GRP (D/S)	199	9 08-Jul-15	29-JUL-2015	1132	4	26.72	3.51	13	87
102nd St. (U/S)	93	8 08-Jul-15	29-JUL-2015	1133	6	48.13	5.82	12	88
102nd St. (U/S)	93	8 08-Jul-15	29-JUL-2015	1134	6	45.82	5.79	13	87
102nd St. (U/S)	93	3 08-Jul-15	29-JUL-2015	1135	6	41.48	5.69	14	86
102 nd St (@outfall U/S of landfill)		5 08-Jul-15	29-JUL-2015	1136	1	6.68	0		
102 nd St (@outfall U/S of landfill)		5 08-Jul-15	29-JUL-2015	1137	1	5.77			
102 nd St (@outfall U/S of landfill)		5 08-Jul-15	29-JUL-2015	1138	1				
Little Niagara River (LNR) (D/S 102nd St.)		5 08-Jul-15	29-JUL-2015	1139	6				87
Little Niagara River (LNR) (D/S 102nd St.)		5 08-Jul-15	29-JUL-2015	1140	6				86
Little Niagara River (LNR) (D/S 102nd St.)		5 08-Jul-15	29-JUL-2015	1141	6			15	85
LNR D/S Cayuga Creek		5 08-Jul-15	29-JUL-2015	1142	6				85
LNR D/S Cayuga Creek		5 09-Jul-15	30-JUL-2015	1143	6				85
LNR D/S Cayuga Creek		5 09-Jul-15	30-JUL-2015	1144		MISSING	6.15		
Cayuga Creek		1 09-Jul-15	30-JUL-2015	1145	6				85
Cayuga Creek		1 09-Jul-15	30-JUL-2015	1146	6				85
Cayuga Creek	31	1 09-Jul-15	30-JUL-2015	1147	6	45.13	6.70	15	85

Appendix Table C: 2015 Niagara River Biomonitoring									
Mussel Weights: Continued	Station #	Deplement	Detrieure d		# Mussala	Wet Weight	Dry Weight		
Station Name	Station #	Deployed	Retrieved	GL15XXXX	# Mussels	(g, tared)	(g, tared)	percent dry	percent water
U/S Occidental Chem. U/S Occidental Chem.	97		30-JUL-2015 30-JUL-2015	1148 1149	6		6.04 4.92	15 13	85 87
U/S Occidental Chem.	97	09-Jul-15 09-Jul-15	30-JUL-2015 30-JUL-2015	1149	6		5.22	13	87
U/S Occidental Chem.	97		30-JUL-2015	1150	1			12	00
U/S Occidental Chem.	97	09-Jul-15	30-JUL-2015	1152	1	-	0		
U/S Occidental Chem.	97	09-Jul-15	30-JUL-2015	1153	1	. 5.17	0		
Storm Sewer A (D/S)	46	09-Jul-15	30-JUL-2015	1154	1	. 5.78	0		
Storm Sewer A (D/S)	46		30-JUL-2015	1155	1				
Storm Sewer A (D/S)	46		30-JUL-2015	1156	1		0		
Storm Sewer B (D/S)	94	09-Jul-15	30-JUL-2015	1157	1				
Storm Sewer B (D/S)	94	09-Jul-15	30-JUL-2015	1158 1159	1				
Storm Sewer B (D/S) Storm Sewer C (D/S)	94	09-Jul-15 09-Jul-15	30-JUL-2015 30-JUL-2015	1159	1				
Storm Sewer C (D/S)	44	09-Jul-15	30-JUL-2015	1160	1		-		
Storm Sewer C (D/S)	44		30-JUL-2015	1101	1		0		
OCC 003	42		30-JUL-2015	1163	6			16	84
OCC 003	42	-	30-JUL-2015	1164	6			16	84
OCC 003		09-Jul-15	30-JUL-2015	1165	6			17	83
OCC 003	42	09-Jul-15	30-JUL-2015	1166	1		0		
OCC 003	42	09-Jul-15	30-JUL-2015	1167	1		0		
OCC 003	42		30-JUL-2015	1168	1				
Gill Creek (U/S mouth)		09-Jul-15	30-JUL-2015	1169	1		0		
Gill Creek (U/S mouth)		09-Jul-15	30-JUL-2015	1170	1				
Gill Creek (U/S mouth)		09-Jul-15	30-JUL-2015	1171	1				
Gill Creek (mouth)	37		30-JUL-2015	1172	6			13	87
Gill Creek (mouth)		10-Jul-15	31-JUL-2015	1173	6			13	87
Gill Creek (mouth)	37		31-JUL-2015	1174	6			14	86
Gill Creek (mouth)	37	-	31-JUL-2015	1175	1				
Gill Creek (mouth) Gill Creek (mouth)	37	10-Jul-15	31-JUL-2015 31-JUL-2015	1176 1177	1				
Bloody Run Creek (BRC) D/S		10-Jul-15	31-JUL-2015	1177	1	-			
Bloody Run Creek (BRC) D/S		10-Jul-15		1178	1		0		
Bloody Run Creek (BRC) D/S		10-Jul-15		1180	1		0		
Bloody Run Creek (BRC) D/S		10-Jul-15		1181	4				
Bloody Run Creek	17			1182	1	6.73	0		
Bloody Run Creek	17	10-Jul-15	31-JUL-2015	1183	1	6.91	0		
Bloody Run Creek	17	10-Jul-15	31-JUL-2015	1184	1	6.4	0		
Bloody Run Creek	17	10-Jul-15	31-JUL-2015	1185	4	30.13	0		
BRC (7TH + 8TH POBT FROM S)		10-Jul-15		1186	1				
BRC (7TH + 8TH POBT FROM S)	131			1187	1				
BRC (7TH + 8TH POBT FROM S)	131			1188	1		0		
BRC (7TH + 8TH POBT FROM S)	131			1189	4		0		-
BRC (U/S)		10-Jul-15	31-JUL-2015	1233 1234	1	-			
BRC (U/S) BRC (U/S)	18	10-Jul-15 10-Jul-15	31-JUL-2015 31-JUL-2015	1234	1		-		
BRC (U/S)		10-Jul-15		1235			-		
BRC (4th 5th pole) U/S stn 131			31-JUL-2015	1230	1				
BRC (4th_5th pole) U/S stn 131			31-JUL-2015	1237	1				
BRC (4th_5th pole) U/S stn 131			31-JUL-2015	1230					1
BRC (4th_5th pole) U/S stn 131			31-JUL-2015	1240					
Fort Erie			31-JUL-2015	1241	1				
Fort Erie	203	10-Jul-15	31-JUL-2015	1242	1	7.74	0		
Fort Erie	203	10-Jul-15	31-JUL-2015	1243	1	6.34	0		
Fort Erie		10-Jul-15		1244	6	-		16	84
Fort Erie		10-Jul-15		1245				14	86
Fort Erie			31-JUL-2015	1246				13	87
NOTL		10-Jul-15		1247					
NOTL		10-Jul-15		1248					
NOTL NOTL		10-Jul-15		1249 1250				1.4	06
NOTL		10-Jul-15 10-Jul-15		1250	6			14 15	86 85
NOTL		10-Jul-15		1251	6			15	85
Balsam Lake Control	1	10 301 13	10-Jul-15	1252	1			14	
Balsam Lake Control	1		10 Jul 15	1255	1	-			
Balsam Lake Control	1		10 Jul 15	1254	1	-			
Balsam Lake Control	1		10-Jul-15	1255		_		13	87
Balsam Lake Control	1		10-Jul-15	1257	6			13	87
Balsam Lake Control	1		10-Jul-15	1258				12	88
Balsam Lake Control	1		10-Jul-15	1259	1	8.67	0		
Balsam Lake Control	1		10-Jul-15	1260	1	7.9	0		

	1240,120	4,1260;	PS40=	resemble Aro	clor 1254 AND 1260	MCP	= max poss. (Jone'n due to chro	matographic o		h DUO	~ DUO					
		Stn	Stn				cis-	DDT &		a-BHC (hexachlorocyclo-	b-BHC (hexachlorocvclo-	g-BHC (hexachlorocyclo-					
Station Description	BOW	type	No	Samp No	Retrieval Date	Lipid		Metabolites	Aldrin	hexane)	hexane)	hexane)	a-Chlordane	g-Chlordane	Heptachlor	Mirex	Oxychlordan
						%	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet
							<=W	<=W	<=W	<=W	<=W	<=W	<=W	<=W	<=W	<=W	<=W
merican Sites							2	2	1	1	1	1	2	2	1	5	2
wo Mile Creek (mouth)	5	2	197	GL151103	28-JUL-2015	0.06	2	2	1	1	1	1	2	2	1	5	2
wo Mile Creek (mouth)	5	2	197	GL151103 GL151104		1.1	2	2	1	1	1	1	2	2	1	5	2
wo Mile Creek (mouth)	5	2	197	GL151105		1.1	2	2	1	1	1	1	2	2	1	5	2
Pettit Flume (U/S)	5	2	185	GL151091	28-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
Pettit Flume (U/S)	5	2	185	GL151092		0.92	2	2	1	1	1	1	2	2	1	5	2
Pettit Flume (U/S)	5	2	185	GL151093		0.9	2	2	1	1	1	1	2	2	1	5	2
ettit Flume Cove	5	2	186	GL151099		1.1	2	2	1	1	1	1	2	2	1	5	2
ettit Flume Cove	5	2	186	GL151100		1.4	2	2	1	1	1	1	2	2	1	5	2
ettit Flume Cove	5	2	186	GL151101		0.87	2	2	1	1	1	1	2	2	1	5	2
ettit Flume (D/S)	5	2	187	GL151095	28-JUL-2015	0.99	2	2	1	1	1	1	2	2	1	5	2
ettit Flume (D/S)	5	2	187	GL151096	28-JUL-2015	0.83	2	2	1	1	1	1	2	2	1	5	2
ettit Flume (D/S)	5	2	187	GL151097		0.91	2	2	1	1	1	1	2	2	1	5	2
02 nd St (@outfall U/S of landfill)	5	2	215	GL151136		1.1	2	2	1	1	1	1	2	2	1	5	2
02 nd St (@outfall U/S of landfill)	5	2	215	GL151137	29-JUL-2015	1.1	2	2	1	1	1	1	2	2	1	5	2
02 nd St (@outfall U/S of landfill)	5	2	215	GL151138	29-JUL-2015	0.91	2	2	1	1	1	1	2	2	1	5	2
J/S Occidental Chem.	5	2	97	GL151151	30-JUL-2015	0.78	2	2	1	1	1	1	2	2	1	5	2
J/S Occidental Chem.	5	2	97	GL151152	30-JUL-2015	0.66	2	3 <	T 1	1	1	1	2	2	1	5	2
J/S Occidental Chem.	5	2	97	GL151153	30-JUL-2015	0.88	2	2	1	1	1	1	2	2	1	5	2
Storm Sewer A (D/S)	5	2	46	GL151154	30-JUL-2015	0.95	2	4 <	T 1	1	1	1	2	2	1	5	2
Storm Sewer A (D/S)	5	2	46	GL151155	30-JUL-2015	0.79	2	2	1	1	1	1	2	2	1	5	2
Storm Sewer A (D/S)	5	2	46	GL151156	30-JUL-2015	1	2	2	1	1	1	1	2	2	1	5	2
storm Sewer B (D/S)	5	2	94	GL151157	30-JUL-2015	0.98	2	3 <	T 1	1	1	1	2	2	1	5	2
storm Sewer B (D/S)	5	2	94	GL151158	30-JUL-2015	1.1	2	2	1	1	1	1	2	2	1	5	2
torm Sewer B (D/S)	5	2	94	GL151159		1.1	2	2	1	1	1	1	2	2	1	5	2
storm Sewer C (D/S)	5	2	44	GL151160	30-JUL-2015	1.2	2	2	1	1	1	1	2	2	1	5	2
storm Sewer C (D/S)	5	2	44	GL151161		0.84	2	2	1	1	1	1	2	2	1	5	2
storm Sewer C (D/S)	5	2	44	GL151162	30-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
DCC 003	5	2	42	GL151166		0.82	2	2	1	1	1	1	2	2	1	5	2
DCC 003	5	2	42	GL151167		0.72	2	2	1	1	1	1	2	2	1	5	2
DCC 003	5	2	42	GL151168		0.9	2	2	1	1	1	1	2	2	1	5	2
Gill Creek (U/S mouth)	5	2	98	GL151169	30-JUL-2015	0.79	2	2	1	1	1	1	2	2	1	5	2
Gill Creek (U/S mouth)	5	2	98	GL151170	30-JUL-2015	1	2		T 1	1	1	1	2	2	1	5	2
Gill Creek (U/S mouth)	5	2	98	GL151171	30-JUL-2015	1	2		T 1	1	1	1	2	2	1	5	2
Gill Creek (mouth)	5	2	37	GL151175		1.1	2	2	1	1	1	1	2	2	1	5	2
Gill Creek (mouth)	5	2	37	GL151176		0.99	2	2	1	1	1	1	2	2	1	5	2
Gill Creek (mouth)	5	2	37	GL151177	31-JUL-2015		2	2	1	1	2	<t 1<="" td=""><td>2</td><td>-</td><td>1</td><td>5</td><td>2</td></t>	2	-	1	5	2
BRC (U/S)	11	2	18	GL151233	31-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
BRC (U/S)	11	2	18	GL151235		0.66	2	2	1	1	1	1	2	2	1	5	2
BRC (U/S)	11	2	18	GL151235		0.57	2	2	1	1	1	1	2	2	1	5	2
BRC (4th_5th pole) U/S stn 131	11	2	132	GL151237		0.58	2	2	1	1	1	1	2	2	1	5	2
BRC (4th_5th pole) U/S stn 131	11	2	132	GL151238	31-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
BRC (4th_5th pole) U/S stn 131	11	2	132	GL151239		0.65	2	2	1	1	1	1	2	2	1	5	2
BRC (7TH + 8TH POBT FROM S)	11	2	131	GL151186		0.8	2	2	1	1	1	1	2	2	1	5	2
BRC (7TH + 8TH POBT FROM S)	11	2	131	GL151187 GL151188		1.2	2	2	1	1	1	1	2	2	1	5	2
BRC (7TH + 8TH POBT FROM S)	11	2	131	GL151188 GL151182		0.84	2	2	1 T 1	1	1		2	2	1	5	2
Bloody Run Creek	11	2	17			0.92	2	-	T 1		1	1	2	2	1	-	2
Bloody Run Creek	11	2	17	GL151183 GL151184		1.3	2	2	1 	1	1	1	-	2		5	2
Bloody Run Creek Bloody Run Creek (BRC) D/S	11	2	17			1.2	2	4 < 2	T 1	1	1	1	2	2	1		
loody Run Creek (BRC) D/S loody Run Creek (BRC) D/S	11 11	2 2	25 25	GL151178 GL151179		0.9	2 2	2	1	1	1	1	2 2	2	1	5 5	2
loody Run Creek (BRC) D/S	11 11	2	25 25	GL151179 GL151180	31-JUL-2015 31-JUL-2015	0.72	2		1 (T 1	1	1	1	2	2	1	5 5	2
anadian Sites		2	25	02101100	31-301-2015	0.07	2	3 4				1	2	2		5	2
ort Erie	11	2	203	GL151241	31-JUL-2015	0.71	2	4 <	T 1	1	1	1	2	2	1	5	2
ort Erie	11	2	203	GL151241 GL151241	31-JUL-2015		2	16	1	1	1	1	2	2	1	5	2
ort Erie	11	2	203	GL151241 GL151241	31-JUL-2015		2		T 1	1	1	1	2	2	1	5	2
OTL	11	2	203	GL151241 GL151247	31-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
IOTL	11	2	9	GL151247 GL151248	31-JUL-2015 31-JUL-2015		2		T 1	1	1	1	2	2	1	5 5	2
IOTL	11	2	9	GL151248 GL151249	31-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
Balsam Lake	18	1	1	GL151249 GL151253	06-JUL-2015		2		T 1	1	1	1	2	2	1	5	2
alsam Lake	18	1	1	GL151253 GL151254	06-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
alsam Lake	18	1	1	GL151254 GL151255	06-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
alsam Lake	18	1	1	GL151255 GL151259	06-JUL-2015		2	2	1	1	1	1	2	2	1	5	2
alsam Lake	18	1	1	GL151259 GL151260	06-JUL-2015		2	2	50	1	1	1	2	2	1	5	2

PS1=PCB resembled mixture of Aroclo	r 1248,1254	1260; PS40)= rese	mble Aroclor 12	254 AND 12	260; MCP=	= max p	ooss. Cor	ic'n due to chro		/erlap						
Station Description	op-DDT	Total PCB		Photomirex	חחח-חח				Toxaphene	Total Technical Chlordane	trans- nonachlor	Hexachloro- butadiene	1,2,3- trichlorobenzene	1,2,3,4- tetrachlorobenze	no t	1,2,3,5- etrachlorobenzer	ne
oration Description	ng/g wet	ng/g wet		ng/g wet	ng/g wet			g/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet	ng/g wet		ng/g wet	
	<=W	<=W		<=W	<=W	<=W		<=W	<=W	<=W	<=W	<=W	<=W	<=W		<=W	
American Sites	5	20		4	5	1		5	50	2	2	1	2	1		1	
wo Mile Creek (mouth)	5	88	PS1	4	5	1		5	50	2	2	1	2	1		1	
Two Mile Creek (mouth)	5	100	PS1	4	5	1		5	50	2	2	1	2	1		1	
Two Mile Creek (mouth)	5	110	PS1	4	5	1		5	50	2	2	1	2	1		1	
Pettit Flume (U/S)	5	27	PS1	4	5	1		5	50	2	2	1	2	1		1	
Pettit Flume (U/S)	5	29	PS1	4	5	1		5	50	2	2	1	2	1		1	
Pettit Flume (U/S)	5	28	PS1	4	5	1		5	50	2	2	1	2	1		1	
Pettit Flume Cove	5	43	PS1	4	5	2	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td></td><td><t 12<="" td=""><td></td><td>9</td><td>MPC</td></t></td></t<>	5	50	2	2	1		<t 12<="" td=""><td></td><td>9</td><td>MPC</td></t>		9	MPC
Pettit Flume Cove	5	45	P40	4	5	2	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td></td><td><t 10<="" td=""><td></td><td>6</td><td>MPC</td></t></td></t<>	5	50	2	2	1		<t 10<="" td=""><td></td><td>6</td><td>MPC</td></t>		6	MPC
Pettit Flume Cove	5	37	P40	4	5	2	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td></td><td><t 12<="" td=""><td></td><td>7</td><td>MPC</td></t></td></t<>	5	50	2	2	1		<t 12<="" td=""><td></td><td>7</td><td>MPC</td></t>		7	MPC
Pettit Flume (D/S)	5	40 26	PS1 PS1	4	5 5	1		5 5	50 50	2	2	1	2	1		1	
Pettit Flume (D/S) Pettit Flume (D/S)	5	20	PS1	4	5	2	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
02 nd St (@outfall U/S of landfill)	5	20	101	4	5	1	~1	5	50	2	2	1	2	1		1	
02 nd St (@outfall U/S of landfill)	5	20		4	5	1		5	50	2	2	1	2	1		1	
02 nd St (@outfall U/S of landfill)	5	20		4	5	1		5	50	2	2	1	2	1		1	
J/S Occidental Chem.	5	23	PS1	4	5	1		5	50	2	2	1	2	1		1	
J/S Occidental Chem.	5	20		4	5	3	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
J/S Occidental Chem.	5	27	PS1	4	5	1		5	50	2	2	1	2	1		1	
Storm Sewer A (D/S)	5	26	PS1	4	5	4	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Storm Sewer A (D/S)	5	26	PS1	4	5	1		5	50	2	2	1	2	1		1	
Storm Sewer A (D/S)	5	27	PS1	4	5	1	-	5	50	2	2	1	2	1		1	
Storm Sewer B (D/S)	5	31	PS1	4	5	3 1	<t< td=""><td>5 5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5 5	50	2	2	1	2	1		1	
Storm Sewer B (D/S) Storm Sewer B (D/S)	5	35 36	PS1 PS1	4	5	1		5	50 50	2	2	1	2	1		1	
Storm Sewer C (D/S)	5	37	PS1	4	5	1		5	50	2	2	1	2	1		1	
Storm Sewer C (D/S)	5	26	PS1	4	5	1		5	50	2	2	1	2	1		1	
Storm Sewer C (D/S)	5	33	PS1	4	5	1		5	50	2	2	1	2	1		1	
DCC 003	5	52	PS1	4	5	1		5	50	2	2	10	2	4	<t< td=""><td>1</td><td></td></t<>	1	
DCC 003	5	40	PS1	4	5	1		5	50	2	2	8 <	T 2	6	<t< td=""><td>1</td><td></td></t<>	1	
DCC 003	5	51	PS1	4	5	1		5	50	2	2		T 2	5	<t< td=""><td>1</td><td></td></t<>	1	
Gill Creek (U/S mouth)	5	20		4	5	1		5	50	2	2	1	2	1		1	
Gill Creek (U/S mouth)	5	20		4	5	3	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Gill Creek (U/S mouth)	5	20	D04	4	5	3	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Gill Creek (mouth) Gill Creek (mouth)	5	36 37	PS1 PS1	4	5	1		5 5	50 50	2	2	10 9 <	T 2	1		1	
Gill Creek (mouth)	5	29	PS1	4	5	1		5	50	2	2		T 2	1		1	
BRC (U/S)	5	20	101	4	5	1		5	50	2	2	1	2	1		1	
BRC (U/S)	5	20		4	5	1		5	50	2	2	1	2	1		1	
BRC (U/S)	5	20		4	5	1		5	50	2	2	1	2	1		1	
3RC (4th_5th pole) U/S stn 131	5	20		4	5	1		5	50	2	2	1	2	1		1	
3RC (4th_5th pole) U/S stn 131	5	20		4	5	1		5	50	2	2	1	2	1		1	
3RC (4th_5th pole) U/S stn 131	5	20		4	5	1		5	50	2	2	1	2	1		1	
BRC (7TH + 8TH POBT FROM S)	5	23	PS1	4	5	1	_	5	50	2	2	1	2	1	_	1	
BRC (7TH + 8TH POBT FROM S)	5	30	PS1	4	5	2	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td></td><td>T 2</td><td>2</td><td><t< td=""><td>1</td><td></td></t<></td></t<>	5	50	2	2		T 2	2	<t< td=""><td>1</td><td></td></t<>	1	
BRC (7TH + 8TH POBT FROM S) Bloody Run Creek	5 5	20 20		4	5 5	4	<t< td=""><td>5 5</td><td>50 50</td><td>2 2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5 5	50 50	2 2	2	1	2	1		1	
Bloody Run Creek	5	20		4	5	1	<1	5	50	2	2	1	2	1		1	
Bloody Run Creek	5	20	PS1	4	5	4	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td></td><td>T 2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2		T 2	1		1	
Bloody Run Creek (BRC) D/S	5	20		4	5	1		5	50	2	2	1	2	1		1	
Bloody Run Creek (BRC) D/S	5	20		4	5	1		5	50	2	2	1	2	1		1	
Bloody Run Creek (BRC) D/S Canadian Sites	5	20		4	5	3	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Fort Erie	5	20		4	5	4	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Fort Erie	5	20		4	5	16		5	50	2	2	1	2	1		1	
Fort Erie	5	20		4	5	3	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
NOTL	5	20		4	5	1		5	50	2	2	1	2	1		1	
NOTL	5	20		4	5	3		5	50	2	2	1	2	1		1	
	5	20		4	5	1		5	50	2	2	1	2	1		1	
Balsam Lake	5	20 20		4	5	4	<t< td=""><td>5</td><td>50</td><td>2</td><td>2</td><td>1</td><td>2</td><td>1</td><td></td><td>1</td><td></td></t<>	5	50	2	2	1	2	1		1	
Balsam Lake Balsam Lake	5	20		4	5	1		5	50 50	2	2	1	2	1		1	
Balsam Lake	5	20		4	5 5	1		5 5	50	2	2	1	2	1		1	
Jaioant Lano	5	20		4	5	2	<t< td=""><td>5</td><td>5¶</td><td>2</td><td>2</td><td>1</td><td>2</td><td></td><td></td><td>1</td><td></td></t<>	5	5¶	2	2	1	2			1	

Appendix D1: Tissue concentrations (ng						ount;			
PS1=PCB resembled mixture of Aroclo	r 1248,1254,1260; PS 1,2,4-	40= resemble Aroclor 125	4 AND 1260; MCP= max pc 1,3,5-	ss. Conc'n due to chromatogr	aphic overlap			2,3,6-	2,4,5-
Station Description	trichlorobenzene	tetrachlorobenzene	trichlorobenzene	Hexachlorobenzene	Hexachloroethane	Octachlorostyrene	Pentachlorobenzene	trichlorotoluene	trichlorotoluene
	ng/g wet <=W	ng/g wet	ng/g wet	ng/g wet <=W	ng/g wet <=W	ng/g wet	ng/g wet <=W	ng/g wet	ng/g wet
	2	1	2	1	<=vv 1	<=vv 1	1	1	1
American Sites									
Two Mile Creek (mouth)	2	1	2	1	1	1	1	1	1
Two Mile Creek (mouth)	2	1	2	1	1	1	1	1	1
Two Mile Creek (mouth)	2	1	2	1	1	1	1	1	1
Pettit Flume (U/S)	2	1	2	1	1	1	1	1	1
Pettit Flume (U/S)	2	1	2	1	1	1	1	1	1
Pettit Flume (U/S) Pettit Flume Cove		<t 9<="" td=""><td>MPC 2</td><td>26</td><td>1</td><td>1</td><td>17</td><td>1</td><td>1</td></t>	MPC 2	26	1	1	17	1	1
Pettit Flume Cove		<t 6<="" td=""><td>MPC 2</td><td>14</td><td>1</td><td>1</td><td>11</td><td>1</td><td>1</td></t>	MPC 2	14	1	1	11	1	1
Pettit Flume Cove		<t 7<="" td=""><td>MPC 2</td><td>21</td><td>1</td><td>1</td><td>15</td><td>1</td><td>1</td></t>	MPC 2	21	1	1	15	1	1
Pettit Flume (D/S)	2	1	2	1	1	1	1	1	1
Pettit Flume (D/S)	2	1	2	1	1	1	1	1	1
Pettit Flume (D/S)	2	1	2	1	1	1	1	1	1
102 nd St (@outfall U/S of landfill)	2	1	2	1	1	1	1	1	1
102 nd St (@outfall U/S of landfill)	2	1	2	1	1	1	1	1	1
102 nd St (@outfall U/S of landfill)	2	1	2	1	1	1	1	1	1
U/S Occidental Chem. U/S Occidental Chem.	2	1	2	1	1	1	1	1	1
U/S Occidental Chem.	2	1	2	1	1	1	1	1	1
Storm Sewer A (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer A (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer A (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer B (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer B (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer B (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer C (D/S)	2	1	2	1	1	1	1	1	1
Storm Sewer C (D/S) Storm Sewer C (D/S)	2 2	1 1	2 2		1 at 1	1 1	1 1	1 1	1 1
OCC 003		<t 1<="" td=""><td>2</td><td></td><td><mark>ر 1</mark></td><td>1</td><td></td><td></td><td><t 3="" <t<="" td=""></t></td></t>	2		<mark>ر 1</mark>	1			<t 3="" <t<="" td=""></t>
OCC 003		<t 1<br=""><t 1<="" td=""><td>2</td><td></td><td>ता 1 ता 1</td><td>1</td><td></td><td></td><td><t <u="">3 <t< td=""></t<></t></td></t></t>	2		ता 1 ता 1	1			<t <u="">3 <t< td=""></t<></t>
OCC 003 Gill Creek (U/S mouth)	4 2	<t 1<br="">1</t>	2	1 3	CT 1	1	3	<t 4="" <<="" td=""><td><t 3="" <t<="" td=""></t></td></t>	<t 3="" <t<="" td=""></t>
Gill Creek (U/S mouth) Gill Creek (U/S mouth) Gill Creek (U/S mouth)	2 2 2	1 1	2 2 2	1	1	1 1	1	1	' 1 1
Gill Creek (mouth)	2	1	2	1	1	1	1	1	1
Gill Creek (mouth)	2	1	2	1	1	1	1	1	1
Gill Creek (mouth)	2	1	2		<t 1<="" td=""><td>1</td><td>1</td><td>1</td><td>1</td></t>	1	1	1	1
BRC (U/S) BRC (U/S) BRC (U/S)	2 2 2	1 1 1	2 2 2	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
BRC (4th_5th pole) U/S stn 131	2	1	2		< <mark>T</mark> 1	1	5	1	2 <t< td=""></t<>
BRC (4th_5th pole) U/S stn 131	2	1	2		<t 1<="" td=""><td>1</td><td>3</td><td>1</td><td>1</td></t>	1	3	1	1
BRC (4th_5th pole) U/S stn 131	2	1	2		T 1	1	3	1	2 <t< td=""></t<>
BRC (7TH + 8TH POBT FROM S) BRC (7TH + 8TH POBT FROM S)	2 2	1	2 2	11 36	1		<t 28<="" td=""><td></td><td>PC 8 MPC</td></t>		PC 8 MPC
BRC (7TH + 8TH POBT FROM S)	2	1	2	12	1	1	11		PC 3 <t< b=""></t<>
Bloody Run Creek	2	1	2		ता 1 ता 1	1		<t 1<br=""><t 2="" m<="" td=""><td>1 PC 2 MPC</td></t></t>	1 PC 2 MPC
Bloody Run Creek Bloody Run Creek	2	1	2	2 <	1		2 <t 16<="" p=""></t>		PC 2 MPC PC 3 MPC
Bloody Run Creek (BRC) D/S	2	1	2		۲ <u>۲</u>	1			PC 1
Bloody Run Creek (BRC) D/S Bloody Run Creek (BRC) D/S	2	1 1	2	3 <	ता 1 ता 1	1	1	1	1 PC 1
Canadian Sites	2	1	2	J 4		1	2	2 IVI	
Fort Erie	2	1	2	1	1	1	1	1	1
Fort Erie	2	1	2	1	1	1	1	1	1
Fort Erie	2	1	2	1	1	1	1	1	1
NOTL	2	1	2	1	1	1	1	1	1
NOTL	2	1	2	1	1	1	1	1	1
NOTL	2	1	2	1	1	1	1	1	1
Balsam Lake	2	1	2	1	1	1	1	1	1
Balsam Lake	2	1	2	1	1	1	1	1	1
Balsam Lake Balsam Lake	2 2	1	2	1	1	1	1 1	1	1 1
Balsam Lake	2	1	2	¹ 52	1	1	1	1	1

Station Description	BOW St	tn type	Station Number	Retrieval Date	Samp No	LIPID	P1PCBT	PCB018	PCB019		PCB022	P	CB033	PCB044	PCB049)
						%	ng/g	ng/g	ng/g		ng/g		ng/g	ng/g	ng/g	
wo Mile Creek (mouth)	5	2	197	28-JUL-2015	GL151106	4.6	390	5	1		2		6	17	21	
Two Mile Creek (mouth)	5	2	197	28-JUL-2015	GL151107	4.4	320	5	1		2		6	15	19	
Two Mile Creek (mouth)	5	2	197	28-JUL-2015	GL151108	4.9	390	6	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>18</td><td>22</td><td></td></mdl<>	3		8	18	22	
Rattlesnake Creek	5	15	38	28-JUL-2015	GL151109	4.8	570	23	7		5		23	48	53	
Rattlesnake Creek	5	15	38	28-JUL-2015	GL151110	4.3	480	19	6		4		19	41	53	
Rattlesnake Creek	5	15	38	28-JUL-2015	GL151111	4.2	450	18	6		4		17	36	40	
Two Mile Creek (N of Hwy 290)	5	15	42	28-JUL-2015	GL151112	4.9	200	4	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>6</td><td>6</td><td></td></mdl<>	1		3	6	6	
Two Mile Creek (N of Hwy 290)	5	15	42	29-JUL-2015	GL151113	5	190	4	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>6</td><td>7</td><td></td></mdl<>	1		3	6	7	
Two Mile Creek (N of Hwy 290)	5	15	42	29-JUL-2015	GL151114	4.8	200	4	1	<mdl< td=""><td>1</td><td></td><td>4</td><td>6</td><td>7</td><td></td></mdl<>	1		4	6	7	
Two Mile Creek (Sheridan Rd)	5	15	36	29-JUL-2015	GL151115	4.5	80	4	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>3</td><td>2</td><td></td></mdl<>	1		3	3	2	
Two Mile Creek (Sheridan Rd)	5	15	36	29-JUL-2015		5.3	83	4	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>3</td><td>2</td><td></td></mdl<>	1		3	3	2	
Two Mile Creek (Sheridan Rd)	5	15	36	29-JUL-2015		4	30	2	1	<mdl< td=""><td>1</td><td></td><td>1</td><td>2</td><td>1</td><td></td></mdl<>	1		1	2	1	
Gratwick Riverside Park (GRP) (U/S)	5	2	31	29-JUL-2015		4.5	220	9	2		3		6	12	20	
Gratwick Riverside Park (GRP) (U/S)	5	2	31	29-JUL-2015		3.9	230	8	2		2		6	11	20	
Gratwick Riverside Park (GRP) (U/S)	5	2	31	29-JUL-2015		4.2	210	9	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>12</td><td>17</td><td></td></mdl<>	3		8	12	17	
GRP (U/S Marina)	5	2	213	29-JUL-2015		3.8	980	34	6		12		27	58	87	
GRP (U/S Marina)	5	2	213	29-JUL-2015		3.2	600	19	3		7		16	36	55	
GRP (U/S Marina)	5	2	213	29-JUL-2015		4	780	23	3		8		19	44	70	
GRP (Marina)	5	2	122	29-JUL-2015		4.3	720	32	5		9		22	40	65	
GRP (Marina)	5	2	122	29-JUL-2015		5.3	1000	42	6		14		29	55	89	
GRP (Marina)	5	2	122	29-JUL-2015		5.1	1000	38	5		14		29	57	92	
GRP (Mid Park)	5	2	214	29-JUL-2015		4.6	190	8	2		3		8	11	15	
GRP (Mid Park)	5	2	214	29-JUL-2015		4.4	180	7	2		2		5	8	16	
GRP (Mid Park)	5	2	214	29-JUL-2015		4.7	200	9	2		3		6	9	17	
GRP (D/S)	5	2	199	29-JUL-2015		4.4	160	7	2		2		4	7	14	
GRP (D/S)	5	2	199	29-JUL-2015		4.3	110	5	1	<mdl< td=""><td>2</td><td></td><td>4</td><td>6</td><td>8</td><td></td></mdl<>	2		4	6	8	
GRP (D/S)	5	2	199	29-JUL-2015		3.6	100	5	1		1		3	5	7	
102nd St. (U/S)	5	2	93	29-JUL-2015		4.4	130	6	1		2		4	6	10	
102nd St. (U/S)	5	2	93	29-JUL-2015		4.4	110	4	1		1		3	5	8	
102nd St. (U/S)	5	2	93	29-JUL-2015		4.4	84	3	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>4</td><td>7</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>4</td><td>7</td><td></td></mdl<>	3	4	7	
Little Niagara River (LNR) (D/S 102nd St.)	5	2	95	29-JUL-2015		4.5	120	3	1	<mdl< td=""><td>1</td><td>< IVIDL</td><td>3</td><td>5</td><td>8</td><td></td></mdl<>	1	< IVIDL	3	5	8	
5 ()()	5	2	95	29-JUL-2015		4.8	130	4	1	<mdl< td=""><td>2</td><td></td><td>3</td><td>6</td><td>8</td><td></td></mdl<>	2		3	6	8	
Little Niagara River (LNR) (D/S 102nd St.)	5	2	95			4.0		4	1	<mdl< td=""><td>2</td><td></td><td>4</td><td>5</td><td>8 7</td><td></td></mdl<>	2		4	5	8 7	
Little Niagara River (LNR) (D/S 102nd St.)	5	2	95	29-JUL-2015 29-JUL-2015		4.2	120 94	3	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>5</td><td>7</td><td></td></mdl<>	1		3	5	7	
LNR D/S Cayuga Creek	5	2	96	30-JUL-2015		4.Z 3.7	94 84	3	1	<mdl< td=""><td>1</td><td></td><td>3</td><td>5 4</td><td>6</td><td></td></mdl<>	1		3	5 4	6	
LNR D/S Cayuga Creek	5	2							1				2	4 5	6	
LNR D/S Cayuga Creek			96	30-JUL-2015		4.9	97	3		<mdl< td=""><td>1</td><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Cayuga Creek	5	15	31	30-JUL-2015		4.8	120	6	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td>6</td><td>5</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>4</td><td>6</td><td>5</td><td></td></mdl<>	4	6	5	
Cayuga Creek	5	15	31	30-JUL-2015		4.7	99	2	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>4</td><td>5</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>4</td><td>5</td><td></td></mdl<>	2	4	5	
Cayuga Creek	5	15	31	30-JUL-2015		4.3	78	2	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>3</td><td>4</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>3</td><td>4</td><td></td></mdl<>	2	3	4	
U/S Occidental Chem.	5	2	97	30-JUL-2015		4.3	97	3	•	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>5</td><td>8</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>5</td><td>8</td><td></td></mdl<>	3	5	8	
U/S Occidental Chem.	5	2	97	30-JUL-2015		4.6	84	3	1	<mdl< td=""><td>1</td><td>MDI</td><td>2</td><td>4</td><td>6</td><td></td></mdl<>	1	MDI	2	4	6	
U/S Occidental Chem.	5	2	97	30-JUL-2015		4.1	72	3	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>4</td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>4</td><td>1</td><td><md< td=""></md<></td></mdl<>	2	4	1	<md< td=""></md<>
OCC 003	5	2	42	30-JUL-2015		4.1	190	14	2	MO	5		11	18	21	
OCC 003	5	2	42	30-JUL-2015		4.8	200	13	1	<mdl< td=""><td>4</td><td></td><td>9</td><td>21</td><td>21</td><td></td></mdl<>	4		9	21	21	
OCC 003	5	2	42	30-JUL-2015		3.7	160	10	1	<mdl< td=""><td>4</td><td></td><td>7</td><td>16</td><td>16</td><td></td></mdl<>	4		7	16	16	
Gill Creek (mouth)	5	2	37	30-JUL-2015		4	70	3	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>5</td><td>6</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>5</td><td>6</td><td></td></mdl<>	2	5	6	
Gill Creek (mouth)	5	2	37	31-JUL-2015		4.1	76	3	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>5</td><td>7</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>5</td><td>7</td><td></td></mdl<>	2	5	7	
Gill Creek (mouth)	5	2	37	31-JUL-2015	GL151174	4.4	110	5	1	<mdl< td=""><td>1</td><td></td><td>4</td><td>7</td><td>9</td><td></td></mdl<>	1		4	7	9	

Appendix D2: Congener specific PCB tiss	PCB052			PCB070	-	PCB074		PCB087			PCB099	PCB104	1	PCB105		PCB110	PCB114		PCB118
	ng/g	ng/g		ng/g		ng/g		ng/g		ng/g	ng/g	ng/g		ng/g		ng/g	ng/g		ng/g
Two Mile Creek (mouth)	34	1	<mdl< th=""><th>10</th><th></th><th>9</th><th></th><th>17</th><th></th><th>30</th><th>22</th><th>1</th><th><mdl< th=""><th>8</th><th></th><th>29</th><th>1</th><th><mdl< th=""><th>16</th></mdl<></th></mdl<></th></mdl<>	10		9		17		30	22	1	<mdl< th=""><th>8</th><th></th><th>29</th><th>1</th><th><mdl< th=""><th>16</th></mdl<></th></mdl<>	8		29	1	<mdl< th=""><th>16</th></mdl<>	16
Two Mile Creek (mouth)	30	1	<mdl< td=""><td>7</td><td></td><td>7</td><td></td><td>14</td><td></td><td>27</td><td>18</td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>24</td><td>1</td><td><mdl< td=""><td>11</td></mdl<></td></mdl<></td></mdl<>	7		7		14		27	18	1	<mdl< td=""><td>5</td><td></td><td>24</td><td>1</td><td><mdl< td=""><td>11</td></mdl<></td></mdl<>	5		24	1	<mdl< td=""><td>11</td></mdl<>	11
Two Mile Creek (mouth)	35	1	<mdl< td=""><td>11</td><td></td><td>10</td><td></td><td>16</td><td></td><td>29</td><td>22</td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>28</td><td>1</td><td><mdl< td=""><td>17</td></mdl<></td></mdl<></td></mdl<>	11		10		16		29	22	1	<mdl< td=""><td>9</td><td></td><td>28</td><td>1</td><td><mdl< td=""><td>17</td></mdl<></td></mdl<>	9		28	1	<mdl< td=""><td>17</td></mdl<>	17
Rattlesnake Creek	94	1	<mdl< td=""><td>18</td><td></td><td>9</td><td></td><td>21</td><td></td><td>59</td><td>26</td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>33</td><td>1</td><td><mdl< td=""><td>11</td></mdl<></td></mdl<></td></mdl<>	18		9		21		59	26	1	<mdl< td=""><td>5</td><td></td><td>33</td><td>1</td><td><mdl< td=""><td>11</td></mdl<></td></mdl<>	5		33	1	<mdl< td=""><td>11</td></mdl<>	11
Rattlesnake Creek	80	1	<mdl< td=""><td>14</td><td></td><td>7</td><td></td><td>17</td><td></td><td>49</td><td>21</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>27</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	14		7		17		49	21	1	<mdl< td=""><td>4</td><td></td><td>27</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	4		27	1	<mdl< td=""><td>8</td></mdl<>	8
Rattlesnake Creek	69	1	<mdl< td=""><td>13</td><td></td><td>7</td><td></td><td>17</td><td></td><td>45</td><td>22</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>27</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	13		7		17		45	22	1	<mdl< td=""><td>4</td><td></td><td>27</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	4		27	1	<mdl< td=""><td>8</td></mdl<>	8
Two Mile Creek (N of Hwy 290)	14	1	<mdl< td=""><td>5</td><td></td><td>2</td><td></td><td>9</td><td></td><td>15</td><td>10</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>15</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<></td></mdl<>	5		2		9		15	10	1	<mdl< td=""><td>4</td><td></td><td>15</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<>	4		15	1	<mdl< td=""><td>10</td></mdl<>	10
Two Mile Creek (N of Hwy 290)	14	1	<mdl< td=""><td>5</td><td></td><td>2</td><td></td><td>8</td><td></td><td>15</td><td>10</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>14</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<></td></mdl<>	5		2		8		15	10	1	<mdl< td=""><td>4</td><td></td><td>14</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<>	4		14	1	<mdl< td=""><td>10</td></mdl<>	10
Two Mile Creek (N of Hwy 290)	14	1	<mdl< td=""><td>5</td><td></td><td>2</td><td></td><td>9</td><td></td><td>16</td><td>10</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5		2		9		16	10	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>15</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>15</td><td>1</td><td><mdl< td=""><td>10</td></mdl<></td></mdl<>	15	1	<mdl< td=""><td>10</td></mdl<>	10
Two Mile Creek (Sheridan Rd)	5	1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>2</td><td></td><td>4</td><td>2</td><td>1</td><td><mdl< td=""><td>1</td><td>SINDL</td><td>4</td><td>1</td><td><mdl< td=""><td>2</td></mdl<></td></mdl<></td></mdl<>	1		1		2		4	2	1	<mdl< td=""><td>1</td><td>SINDL</td><td>4</td><td>1</td><td><mdl< td=""><td>2</td></mdl<></td></mdl<>	1	SINDL	4	1	<mdl< td=""><td>2</td></mdl<>	2
Two Mile Creek (Sheridan Rd)	5	1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>2</td><td></td><td>4</td><td>3</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>4</td><td>1</td><td><mdl< td=""><td>3</td></mdl<></td></mdl<></td></mdl<>	2		1		2		4	3	1	<mdl< td=""><td>1</td><td></td><td>4</td><td>1</td><td><mdl< td=""><td>3</td></mdl<></td></mdl<>	1		4	1	<mdl< td=""><td>3</td></mdl<>	3
Two Mile Creek (Sheridan Rd)	3	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>1</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2	1	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td>1</td><td><mdl< td=""><td>1</td></mdl<></td></mdl<>	2	1	<mdl< td=""><td>1</td></mdl<>	1
Gratwick Riverside Park (GRP) (U/S)	24	1	<mdl< td=""><td>13</td><td>SIVIDE</td><td>10</td><td></td><td>7</td><td>SIVIDE</td><td>12</td><td>11</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>13</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	13	SIVIDE	10		7	SIVIDE	12	11	1	<mdl< td=""><td>4</td><td></td><td>13</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	4		13	1	<mdl< td=""><td>8</td></mdl<>	8
Gratwick Riverside Park (GRP) (U/S)	24	1	<mdl< td=""><td>13</td><td></td><td>9</td><td></td><td>7</td><td></td><td>12</td><td>12</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>13</td><td>1</td><td><mdl< td=""><td>9</td></mdl<></td></mdl<></td></mdl<>	13		9		7		12	12	1	<mdl< td=""><td>4</td><td></td><td>13</td><td>1</td><td><mdl< td=""><td>9</td></mdl<></td></mdl<>	4		13	1	<mdl< td=""><td>9</td></mdl<>	9
Gratwick Riverside Park (GRP) (U/S)	22	1	<mdl< td=""><td>12</td><td></td><td>9</td><td></td><td>6</td><td></td><td>12</td><td>12</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>12</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	12		9		6		12	12	1	<mdl< td=""><td>4</td><td></td><td>12</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	4		12	1	<mdl< td=""><td>8</td></mdl<>	8
GRP (U/S Marina)	110	2	SIVIDE	79		54		34		49	46	1	<mdl< td=""><td>23</td><td></td><td>55</td><td>2</td><td></td><td>40</td></mdl<>	23		55	2		40
GRP (U/S Marina)	68	1		47		32		22		31	29	1	<mdl< td=""><td>14</td><td></td><td>36</td><td>1</td><td><mdl< td=""><td>26</td></mdl<></td></mdl<>	14		36	1	<mdl< td=""><td>26</td></mdl<>	26
GRP (U/S Marina)	86	1		62		41		22		40	40	1	<mdl< td=""><td>14</td><td></td><td>48</td><td>2</td><td>SIVIDE</td><td>35</td></mdl<>	14		48	2	SIVIDE	35
GRP (Marina)	85	3		45		26		29 16		37	31	1	<mdl< td=""><td>7</td><td></td><td>35</td><td>1</td><td><mdl< td=""><td>22</td></mdl<></td></mdl<>	7		35	1	<mdl< td=""><td>22</td></mdl<>	22
· · · ·	120	3		45 68		39		24		48	46	1	<mdl< td=""><td>11</td><td></td><td>51</td><td>1</td><td><ividl< td=""><td>34</td></ividl<></td></mdl<>	11		51	1	<ividl< td=""><td>34</td></ividl<>	34
GRP (Marina)	120	3		70		39 40		24		40 52	40	1	<mdl< td=""><td>12</td><td></td><td>54</td><td>1</td><td></td><td>34</td></mdl<>	12		54	1		34
GRP (Marina)						40													
GRP (Mid Park)	20	1	<mdl< td=""><td>9</td><td></td><td>7</td><td></td><td>5</td><td></td><td>10</td><td>8</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>10</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<></td></mdl<>	9		7		5		10	8	1	<mdl< td=""><td>3</td><td></td><td>10</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<>	3		10	1	<mdl< td=""><td>6</td></mdl<>	6
GRP (Mid Park)	18	1	<mdl< td=""><td>10</td><td></td><td>7</td><td></td><td>5</td><td></td><td>8</td><td>8</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>9</td><td></td><td><mdl< td=""><td>7</td></mdl<></td></mdl<></td></mdl<>	10		7		5		8	8	1	<mdl< td=""><td>3</td><td></td><td>9</td><td></td><td><mdl< td=""><td>7</td></mdl<></td></mdl<>	3		9		<mdl< td=""><td>7</td></mdl<>	7
GRP (Mid Park)	19	1	<mdl< td=""><td>10</td><td></td><td></td><td></td><td>6</td><td></td><td>9</td><td>9</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>11</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<></td></mdl<>	10				6		9	9	1	<mdl< td=""><td>4</td><td></td><td>11</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<>	4		11	1	<mdl< td=""><td>7</td></mdl<>	7
GRP (D/S)	15	1	<mdl< td=""><td>8</td><td></td><td>6</td><td></td><td>4</td><td></td><td>8</td><td>8</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<></td></mdl<>	8		6		4		8	8	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<>	3		8	1	<mdl< td=""><td>6</td></mdl<>	6
GRP (D/S)	11	1	<mdl< td=""><td>4</td><td></td><td>4</td><td></td><td>3</td><td></td><td>5</td><td>5</td><td></td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	4		4		3		5	5		<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>4</td></mdl<>	4
GRP (D/S)	9	1	<mdl< td=""><td>5</td><td></td><td>3</td><td></td><td>3</td><td></td><td>5</td><td>5</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	5		3		3		5	5	1	<mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		5	1	<mdl< td=""><td>4</td></mdl<>	4
102nd St. (U/S)	11	1	<mdl< td=""><td>5</td><td></td><td>4</td><td></td><td>4</td><td></td><td>6</td><td>6</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	5		4		4		6	6	1	<mdl< td=""><td>3</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	3		7	1	<mdl< td=""><td>5</td></mdl<>	5
102nd St. (U/S)	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>3</td><td></td><td>6</td><td>5</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	4		3		3		6	5	1	<mdl< td=""><td>2</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	2		7	1	<mdl< td=""><td>5</td></mdl<>	5
102nd St. (U/S)	9	1	<mdl< td=""><td>3</td><td></td><td>3</td><td></td><td>2</td><td></td><td>6</td><td>2</td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3		3		2		6	2	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	3	1	<mdl< td=""><td>4</td></mdl<>	4
Little Niagara River (LNR) (D/S 102nd St.		1	<mdl< td=""><td>4</td><td></td><td>4</td><td></td><td>3</td><td></td><td>7</td><td>3</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	4		4		3		7	3	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	3		8	1	<mdl< td=""><td>8</td></mdl<>	8
Little Niagara River (LNR) (D/S 102nd St.	1	1	<mdl< td=""><td>5</td><td></td><td>5</td><td></td><td>3</td><td></td><td>7</td><td>3</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<></td></mdl<>	5		5		3		7	3	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>8</td></mdl<></td></mdl<>	3		8	1	<mdl< td=""><td>8</td></mdl<>	8
Little Niagara River (LNR) (D/S 102nd St.	1	1	<mdl< td=""><td>4</td><td></td><td>4</td><td></td><td>3</td><td></td><td>7</td><td>3</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<></td></mdl<>	4		4		3		7	3	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<>	3		8	1	<mdl< td=""><td>7</td></mdl<>	7
LNR D/S Cayuga Creek	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>2</td><td></td><td>6</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	4		3		2		6	2	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>5</td></mdl<>	5
LNR D/S Cayuga Creek	8	1	<mdl< td=""><td>3</td><td></td><td>3</td><td></td><td>2</td><td></td><td>5</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	3		3		2		5	2	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>4</td></mdl<>	4
LNR D/S Cayuga Creek	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>3</td><td></td><td>6</td><td>3</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<></td></mdl<>	4		3		3		6	3	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>6</td></mdl<>	6
Cayuga Creek	9	1	<mdl< td=""><td>3</td><td></td><td>2</td><td></td><td>4</td><td></td><td>8</td><td>6</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<></td></mdl<>	3		2		4		8	6	1	<mdl< td=""><td>2</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<>	2		8	1	<mdl< td=""><td>6</td></mdl<>	6
Cayuga Creek	7	1	<mdl< td=""><td>3</td><td></td><td>2</td><td></td><td>4</td><td></td><td>8</td><td>3</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<></td></mdl<>	3		2		4		8	3	1	<mdl< td=""><td>3</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>7</td></mdl<></td></mdl<>	3		8	1	<mdl< td=""><td>7</td></mdl<>	7
Cayuga Creek	5	1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>3</td><td></td><td>6</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	2		1		3		6	2	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>5</td></mdl<>	5
U/S Occidental Chem.	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>3</td><td></td><td>6</td><td>3</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	4		3		3		6	3	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>5</td></mdl<>	5
U/S Occidental Chem.	7	1	<mdl< td=""><td>3</td><td></td><td>3</td><td></td><td>2</td><td></td><td>5</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	3		3		2		5	2	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>5</td></mdl<>	5
U/S Occidental Chem.	8	1	<mdl< td=""><td>3</td><td></td><td>3</td><td></td><td>2</td><td></td><td>4</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	3		3		2		4	2	1	<mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		5	1	<mdl< td=""><td>4</td></mdl<>	4
OCC 003	28	1	<mdl< td=""><td>15</td><td></td><td>9</td><td></td><td>5</td><td></td><td>8</td><td>7</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	15		9		5		8	7	1	<mdl< td=""><td>3</td><td></td><td>7</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	3		7	1	<mdl< td=""><td>4</td></mdl<>	4
OCC 003	30	1	<mdl< td=""><td>13</td><td></td><td>11</td><td></td><td>5</td><td></td><td>7</td><td>4</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<></td></mdl<>	13		11		5		7	4	1	<mdl< td=""><td>4</td><td></td><td>8</td><td>1</td><td><mdl< td=""><td>6</td></mdl<></td></mdl<>	4		8	1	<mdl< td=""><td>6</td></mdl<>	6
OCC 003	23	1	<mdl< td=""><td>10</td><td></td><td>8</td><td></td><td>4</td><td></td><td>5</td><td>3</td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<></td></mdl<>	10		8		4		5	3	1	<mdl< td=""><td>3</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>5</td></mdl<></td></mdl<>	3		6	1	<mdl< td=""><td>5</td></mdl<>	5
Gill Creek (mouth)	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>2</td><td></td><td>5</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>4</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	4		3		2		5	2	1	<mdl< td=""><td>2</td><td></td><td>4</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		4	1	<mdl< td=""><td>4</td></mdl<>	4
Gill Creek (mouth)	9	1	<mdl< td=""><td>4</td><td></td><td>3</td><td></td><td>3</td><td></td><td>5</td><td>2</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	4		3		3		5	2	1	<mdl< td=""><td>2</td><td></td><td>5</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		5	1	<mdl< td=""><td>4</td></mdl<>	4
Gill Creek (mouth)	12	1	<mdl< td=""><td>5</td><td></td><td>4</td><td></td><td>4</td><td></td><td>6</td><td>5</td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<></td></mdl<>	5		4		4		6	5	1	<mdl< td=""><td>2</td><td></td><td>6</td><td>1</td><td><mdl< td=""><td>4</td></mdl<></td></mdl<>	2		6	1	<mdl< td=""><td>4</td></mdl<>	4

	PCB11	9	PCB123		PCB128		PCB138	PCB149		PCB151	1	PCB153		PCB155		PCB156		PCB157	·
	ng/g		ng/g		ng/g		ng/g	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g	
Two Mile Creek (mouth)	1		1	<mdl< td=""><td>5</td><td></td><td>28</td><td>20</td><td></td><td>8</td><td></td><td>23</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	5		28	20		8		23		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	2		1	<mdl< td=""></mdl<>
Two Mile Creek (mouth)	1		1	<mdl< td=""><td>4</td><td></td><td>23</td><td>18</td><td></td><td>6</td><td></td><td>19</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	4		23	18		6		19		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
Two Mile Creek (mouth)	1		1	<mdl< td=""><td>5</td><td></td><td>26</td><td>19</td><td></td><td>7</td><td></td><td>22</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	5		26	19		7		22		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	2		1	<mdl< td=""></mdl<>
Rattlesnake Creek	2		1	<mdl< td=""><td>4</td><td></td><td>18</td><td>17</td><td></td><td>6</td><td></td><td>16</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	4		18	17		6		16		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Rattlesnake Creek	2		1	<mdl< td=""><td>3</td><td></td><td>14</td><td>15</td><td></td><td>5</td><td></td><td>13</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	3		14	15		5		13		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Rattlesnake Creek	2		1	<mdl< td=""><td>3</td><td></td><td>17</td><td>15</td><td></td><td>5</td><td></td><td>14</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td>SINDE</td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		17	15		5		14		1	<mdl< td=""><td>1</td><td>SINDE</td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	SINDE	1	<mdl< td=""></mdl<>
Two Mile Creek (N of Hwy 290)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>16</td><td>12</td><td></td><td>4</td><td></td><td>14</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>16</td><td>12</td><td></td><td>4</td><td></td><td>14</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		16	12		4		14		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
Two Mile Creek (N of Hwy 290)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>16</td><td>11</td><td></td><td>4</td><td></td><td>14</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>16</td><td>11</td><td></td><td>4</td><td></td><td>14</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		16	11		4		14		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
Two Mile Creek (N of Hwy 290)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>17</td><td>12</td><td></td><td>4</td><td></td><td>13</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>17</td><td>12</td><td></td><td>4</td><td></td><td>13</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		17	12		4		13		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
Two Mile Creek (Sheridan Rd)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>7</td><td>6</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>7</td><td>6</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		7	6		2		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Two Mile Creek (Sheridan Rd)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>8</td><td>6</td><td></td><td>3</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>8</td><td>6</td><td></td><td>3</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		8	6		3		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Two Mile Creek (Sheridan Rd)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	3	3		1		3		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
,						<ividl< td=""><td>3 7</td><td>7</td><td></td><td>-</td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ividl<>	3 7	7		-		7							
Gratwick Riverside Park (GRP) (U/S)	1		1	<mdl< td=""><td>1</td><td></td><td>-</td><td>7</td><td></td><td>3</td><td></td><td>-</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		-	7		3		-		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Gratwick Riverside Park (GRP) (U/S)	1		1	<mdl< td=""><td>1</td><td></td><td>9</td><td>7</td><td></td><td>3</td><td></td><td>8</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		9	7		3		8		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Gratwick Riverside Park (GRP) (U/S)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>7</td><td></td><td></td><td>3</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>7</td><td></td><td></td><td>3</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7			3		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
GRP (U/S Marina)	3		1	<mdl< td=""><td>3</td><td></td><td>19</td><td>16</td><td></td><td>7</td><td></td><td>18</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		19	16		7		18		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	2		1	<mdl< td=""></mdl<>
GRP (U/S Marina)	2		1	<mdl< td=""><td>2</td><td></td><td>12</td><td>10</td><td></td><td>5</td><td></td><td>12</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	2		12	10		5		12		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
GRP (U/S Marina)	2		1	<mdl< td=""><td>3</td><td></td><td>17</td><td>14</td><td></td><td>6</td><td></td><td>16</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		17	14		6		16		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
GRP (Marina)	2		1	<mdl< td=""><td>3</td><td></td><td>20</td><td>18</td><td></td><td>8</td><td></td><td>22</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	3		20	18		8		22		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	2		1	<mdl< td=""></mdl<>
GRP (Marina)	3		1	<mdl< td=""><td>5</td><td></td><td>29</td><td>26</td><td></td><td>11</td><td></td><td>31</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td></td></mdl<></td></mdl<>	5		29	26		11		31		1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td></mdl<>	2		1	
GRP (Marina)	4		1	<mdl< td=""><td>5</td><td></td><td>31</td><td>26</td><td></td><td>11</td><td></td><td>33</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td></td></mdl<></td></mdl<>	5		31	26		11		33		1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td></mdl<>	2		1	
GRP (Mid Park)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>7</td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>7</td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	7	7		1	<mdl< td=""><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
GRP (Mid Park)	1		1	<mdl< td=""><td>1</td><td></td><td>7</td><td>6</td><td></td><td>3</td><td></td><td>8</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1		7	6		3		8		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
GRP (Mid Park)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>9</td><td>7</td><td></td><td>3</td><td></td><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>9</td><td>7</td><td></td><td>3</td><td></td><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1		9	7		3		9		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
GRP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>6</td><td>5</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>6</td><td>5</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		6	5		2		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
GRP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	4		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
GRP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>4</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	4		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
102nd St. (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>8</td><td>6</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>8</td><td>6</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		8	6		2		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
102nd St. (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>7</td><td>5</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>7</td><td>5</td><td></td><td>2</td><td></td><td>7</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		7	5		2		7		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
102nd St. (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	3		1		4		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Little Niagara River (LNR) (D/S 102nd S	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	2		7	3		2		6		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Little Niagara River (LNR) (D/S 102nd S	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>8</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>8</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	2		8	3		2		6		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1		1	<mdl< td=""></mdl<>
Little Niagara River (LNR) (D/S 102nd S		<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	2		7	3		2		6		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
LNR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	6	3		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
LNR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>2</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>2</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>2</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	2		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
LNR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>7</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>7</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>7</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7	3		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>10</td><td>8</td><td></td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>10</td><td>8</td><td></td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>10</td><td>8</td><td></td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	10	8		1	<mdl< td=""><td>9</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	9		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>SINDE</td><td>9</td><td>4</td><td></td><td>2</td><td>SINDE</td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td>SINDE</td><td>9</td><td>4</td><td></td><td>2</td><td>SINDE</td><td>6</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	SINDE	9	4		2	SINDE	6		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>7</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		7	3		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
U/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>6</td><td>3</td><td></td><td>2</td><td></td><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	6	3		2		5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
U/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>3</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	3		1		4		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
U/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>2</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>2</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>2</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	2		1		4		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
OCC 003	1		1	<mdl< td=""><td>1</td><td></td><td>2</td><td>2</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td></mdl<>	1		2	2		1		4		1		1		1	
OCC 003	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td><mdl< td=""><td>1</td><td><mdl <mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td><mdl< td=""><td>1</td><td><mdl <mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td><mdl< td=""><td>1</td><td><mdl <mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<></td></mdl<>	2		<mdl< td=""><td>1</td><td><mdl <mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<>	1	<mdl <mdl< td=""><td>2</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></mdl 	2	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
	-																		
OCC 003	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Gill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3	1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Gill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	3	2		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
Gill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>5</td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>5</td><td>4</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5	4		1	<mdl< td=""><td>5</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	5		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>

	PCB158	3	PCB167		PCB168		PCB170		PCB171		PCB177	PC	B178		PCB180	. 1	PCB183		PCB18	7
	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ig/g		ng/g	-	ng/g		ng/g	-
Two Mile Creek (mouth)	2		1		1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td></td><td>10</td><td></td><td>2</td><td></td><td>7</td><td></td></mdl<>	4		1		3		1		10		2		7	
wo Mile Creek (mouth)	2		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<>	2		1		8		2		6	
wo Mile Creek (mouth)	2		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td><mdl< td=""><td>9</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<></td></mdl<>	4		1		3		1	<mdl< td=""><td>9</td><td></td><td>2</td><td></td><td>6</td><td></td></mdl<>	9		2		6	
Rattlesnake Creek	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	4		1	<mdl< td=""><td>3</td><td></td></mdl<>	3	
Rattlesnake Creek	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td>SINDL</td><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td>SINDL</td><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td>SINDL</td><td>2</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td>SINDL</td><td>2</td><td></td></mdl<>	3		1	SINDL	2	
attlesnake Creek	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	1		1		4		1		3	
wo Mile Creek (N of Hwy 290)	2		1	SIVIDE	1	<mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<>	3		1		1		1	<mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<>	6		1		4	
wo Mile Creek (N of Hwy 290)	3		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<>	3		1		2		1	<mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<>	6		1		4	
wo Mile Creek (N of Hwy 290)	2		1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>2</td><td></td><td>4</td><td></td></mdl<></td></mdl<>	2		1		2		1	<mdl< td=""><td>6</td><td></td><td>2</td><td></td><td>4</td><td></td></mdl<>	6		2		4	
· · · · · ·	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>2 1</td><td><mdl< td=""><td>4</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>2 1</td><td><mdl< td=""><td>4</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>2 1</td><td><mdl< td=""><td>4</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>2 1</td><td><mdl< td=""><td>4</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>4</td><td></td><td>2 1</td><td><mdl< td=""><td>4</td><td></td></mdl<></td></mdl<>	4		2 1	<mdl< td=""><td>4</td><td></td></mdl<>	4	
wo Mile Creek (Sheridan Rd)			•											=				<ividl< td=""><td>3</td><td></td></ividl<>	3	
wo Mile Creek (Sheridan Rd)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>U U</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>U U</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>U U</td><td></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>U U</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>U U</td><td></td></mdl<>	4		1		U U	
wo Mile Creek (Sheridan Rd)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td></mdl<>	1	
ratwick Riverside Park (GRP) (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	1		1		4		1		3	
ratwick Riverside Park (GRP) (U/S)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<>	1		1		4		1		4	
aratwick Riverside Park (GRP) (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>= =</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>= =</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>= =</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>= =</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td>= =</td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	= =	1	<mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	4		1	<mdl< td=""><td>3</td><td></td></mdl<>	3	
RP (U/S Marina)	2		1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td><td>2</td><td></td><td>10</td><td></td><td>3</td><td></td><td>10</td><td></td></mdl<>	3		1		3		2		10		3		10	
RP (U/S Marina)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>5</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>5</td><td></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>5</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>6</td><td></td><td>1</td><td></td><td>5</td><td></td></mdl<>	6		1		5	
RP (U/S Marina)	2		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>2</td><td></td><td>2</td><td></td><td>10</td><td></td><td>2</td><td></td><td>8</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>1</td><td></td><td>2</td><td></td><td>2</td><td></td><td>10</td><td></td><td>2</td><td></td><td>8</td><td></td></mdl<>	3		1		2		2		10		2		8	
RP (Marina)	2		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td><td>2</td><td></td><td>12</td><td></td><td>3</td><td></td><td>8</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td><td>2</td><td></td><td>12</td><td></td><td>3</td><td></td><td>8</td><td></td></mdl<>	4		1		3		2		12		3		8	
RP (Marina)	3		1		1	<mdl< td=""><td>6</td><td></td><td>2</td><td></td><td>4</td><td></td><td>3</td><td></td><td>17</td><td></td><td>4</td><td></td><td>11</td><td></td></mdl<>	6		2		4		3		17		4		11	
RP (Marina)	3		1		1	<mdl< td=""><td>6</td><td></td><td>2</td><td></td><td>4</td><td></td><td>3</td><td></td><td>18</td><td></td><td>5</td><td></td><td>12</td><td></td></mdl<>	6		2		4		3		18		5		12	
RP (Mid Park)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>4</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	4		1	<mdl< td=""><td>3</td><td></td></mdl<>	3	
RP (Mid Park)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	1		1		4		1		3	
RP (Mid Park)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>5</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>5</td><td></td><td>1</td><td></td><td>4</td><td></td></mdl<>	5		1		4	
RP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td><td>3</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	1		1		3		1		3	
RP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
RP (D/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
02nd St. (U/S)	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	4		1		3	
02nd St. (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>4</td><td></td><td>1</td><td></td><td>3</td><td></td></mdl<>	4		1		3	
02nd St. (U/S)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
ittle Niagara River (LNR) (D/S 102nd St.)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
ittle Niagara River (LNR) (D/S 102nd St.)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>3</td><td></td></mdl<>	3	
ittle Niagara River (LNR) (D/S 102nd St.)		<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
NR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
NR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
NR D/S Cayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
, ,	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
Cayuga Creek	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td></td><td><ividl< td=""><td>1</td><td><mdl< td=""><td></td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></ividl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td></td><td><ividl< td=""><td>1</td><td><mdl< td=""><td></td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></ividl<></td></mdl<>		<ividl< td=""><td>1</td><td><mdl< td=""><td></td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></ividl<>	1	<mdl< td=""><td></td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>			1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
ayuga Creek		<mdl< td=""><td></td><td></td><td></td><td></td><td>1</td><td>MDI</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td></td></mdl<>					1	MDI			1						1		2	
ayuga Creek	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>2</td><td></td><td>•</td><td><mdl< td=""><td></td><td></td></mdl<></td></mdl<>	2		•	<mdl< td=""><td></td><td></td></mdl<>		
/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>3</td><td></td></mdl<>	3	
/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>3</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	3		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
/S Occidental Chem.	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>2</td><td></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>2</td><td></td></mdl<>	2	
CC 003	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<>	1	<n< td=""></n<>
CC 003	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<>	1	<n< td=""></n<>
OCC 003	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<>	1	<n< td=""></n<>
ill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<>	1	<n< td=""></n<>
Gill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>=</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>=</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>=</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>=</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td>=</td><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<></td></mdl<>	1	=	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<></td></mdl<>	1		1	<mdl< td=""><td>1</td><td><n< td=""></n<></td></mdl<>	1	<n< td=""></n<>
Gill Creek (mouth)	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<></td></mdl<>	2		1	<mdl< td=""><td>1</td><td><m< td=""></m<></td></mdl<>	1	<m< td=""></m<>

PCB2	201	PCB202		PCB205	5	PCB206		PCB208	,
ng/g		ng/g		ng/g	-	ng/g		ng/g	
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	2		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	2		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<>	1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	2		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	2		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<>	1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><md< td=""></md<></td></mdl<>	1		1	<md< td=""></md<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td>SINDE</td><td>1</td><td><mdl< td=""><td>2</td><td>SINDE</td><td>1</td><td></td></mdl<></td></mdl<>	1	SINDE	1	<mdl< td=""><td>2</td><td>SINDE</td><td>1</td><td></td></mdl<>	2	SINDE	1	
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1		1	<mdi< td=""></mdi<>
1		1	SIVIDE	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	2		1	<mdi< td=""></mdi<>
3		1		1	<mdl< td=""><td>2</td><td></td><td>1</td><td></td></mdl<>	2		1	
4		2		1	<mdl< td=""><td>3</td><td></td><td>2</td><td></td></mdl<>	3		2	
5		2		1	SIVIDE	3		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	2		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>2</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	2		1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>SIVIDE</td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td>SIVIDE</td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td>SIVIDE</td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	SIVIDE	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1		1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1		1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<ivide 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></ivide>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""></mdl<></td></mdl<>	1	<mdl< td=""></mdl<>
	<mdl< td=""><td></td><td><mdl< td=""><td>1</td><td></td><td></td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<></td></mdl<>		<mdl< td=""><td>1</td><td></td><td></td><td><mdl< td=""><td>1</td><td></td></mdl<></td></mdl<>	1			<mdl< td=""><td>1</td><td></td></mdl<>	1	
<mdl 1<br=""><mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi <mdi< td=""></mdi<></mdi </td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi <mdi< td=""></mdi<></mdi </td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi <mdi< td=""></mdi<></mdi </td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi <mdi< td=""></mdi<></mdi </td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi <mdi< td=""></mdi<></mdi </td></mdl<>	1	<mdi <mdi< td=""></mdi<></mdi
	<mdl< td=""><td>1</td><td></td><td></td><td></td><td></td><td><mdl< td=""><td></td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1					<mdl< td=""><td></td><td><mdi< td=""></mdi<></td></mdl<>		<mdi< td=""></mdi<>
1		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td></td><td>1</td><td></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td></td><td>1</td><td></td></mdl<>	1		1	
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl>		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<>	1	<md< td=""></md<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td></td><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl>		1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<>	1	<md< td=""></md<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><md< td=""></md<></td></mdl<>	1	<md< td=""></md<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
<mdl 1<="" td=""><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<></td></mdl<>	1	<mdl< td=""><td>1</td><td><mdi< td=""></mdi<></td></mdl<>	1	<mdi< td=""></mdi<>
		•					=	•	<mdi <mdi< td=""></mdi<></mdi
<		MDL 1 <mdl< td=""><td>MDL 1 <mdl 1<="" td=""><td>MDL 1 <mdl 1="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl<>	MDL 1 <mdl 1<="" td=""><td>MDL 1 <mdl 1="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	MDL 1 <mdl 1="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl></td></mdl>	MDL 1 <mdl 1="" 1<="" <mdl="" td=""><td>MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl></td></mdl>	MDL 1 <mdl 1="" <mdl="" <mdl<="" td=""><td>MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl></td></mdl>	MDL 1 <mdl 1="" 1<="" <mdl="" td=""></mdl>

Appendix D2: Conger	ner specifi	c PCB tiss	sue concentration	ns (ng/g dry wt.)	in caged m	ussels,	Niagara Ri	ver, 20	15. <mdi< th=""><th>_= meth</th><th>nod detecti</th><th>ion limit</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></mdi<>	_= meth	nod detecti	ion limit										
Station Description	BOW	Stn type	Station Number	Retrieval Date	Samp No	LIPID	PCBTOT		PCB018		PCB019		PCB022		PCB028		PCB033		PCB037		PCB044	1
		-				%	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g	-
Fort Erie	11	2	203	31-JUL-2015		3	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.3	<t< td=""></t<>
Fort Erie	11	2	203	31-JUL-2015		3.5	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.1	<=W
Fort Erie	11	2	203	31-JUL-2015		3.7	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.1	<=W
NOTL	11	2	9	31-JUL-2015		3.9	10	<t -</t 	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.4	<t< td=""></t<>
NOTL	11	2	9	31-JUL-2015		3	15	<t -</t 	2	<=W	2	<=W	0.5	<=W	1	<t -</t 	0.5	<=W	1	<=W	1.3	
NOTL	11	2	9	31-JUL-2015		3.4	15	<t< td=""><td>2</td><td><=W</td><td>2</td><td><=W</td><td>0.5</td><td><=W</td><td>1</td><td><t< td=""><td>0.5</td><td><=W</td><td>1</td><td><=W</td><td>1.1</td><td></td></t<></td></t<>	2	<=W	2	<=W	0.5	<=W	1	<t< td=""><td>0.5</td><td><=W</td><td>1</td><td><=W</td><td>1.1</td><td></td></t<>	0.5	<=W	1	<=W	1.1	
Balsam Lake	18	1	1	06-JUL-2015		3.8	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.1	<=W
Balsam Lake	18	1	1	06-JUL-2015		2.2	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.1	<=W
Balsam Lake	18	1	1	06-JUL-2015	GL151258	3.2	5	<=W	2	<=W	2	<=W	0.5	<=W	0.5	<=W	0.5	<=W	1	<=W	0.1	<=W
Station Description	PCB049		PCB052		PCB054		PCB070		PCB074		PCB077		PCB081		PCB087		PCB095		PCB099		PCB101	
Station Description	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g	
Fort Erie	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.3	<t< td=""><td>0.1</td><td><=W</td><td>0.5</td><td><t< td=""></t<></td></t<>	0.1	<=W	0.5	<t< td=""></t<>
Fort Erie	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.2	<t< td=""><td>0.1</td><td><=W</td><td>0.4</td><td><t< td=""></t<></td></t<>	0.1	<=W	0.4	<t< td=""></t<>
Fort Erie	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.4	<=W
NOTL	0.1	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><-vv</td><td>0.1</td><td><=W</td><td>0.1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	0.1	<=W	0.2	<=W	0.1	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><-vv</td><td>0.1</td><td><=W</td><td>0.1</td><td><t< td=""></t<></td></t<></td></t<>	0.1	<=W	0.2	<t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><-vv</td><td>0.1</td><td><=W</td><td>0.1</td><td><t< td=""></t<></td></t<>	0.5	<=W	0.1	<=W	1	<-vv	0.1	<=W	0.1	<t< td=""></t<>
NOTL		<t< td=""><td>0.5</td><td><=vv <t< td=""><td>0.2</td><td></td><td></td><td><t< td=""><td></td><td><=vv</td><td>0.4</td><td><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><=vv <t< td=""><td></td><td><1</td></t<></td></t<></td></t<></td></t<></td></t<>	0.5	<=vv <t< td=""><td>0.2</td><td></td><td></td><td><t< td=""><td></td><td><=vv</td><td>0.4</td><td><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><=vv <t< td=""><td></td><td><1</td></t<></td></t<></td></t<></td></t<>	0.2			<t< td=""><td></td><td><=vv</td><td>0.4</td><td><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><=vv <t< td=""><td></td><td><1</td></t<></td></t<></td></t<>		<=vv	0.4	<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><=vv <t< td=""><td></td><td><1</td></t<></td></t<>								<=vv <t< td=""><td></td><td><1</td></t<>		<1
	0.8					<=W	0.8		0.4				0.5	<=W	0.1	<=W	1.4		0.5		1	
NOTL Deleger Lake	0.8	<t< td=""><td>0.5</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.9</td><td><t< td=""><td>0.5</td><td><t< td=""><td>0.4</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1.7</td><td>. 141</td><td>0.6</td><td><t< td=""><td>1.1</td><td>. 14/</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.5	<t< td=""><td>0.2</td><td><=W</td><td>0.9</td><td><t< td=""><td>0.5</td><td><t< td=""><td>0.4</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1.7</td><td>. 141</td><td>0.6</td><td><t< td=""><td>1.1</td><td>. 14/</td></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	0.9	<t< td=""><td>0.5</td><td><t< td=""><td>0.4</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1.7</td><td>. 141</td><td>0.6</td><td><t< td=""><td>1.1</td><td>. 14/</td></t<></td></t<></td></t<></td></t<>	0.5	<t< td=""><td>0.4</td><td><t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1.7</td><td>. 141</td><td>0.6</td><td><t< td=""><td>1.1</td><td>. 14/</td></t<></td></t<></td></t<>	0.4	<t< td=""><td>0.5</td><td><=W</td><td>0.1</td><td><=W</td><td>1.7</td><td>. 141</td><td>0.6</td><td><t< td=""><td>1.1</td><td>. 14/</td></t<></td></t<>	0.5	<=W	0.1	<=W	1.7	. 141	0.6	<t< td=""><td>1.1</td><td>. 14/</td></t<>	1.1	. 14/
Balsam Lake	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W
Balsam Lake	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W
Balsam Lake	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.5	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W
Station Description	PCB104		PCB105		PCB110		PCB114		PCB118		PCB119		PCB123		PCB126		PCB128		PCB138		PCB149	1
Station Bosonption	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g	•
Fort Erie	0.1	<=W	0.4	<t< td=""><td>0.6</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td></t<></td></t<></td></t<>	0.6	<t< td=""><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td></t<></td></t<>	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td></t<>	0.2	<=W
Fort Erie	0.1	<=W	0.4	<t< td=""><td>0.5</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td></t<></td></t<></td></t<>	0.5	<t< td=""><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td></t<></td></t<>	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td></t<>	0.2	<=W
Fort Erie	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.6	<t< td=""><td>0.2</td><td><=W</td></t<>	0.2	<=W
NOTL	0.1	<=W	0.8	<t< td=""><td>1.1</td><td>~</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1.2</td><td><t< td=""><td>0.2</td><td><=W</td></t<></td></t<>	1.1	~	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1.2	<t< td=""><td>0.2</td><td><=W</td></t<>	0.2	<=W
NOTL	0.1	<=W	0.6	<t< td=""><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.4</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1.2</td><td><t< td=""><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	1		0.1	<=W	0.4	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1.2</td><td><t< td=""><td>1</td><td><t< td=""></t<></td></t<></td></t<>	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1.2	<t< td=""><td>1</td><td><t< td=""></t<></td></t<>	1	<t< td=""></t<>
NOTL	0.1	<=W	0.6	<t< td=""><td>1.1</td><td></td><td>0.1</td><td><=W</td><td>0.4</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1.4</td><td><t< td=""><td>1.2</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	1.1		0.1	<=W	0.4	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1.4</td><td><t< td=""><td>1.2</td><td><t< td=""></t<></td></t<></td></t<>	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1.4	<t< td=""><td>1.2</td><td><t< td=""></t<></td></t<>	1.2	<t< td=""></t<>
Balsam Lake	0.1	<=W	0.0	<=W	0.1	<=W	0.1	<=W	0.0	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W
		<=vv <=W						<=VV		<=VV						<=W						
Balsam Lake	0.1		0.1	<=W	0.1	<=W	0.1		0.1		0.1	<=W	0.2	<=W	0.1		0.2	<=W	0.2	<=W	0.2	<=W
Balsam Lake	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Station Description	PCB151		PCB153		PCB155		PCB156		PCB157		PCB158		PCB167		PCB168		PCB169		PCB170		PCB171	
otation bescription	ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g		ng/g	
Fort Erie	0.1	<=W	0.7	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.4</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.4	MPC	0.1	<=W	0.2	<=W	0.2	<=W
Fort Erie	0.1	<=W	0.5	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	MPC	0.1	<=W	0.2	<=W	0.2	<=W
Fort Erie	0.1	<=W	0.2	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	<=W
NOTL	0.1	<=W	0.2	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	MPC	0.1	<=W	0.2	<=W	0.2	<=W
NOTL	0.1	<t< td=""><td>0.8</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<></td></t<>	0.8	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.2	MPC	0.1	<=W	0.2	<=W	0.2	<=W
NOTL	0.2	<=W	1.2	<1	0.1	<=vv <=W	0.2	<=vv	0.2	<=VV	0.1	<=vv	0.2	<=VV	0.4	MPC	0.1	<=vv	0.2	<=vv <t< td=""><td>0.2</td><td><=W</td></t<>	0.2	<=W
				. \\/						<=VV										<=W		
Balsam Lake	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2		0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2		0.2	<=W
Balsam Lake	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W
Balsam Lake	0.1	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W
Ctation Depariation	DOD477		PCB178		PCB180		PCB183		PCB187		PCB188		PCB189		PCB191		PCB194		PCB199		PCB201	
Station Description	PCB177																					
Fort Frie	ng/g	. 14/	ng/g	. \\/	ng/g	T	ng/g	. 14/	ng/g	. 141	ng/g	. 14/	ng/g	. 14/	ng/g	. 14/	ng/g	. 14/	ng/g	. 14/	ng/g	
Fort Erie	0.1	<=W	0.2	<=W	0.4	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Fort Erie	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Fort Erie	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
NOTL	0.1	<=W	0.2	<=W	0.4	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
NOTL	0.1	<=W	0.2	<=W	0.4	<t </t 	0.2	<=W	0.2	<t </t 	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
NOTL	0.1	<=W	0.2	<=W	0.6	<t< td=""><td>0.2</td><td><=W</td><td>0.3</td><td><t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<></td></t<>	0.2	<=W	0.3	<t< td=""><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td></t<>	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W
Station Description	PCB202		PCB205		PCB206		PCB208															
oration Description																						
Fort Erio	ng/g	~-\\\/	ng/g	<\N/	ng/g	~_\\/	ng/g	<=W														
Fort Erie	0.2		0.2	<=W	0.2	<=W	0.2															
Fort Erie	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W														
Fort Erie		<=W	0.2	<=W	0.2	<=W	0.2	<=W														
NOTL	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W														
NOTL	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W														
NOTL	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	,													
Balsam Lake	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=D(5													
Balsam Lake	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W <=W														

Appendix D3: Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in caged mussels (pg/g wet wt.) deployed in the Niagara River, and sediment (ng/g dry wt), 2015. For mussels n=1 composite of four mussels. For sediment n=1 composite of 3 surface samples.

Submission: C224871																
Mussels			FISHERMANS PARK			FISHERMANS PARK			PETTIT FLUME		PETTIT FLUME			PETTIT FLUME		
			U/S Inlet			D/S Inlet			Upstream		Downstream			Outer Site		
	Field ID		GL151089			GL151090			GL151094		GL151098			GL151102		
	Sample Number		C224871-0001			C224871-0002			C224871-0006		C224871-0010			C224871-0014		
	Station Number		500020001			500020002			500020185		500020187			500020186		
	Collection Date		28-JUL-2015			28-JUL-2015			28-JUL-2015		28-JUL-2015			28-JUL-2015		
Parameter Name	Test Code	Units														
Percent Lipid	LIPID	%	0.85			1.2			0.99		1.2			1.2		
2378-tetrachlorofuran	P4F378	pg/g dry	1.2		DB5	0.88		DB5	0.17	<	0.7		DB5	18		DB
12378-pentachlorofuran	P5F378	pg/g dry	0.25	<		0.3	<		0.11	<	0.12	<		2.7		
23478-pentachlorofuran	P5F478	pg/g dry	0.57			0.41	<		0.11	<	0.41			7.8		
123478-hexachlorofuran	P6F478	pg/g dry	1.7		DB5	1.1		DB5	0.058	<	1.3		DB5	30		DB
123678-hexachlorofuran	P6F678	pg/g dry	0.35			0.27	<		0.057	<	0.23	<		5		
123789-hexachlorofuran	P6F789	pg/g dry	0.091	<		0.079	<		0.058	<	0.068	<		0.11	<	
234678-hexachlorofuran	P6F234	pg/g dry	0.11	<		0.13	<		0.062	<	0.079	<		1.6		
1234678-heptachlorofuran	P7F678	pg/g dry	2.5			1.5			0.07	<	1.6			48		
1234789-heptachlorofuran	P7F789	pg/g dry	0.13	<		0.08	<		0.076	<	0.07	<		1.5		
Octachlorofuran	P98CDF	pg/g dry	2.1			1			0.14	<	1.5			35		
2378-tetrachlorodioxin	P4D378	pg/g dry	0.13	<		0.15	<		0.15	<	0.14	<		0.88		
12378-pentachlorodioxin	P5D378	pg/g dry	0.13	<		0.11	<		0.16	<	0.14	<		0.88		
123478-hexachlorodioxin	P6D478	pg/g dry	0.11	<		0.1	<		0.13	<	0.081	<		0.23		
123678-hexachlorodioxin	P6D678	pg/g dry	0.12	<		0.11	<		0.14	<	0.083	<		0.65		
123789-hexachlorodioxin	P6D789	pg/g dry	0.12	<		0.11	<	DB5	0.14	<	0.085	<		0.51		DB
1234678-heptachlorodioxin	P7D678	pg/g dry	0.39	<		0.23	<		0.12	<	0.22	<		1.9		
Octachlorodioxin	P98CDD	pg/g dry	1.5			0.77			0.37	<	0.66	<		5.5		
Sum Furans		pg/g dry	8			4					6			150		
um dioxins		pg/g dry	2			1					0			11		
oum Dioxins + Furans		pg/g dry	10			5					6			160		
EQ (WHO 2005) Mammals		pg TEQ/g dry	0.4			0.2					0.3			10		
EQ (WHO) Fish		pg TEQ/g dry	0.3			0.2					0.4			11		
EQ (WHO) Birds		pg TEQ/g dry	1.4			1.0					1.3			32		
EQ (WHO) Fish (corrected for 9	6 Lipid <mark>)</mark>		68			14					32			916		
DB5: SAMPLES ANALYSED ON DE	3-5 COLUMN ONLY															
SRL: RECOVERY LOWER THAN LO	WER CONTROL LIMIT															

ubmission: C224871													
Mussels			BLOODY RUN CREEK (US)		BLOODY RUN CREEK		BLOODY RUN CREEK		BLOODY RUN CREEK			BLOODY RUN CREE	Ċ
			BRC (U/S)				BRC (7th_ 8th pole)		BRC (4th_5th pole) U/S stn 131			BRC D/S	
	Field ID		GL151236		GL151185		GL151189		GL151240			GL151181	
	Sample Number		C224870-0004		C224871-0097		C224871-0101		C224870-0008			C224871-0093	
	Station Number		1100020018		110020017		110020131		1100020132			110020025	
	Collection Date		31-JUL-2015		31-JUL-2015		31-JUL-2015		31-JUL-2015			31-JUL-2015	
Parameter Name	Test Code	Units											
Percent Lipid	LIPID	%	0.77		0.95		0.88		1.1			0.82	
378-tetrachlorofuran	P4F378	pg/g dry	0.23	<	0.13	<	0.39	<	0.42	<		0.18	<
2378-pentachlorofuran	P5F378	pg/g dry	0.079	<	0.1	<	0.1	<	0.14	<		0.13	<
23478-pentachlorofuran	P5F478	pg/g dry	0.08	<	0.1	<	0.17	<	0.15	<		0.13	<
23478-hexachlorofuran	P6F478	pg/g dry	0.051	<	0.1	<	0.39	<	0.53		DB5	0.2	
23678-hexachlorofuran	P6F678	pg/g dry	0.051	<	0.076	<	0.06	<	0.15	<		0.065	<
23789-hexachlorofuran	P6F789	pg/g dry	0.05	<	0.078	<	0.04	<	0.11	<		0.071	<
34678-hexachlorofuran	P6F234	pg/g dry	0.053	<	0.083	<	0.044	<	0.13	<		0.07	•
234678-heptachlorofuran	P7F678	pg/g dry	0.1	<	0.11	<	0.24	<	0.44			0.15	
234789-heptachlorofuran	P7F789	pg/g dry	0.058	<	0.067	<	0.091	<	0.16	<		0.082	
Octachlorofuran	P98CDF	pg/g dry	0.1	<	0.22	<	0.64		1.5			0.34	
378-tetrachlorodioxin	P4D378	pg/g dry	0.14	<	2.2		6.5		3.5			1	
2378-pentachlorodioxin	P5D378	pg/g dry	0.079	<	0.11	<	0.12	<	0.17	<		0.13	
23478-hexachlorodioxin	P6D478	pg/g dry	0.076	<	0.17	<	0.19	<	0.085	<		0.12	
23678-hexachlorodioxin	P6D678	pg/g dry	0.08	<	0.18	<	0.63		0.85			0.19	
23789-hexachlorodioxin	P6D789	pg/g dry	0.081	<	0.18	<	0.53		0.66		DB5	0.13	
234678-heptachlorodioxin	P7D678	pg/g dry	0.12	<	0.42	<	2.9		4.2			0.42	
Octachlorodioxin	P98CDD	pg/g dry	0.3	<	0.46	<	2.3		3.8			0.63	•
m Furans		pg/g dry			0		1		2			0	
m dioxins		pg/g dry pg/g dry			2		1 13		13			0	
m Dioxins + Furans		pg/g dry pg/g dry			2		13		15			1	
Q (WHO 2005) Mammals		pg TEQ/g dry			2		7		4			1	
Q (WHO) Fish		pg TEQ/g dry			2		7		4			1	
Q (WHO) Birds		pg TEQ/g dry			2		7		4			1	
Q (WHO) Fish (corrected for % L	ipid <mark>)</mark>				232		740		325			124	
5: SAMPLES ANALYSED ON DB-5													
RL: RECOVERY LOWER THAN LOW : ACTUAL RESULT IS LESS THAN TI	ER CONTROL LIMIT												

Submission: C222580																		
Sediment		F	FISHERMANS PARK		FISHERMANS PARK		PETTIT FLUME			PETTIT FLUME		PETTIT FLUME		TWO MILE CK			TWO MILE CK	
			U/S Inlet		D/S Inlet		Upstream			Downstream		Outer Site		(NEAR HWY 290)			(NEAR SHERIDAN ROAD)	
	Field ID		GL51193		GL51194		GL51195			GL51196		GL51197		GL51198			GL51199	
	Sample Number		C222580-0001		C222580-0002		C222580-0003			C222580-0004		C222580-0005		C222580-0006			C222580-0007	
	Station Number		500020001		500020002		500020185			500020187		500020186		500150042			500150036	
	Collection Date		28-JUL-2015		28-JUL-2015		28-JUL-2015			28-JUL-2015		28-JUL-2015		28-JUL-2015			28-JUL-2015	
Parameter Name	Test Code	Units																
% <62 um, >2.63 um, sum	silt	%	35		35		10			45		50		64	<t< td=""><td></td><td>56</td><td></td></t<>		56	
% <1000 um, >62 um, sum	sand	%	57		58		66			43		39		0			26	
% <2.63 um, >0.10 um, sum	clay	%	8		7		3			13		11		36			18	
Carbon; total organic	TOC	mg/g dry	83		49		35			22		100		9.8			82	
2378-tetrachlorofuran	P4F378	pg/g dry	210	DB5	130	DB5	12	<		270		4000		1.6	<		26	
12378-pentachlorofuran	P5F378	pg/g dry	130		82		2.9			110		1200		0.38	<		6	
23478-pentachlorofuran	P5F478	pg/g dry	260		130		4.3			350		2900		0.58	<		14	
123478-hexachlorofuran	P6F478	pg/g dry	3800	DB5	1700	DB5	29		DB5	4000		43000		0.84	<		21	
123678-hexachlorofuran	P6F678	pg/g dry	590		310		6.7			520		6900		0.72	<		23	<
123789-hexachlorofuran	P6F789	pg/g dry	5.1		4.1		0.24	<		3.6		49		0.14			0.64	
234678-hexachlorofuran	P6F234	pg/g dry	190		87		4.5			140	DB5	1800	DB5	0.77	<		33	DE
1234678-heptachlorofuran	P7F678	pg/g dry	12000		5700		99			11000		100000		4.9	<		200	
1234789-heptachlorofuran	P7F789	pg/g dry	430		190		3			370	SRL	4500		0.34			11	
Octachlorofuran	P98CDF	pg/g dry	23000		8300		88			24000		260000		6.1			320	
2378-tetrachlorodioxin	P4D378	pg/g dry	77		19		0.77			13	DB5	220	DB5	0.16		DB5	1.6	DB
12378-pentachlorodioxin	P5D378	pg/g dry	21		16		1.3			28		430		0.34	<		4.2	
123478-hexachlorodioxin	P6D478	pg/g dry	23		16		0.97			32		410		0.33			6.6	
123678-hexachlorodioxin	P6D678	pg/g dry	55		32		3.8			60	DB5	880	DB5	1.5		DB5	19	DB
123789-hexachlorodioxin	P6D789	pg/g dry	37	DB5	25	DB5	3.2		DB5	45		590		1.3			20	
1234678-heptachlorodioxin	P7D678	pg/g dry	580		440		47			470		6100		21			410	
Octachlorodioxin	P98CDD	pg/g dry	3100		2900		370			1400	SRL	18000		180			3700	
Sum Furans		pg/g dry	40615		16633		244			40764		424349		11			644	
Sum dioxins		pg/g dry	3893		3448		427			2048		26630		204			4161	
Sum Dioxins + Furans		pg/g dry	44508		20081		671			42812		450979		216			4805	
TEQ (WHO 2005) Mammals		pg TEQ/g dry	810		370		11			780		8500		1			31	
TEQ (WHO) Fish		pg TEQ/g dry	840		390		10			840		8800		1			27	
TEQ (WHO) Birds		pg TEQ/g dry	1200		580		18			1300		14000		2			59	
TEQ (WHO) Fish (corrected for 9	6 ТОС <mark>)</mark>		10,000		7,900		300			38,000		88,000		90			330	
DB5: SAMPLES ANALYSED ON DE																		
SRL: RECOVERY LOWER THAN LC	WER CONTROL LIMIT																	

			U/S BLOODY RUN CREEK	BLOODY RUN CREEK	BLOODY RUN CREEK	BLOODY RUN CREEK			BLOODY RUN CREEK		BLOODY RUN CREEK	BLOODY RUN CRE
Sediment		21	5 m upstream of Historical U/S Station	Upstream	Upstream	65M U/S of Stn. 132			25M U/S of stn. 132		BRC (4th 5th pole) U/S of stn 131	BRC (4th 5th pole) U/S
Sediment		2.	5 in upstream of historical 075 station	Historical Stn	Historical Stn	27 m D/S of station 18's big flat rock			25W 0/5 01 Stil. 152		BRC (4th_5th pole) 0/3 01 stil 131	Bite (4th_5th pole) 0/3
	Field ID		GL151084	GL151082	GL151082	GL151203			GL151202		GL151081	GL151081
	Sample Number		C224881-0004	C224881-0002	C224881-0002	C224882-0003			C224882-0002		C224881-0001	C224881-0001
	Station Number		1100020026	1100020018	1100020018	1100020027			1100020028		1100020132	1100020132
	Collection Date		10-Jul-15	05-Aug-83	05-Aug-83	31-JUL-2015			31-JUL-2015		10-Jul-15	100020132 10-Jul-15
	collection bate		screening	screening	routine	routine			routine		screening	routine
			method	method	method	method		_	method		method	method
	Test Code	Units	metriod	methou	metriou	metriou			methou		methou	metriod
6 <62 um, >2.63 um, sum	Silt	%	70	70		68			69		65	
6 <1000 um, >62 um, sum	Sand	%	7	2		9			10		17	
% <2.63 um, >0.10 um, sum	Clay	%	23	28		23			21		18	
			23	28		15			14		24	
Carbon; total organic	тос	mg/g dry	22	21		15			14		24	
378-tetrachlorofuran	P4F378	pg/g dry	2.7	3	6.7	< < 2.8		DB5	52	DB5	170	360
2378-pentachlorofuran	P5F378	pg/g dry	0.58	0.79	1.1	0.54			13		77	150
3478-pentachlorofuran	P5F478	pg/g dry	1.5	2.3	3.4	1.5			49		180	470
23478-hexachlorofuran	P6F478	pg/g dry	9.2	12	21	7.8		DB5	460	DB5	1100	3100
23678-hexachlorofuran	P6F678	pg/g dry	1.4	2.3	3.7	1.2			71		340	610
23789-hexachlorofuran	P6F789	pg/g dry	0.41	< < 0.51	< < 0.24	< < 0.39	<		1.9		8.3	13
34678-hexachlorofuran	P6F234	pg/g dry	0.77	0.95	0.97	0.56			16		70	150
234678-heptachlorofuran	P7F678	pg/g dry	14	13	21	4.4			240		770	3200
234789-heptachlorofuran	P7F789	pg/g dry	2.3	2.3	5.1	1.2			59		180	510
Octachlorofuran	P98CDF	pg/g dry	39	28	92	12			1100		5000	8400
378-tetrachlorodioxin	P4D378	pg/g dry	14	52	80	39			1400		3500	9700
2378-pentachlorodioxin	P5D378	pg/g dry	0.51	< < 2.1	1.1	1	<		18		63	160
23478-hexachlorodioxin	P6D478	pg/g dry	0.97	1.3	2.3	1.1			47		240	590
23678-hexachlorodioxin	P6D678	pg/g dry	8.9	16	32	1.1			890		3200	8100
23789-hexachlorodioxin	P6D789	pg/g dry	4.6	8.6	16	0.61		DB5	430	DB5	1500	4600
234678-heptachlorodioxin	P7D678	pg/g dry	39	79	180	60			4200		15000	33000
Octachlorodioxin	P98CDD	pg/g dry	45	85	140	59			3100		12000	28000
m Furans		pg/g dry	72	65	155	32			2062		7895	16963
m dioxins		pg/g dry	113	244	451	162			10085		35503	84150
m Dioxins + Furans		pg/g dry	185	309	607	194			12147		43398	101113
		P6/5 01 y	105	505	007	154			12147		45550	101115
Q (WHO 2005) Mammals		pg TEQ/g dr	18	60	92	42			1700		4400	12000
Q (WHO) Fish		pg TEQ/g dr	17	58	88	42			1500		4000	11000
Q (WHO) Birds		pg <mark>TEQ</mark> /g dr	20	62	93	45			1600		4300	12000
Q (WHO) Fish (corrected for	% TOC)		779	2768	4175	2805			107143		166667	458333

			BLOODY RUN CREEK	BLOODY RUN CREEK	BLOODY RUN CREEK		E	BLOODY RUN CREEK		
Sediment			Btwn stn 132 and stn 17	(on shore 10m E of Stn 0017)	18 m U/S of station 25			(Downstream)		
	Field ID		GL151083	GL151085	GL151204			GL151201		
	Sample Number		C224881-0003	C224881-0005	C224882-0004			C224882-0001		
	Station Number		1100020030	1100020029	1100020031			1100020025		
	Collection Date		10-Jul-15	10-Jul-15	31-JUL-2015			31-JUL-2015		
			screening	screening	routine			routine		
			method	method	method			method		
	Test Code	Units								
% <62 um, >2.63 um, sum	Silt	%	70	65	63			62		
% <1000 um, >62 um, sum	Sand	%	5	13	0			18		
% <2.63 um, >0.10 um, sum	Clay	%	25	22	37			20		
Carbon; total organic	тос	mg/g dry	21	20	7.8			12		
2378-tetrachlorofuran	P4F378	pg/g dry	320	46	14		DB5	6.4		DB
12378-pentachlorofuran	P5F378	pg/g dry	65	19	1.3			1.6		
23478-pentachlorofuran	P5F478	pg/g dry	300	60	6.3			4.4		
123478-hexachlorofuran	P6F478	pg/g dry	2200	560	31		DB5	38		DE
123678-hexachlorofuran	P6F678	pg/g dry	510	75	4.5			5.5		
123789-hexachlorofuran	P6F789	pg/g dry	12	2	0.42	<		0.23	<	
234678-hexachlorofuran	P6F234	pg/g dry	160	12	1.9			1.6		
1234678-heptachlorofuran	P7F678	pg/g dry	2700	270	27			23		
1234789-heptachlorofuran	P7F789	pg/g dry	400	64	4.1			5		
Octachlorofuran	P98CDF	pg/g dry	15000	490	65			52		
2378-tetrachlorodioxin	P4D378	pg/g dry	2900	1600	150			130		
12378-pentachlorodioxin	P5D378	pg/g dry	110	15	2.7			2.3		
123478-hexachlorodioxin	P6D478	pg/g dry	380	53	3.2			3.7		
123678-hexachlorodioxin	P6D678	pg/g dry	4900	1100	42			70		
123789-hexachlorodioxin	P6D789	pg/g dry	2400	550	18		DB5	33		DE
1234678-heptachlorodioxin	P7D678	pg/g dry	23000	5500	160			400		
Octachlorodioxin	P98CDD	pg/g dry	19000	4000	100			280		
um Furans		pg/g dry	21667	1598	156			138		
um dioxins		pg/g dry	52690	12818	476			919		
Sum Dioxins + Furans		pg/g dry	74357	14416	631			1057		
EQ (WHO 2005) Mammals		pg TEQ/g dry	4500	1900	170			150		
EQ (WHO) Fish		pg TEQ/g dry	3800	1900	1/0			130		
EQ (WHO) Fish EQ (WHO) Birds		pg TEQ/g dry	4300	1900	180			140		
EQ (WHO) Fish (corrected for	% TOC)		180952	90000	20000			11667		

Appendix E. Total TEQ pg/g* and TEQ for Dioxin-L	ike (l	DL) PCE	Bs(pg/g)	** in cag	ed
mussels (wet wt.) and sediment (dry wt.) collected	from	the Nia	igara Ri	iver (198	7-2015).
NR-Niagara River: ND-below the detection limit					

				Sediment		
STATION	YEAR	Total TEQ	DL-PCB TEQ	Total TEQ	DL-PCB TEQ	TOC (mg/g
Canadian Sites						(mg/g
NR - Fort Erie	1995	ND		0.9		
	1997			10		20
	2000	0.01	0.01	2	0.01	9
NR - Chippawa Channel	2000	ND	ND	0.01	0.01	5
Niagara-on-the-Lake	1993 1995	ND ND		13 14		
	1995	ND		14		
	2000	0.01	0.01			
	2003	0.01	0.01	8	0.05	7
American Sites						
Tonawanda Channel (U/S Two Mile Ck.)	2009	0.01				
Scajaquada Creek	2009	0.03		13		45
Rattlesnake Creek	2009	0.11		13		30
Two Mile Creek	2000			30	3.3	39
	2003			52	1.4	65
Two Mile Creek (near HWY 290)	2015			1 27		10 82
Two Mile Creek (near Sheridan Rd.)	2015 2003	0.04	0.04	77	0.2	33
Exalon (upstream) in Erie Canal NR - Gratwick /Riverside Park	2003	15	0.04	- 11	0.2	33
NR - Wheatfield	1991	ND				
Little Niagara River (downstream 102nd St.)	2006	16		300	2.1	43
Cayuga Creek	1995	18		18	2.1	40
	2003	0.16	0.05	59	0.3	82
Little Niagara River (downstream Cayuga Ck.)	2006	8		140	0.6	110
Occidental Sewer 003	1991	ND		-	-	
Gill Creek (upstream in Creek)	2000			71	0.8	14
	2003	0.44	0.08	88	1.0	17
	2006	1		28	0.3	8
NR - 102nd Street	1991	70				
	1993	96		230		
	1995	130		500		
	1997	1		ND		ND
Pettit Flume (upstream)	1991	5				
	1993	ND		26		
	2000	ND	0.05	13	0.3	23
	2003	ND 0.03	ND	37	0.3	34
	2008	0.03		21		44
	2009	0.10		21		44
	2012	ND		10		35
Pettit Flume Cove (site A)	1991	960				
	1993	200		48000		
Pettit Flume Cove (site B)	1997	46		20000		110
. ,	2000	74	ND	30000	2.6	120
	2003	60	0.05	11000	1.4	120
	2006	190		15000		
	2009	46		3800		71
	2012	4		25500		83
	2015	11		8800		100
Pettit Flume (downstream)	2000	3	0.03	490	0.2	33
	2003	0.36	0.01	2000	0.3	20
	2006	5		680		47
	2009 2012	1		7200 380		47 26
	2012	0.4		840		20
Fisherman's Park (upstream inlet)	2013	3		330		37
rishemans i an (upsical mici)	2012	0.3		840		83
Fisherman's Park (downstream inlet)	2012	0.4		210		41
	2012	0.2		390		49
NR - upstream of Bloody Run Creek	2000	ND	ND	43	0.3	5
	2003			180	0.4	5
	2004	0.01	0.01			
	2006	2		36		12
	2009	ND		44		9
	2012			346		10
	2015	ND		88		21
NR- Bloody Run Creek (BRC)	1993	270		120000		
	1994	56		64000		
	1995	120 84		61000 52000		29
	1997 2000	23	0.04	3300		
	2000	23	0.04	110000	6.2	7
	2003	46	0.06	110000	0.2	
	2004	40	0.00	4200		14
	2000	18		48000		16
	2012	9		4000		5
	2015	7		11000		24
Bloody Run Creek (downstream)	2004	9	0.02			
	2006	6		220		7
	2009	6		2200		22
	2012	1				
	0045	1		150		12
	2015					
*Dioxin, furan and dioxin-like PCB concentrations			y the W	НО Тох	icity	
	were mult	iplied b	-			
*Dioxin, furan and dioxin-like PCB concentrations Equivalency Factors (TEF) for protection of fish t on a common basis and then summed to yield a	were mult to express	iplied b their rea	spective	toxicity		

Appendix F1-F4:	SPMD Data	3							
AXYS Data Qualifiers									
U or ND = not detect	ed above the r	eporting lim	it						
K or NDR = peak dete	ected, but did n	ot meet qu	antification	criteria, res	sult				
reported represents	the estimated	maximum p	ossible cor	ncentration.					
This flag indicates the	at for one of se	everal reaso	ns (low lev	el interferer	nces, poor p	eak shape, e	etc) the		
peak for this compou	und was detect	ed but did r	not meet al	l the criteria	required b	y the metho	d, please		
treat the value as an	estimated max	kimum.							
D = Dilution data. Eit	her due to mat	rix interfer	ences of an	alyte levels	out of linea	r range of th	e		
instrument. Extract v	vas diluted and	l instrumen	tally re-ana	lyzed.					
J = Concentration wa	s found to be b	pelow the li	near range	of the instr	ument, the	value should	l be		
considered to be esti	imated								
V = Surrogate recove	ry is not within	method/co	ontract con	trol limits					
NQ = Data not quant	ifiable								
E = Exceeds calibrate	d linear range,	see dilution	n data						
X = results reported s	separately (ori	ginal report	and separa	te reports)					
H = concentration is	estimated (info	ormation on	ly value)						
T = Data recalculated	using an alter	nate surrog	ate						
C = compound co-elu	ites with at lea	st one othe	r compoun	d, the result	is only rep	orted once f	or each coe	lution	
MAX = Concentration	n should be cor	nsidered to	be an estin	nated maxir	num				
Q = Maximum conce	ntration, single	GC column	result, not	confirmed	by second o	olumn			

CLIENT_ID	L	ab Blank (10	01)		Lab Blank	(101)		Lab Blank	k (101)		Lab Blank	(101)		Lab Blank	< (101)		Lab Blank	(101)
xys ID	v	VG53086-10	u1 i		WG52369	-101 i		WG5237	1-101 i		WG5240	0-101		WG5244	9-101		WG52450	-101 i
VORKGROUP		WG53086			WG523	69		WG52	371		WG524	100		WG52	449		WG524	50
Sample Size		1sample			1samp			1sam			1samp			1sam			1samp	
JNITS	floo		ng/sample (RL)	flog	ng/sample	ng/sample (RL)	flog		ng/sample (RL)	flag		ng/sample (RL)	flag	ng/sample	ng/sample (RL)	flag		ng/sample (RI
	ND H	ng/sample	3.93	nay J	2.71	0.86	nay i	3.26	0.74	NQ	ng/sample	ng/sample (ITL)	nag i	2.22	1.06	NDR J		1.01
I,3-Dichlorobenzene				J									J			NDR J	1.29	
I,4-Dichlorobenzene	Н		4.01		16.2	0.925		13.4	0.755	NQ				10.9	1.05		9.52	1.03
1,2-Dichlorobenzene	ND H		3.77	J	2.84	0.905	NDR J	2.04	0.748	NQ			NDR J	1.16	0.887	J	1.82	1.02
1,3,5-Trichlorobenzene	ND		1.79	ND		0.614	ND		0.67	ND		0.827	ND		0.483	ND		0.708
1,2,4-Trichlorobenzene	ND		1.86	ND		0.628	ND		0.712	ND		0.842	ND		0.491	ND		0.753
1,2,3-Trichlorobenzene	ND		1.92	NDR J	2.11	0.638	NDR J	0.872	0.731	ND		0.846	ND		0.494	ND		0.773
	ND		0.599	ND	2.11	0.177	ND	0.072	0.153	ND		0.267	ND		0.177	ND		0.182
1,2,4,5-/1,2,3,5-Tetrachlorobenzene																		
1,2,3,4-Tetrachlorobenzene	ND		0.611	ND		0.18	ND		0.155	ND		0.272	ND		0.18	ND		0.185
Hexachlorobutadiene	ND		0.611	ND		0.18	NDR J	0.596	0.155	NDR J	0.324	0.272	ND		0.18	ND		0.185
Pentachlorobenzene	ND		0.858	ND		0.231	ND		0.327	ND		0.506	ND		0.208	ND		0.643
Hexachlorobenzene	NDR J		0.435	, d	0.425	0.2		0.426	0.359	J	0.472	0.141	. I	0.484	0.143	J	0.514	0.338
HCH, alpha	ND		1.02	ND	0.420	0.612	ND	0.420	0.678	ND	0.472	0.822	ND	0.404	0.807	ND	0.514	0.967
HCH, beta	ND		1.71	ND		0.617	ND		1.31	ND		1.26	ND		0.867	ND		1.19
HCH, gamma	ND		1.29	ND		0.807	ND		0.904	ND		0.928	ND		0.728	ND		1.14
Heptachlor	ND		0.672	ND		0.796	ND		1.18	ND		0.757	ND		0.42	ND		1.41
Aldrin	ND		0.624	ND		0.414	ND		0.672	ND		0.587	ND		0.477	ND		0.793
	ND			ND			ND			ND			ND			ND		
Chlordane, gamma (trans)			0.284			0.159			0.345			0.174			0.153			0.337
Chlordane, alpha (cis)	ND		0.332	ND		0.189	ND		0.411	ND		0.209	ND		0.183	ND		0.401
Dctachlorostyrene	ND		0.348	ND		0.147	ND		0.264	ND		0.251	ND		0.215	ND		0.446
Chlordane, oxy-	ND		1.28	ND		1.4	ND		1.1	ND		1.72	ND		1.21	ND		1.24
Nonachlor, trans-	ND		0.125	ND		0.154	ND		0.142	ND		0.108	ND		0.107	ND		0.117
Nonachlor, cis-	ND		0.125	ND		0.175	ND		0.142	ND		0.108	ND		0.107	ND		0.117
Mirex	ND		0.369	ND		0.302	ND		0.15	ND		0.164	ND		0.204	ND		0.211
2,4'-DDE	ND		0.106	ND		0.103	ND		0.11	ND		0.0848	ND		0.0853	ND		0.129
4,4'-DDE	ND		0.148	NDR J	0.19	0.144	NDR J	0.224	0.153	NDR J	0.202	0.119	NDR J	0.171	0.119	ND		0.18
2,4'-DDD	ND		0.145	ND		0.17	ND		0.144	ND		0.13	ND		0.135	ND		0.122
4,4'-DDD	ND		0.145	ND		0.178	ND		0.144	ND		0.146	ND		0.135	ND		0.122
2,4'-DDT	ND		0.19	ND		0.183	ND		0.176	ND		0.129	ND		0.128	ND		0.172
4,4'-DDT	ND		0.221	ND		0.213	ND		0.214	ND		0.157	ND		0.156	ND		0.21
13C-1,4-Dichlorobenzene (% Recovery)	Н	4.08			19.3			10.2		NQ				10.2			10.3	
13C-1,2,3-Trichlorobenzene (% Recovery)		6.15			44.8			24.7			11			20.3			22.1	
					51.1			33.4			19			28.8			29.2	
13C-1,2,3,4-Tetrachlorobenzene (% Recovery)		11.8																
13C-Pentachlorobenzene (% Recovery)	V				52.5			38.8		V	27.8			37.3			31.6	
13C-Hexachlorobenzene (% Recovery)		38.4			58.6			52.8			47.8			52			39	
13C-beta-HCH (% Recovery)		52.5			63.1			50.9			51.4			51.9			42.8	
13C-gamma-HCH (% Recovery)		57.7			67.9			59.8			60.6			66.1			43	
13C-Heptachlor (% Recovery)		63.6			57.4			73.9			64.4			62.6			42.1	
13C-Aldrin (% Recovery)		65.4			67.1			67.7			68.4			69.7			45.7	
13C-Chlordane, gamma (trans) (% Recovery)		84.9			76.7			82.4			86.9			86.3			70.3	
13C-Nonachlor, trans- (% Recovery)		85.1			74			85			85.3			85			68.5	
13C-4,4'-DDE (% Recovery)		95.3			80.5			83.1			93.5			94.7			81.1	
13C-4,4'-DDT (% Recovery)		88.3			78.9			83			93.5			92.7			75.3	
13C-4,4'-DDD (ng/sample)																		
CLIENT_ID	L	ab Blank DB	17		Spiked Matr	ix DB17		Lahl	Blank DB5		Spiked Mat	rix DB5		Spiked Ma	trix DB5		Lab Blank	DB5
Axys ID		VG53086-10			WG53086				52369-101		WG5236			WG5237			WG52400	
	v																	
WORKGROUP		WG53086			WG530	86			G52369		WG523	369		WG52	371		WG524	00
Sample Size		1sample						1:	sample							1sample		
UNITS			ng/sample (RL)	flag	% Recovery	-		flag	ng/sample	flag	% Recovery	-	flag %	Recovery	-	flag	ng/sample	ng/sample (RL
	flag	ng/sample			69.5			ND			102			106		ND		0.076
HCH, delta		ng/sample												94.5		ND		0.0751
	ND		0.15		70.0			N/D								ND		
Heptachlor Epoxide	ND ND		0.15 0.0893		79.2			ND			90.8							0.157
HCH, delta Heptachlor Epoxide Dieldrin	ND ND ND		0.15 0.0893 0.127		128			ND			113			112		ND		
Heptachlor Epoxide	ND ND		0.15 0.0893															0.161
Heptachlor Epoxide Dieldrin Endrin	ND ND ND		0.15 0.0893 0.127		128			ND			113			112		ND		
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde	ND ND ND ND ND		0.15 0.0893 0.127 0.131 0.171		128 126 77			ND ND ND			113 115 89.7			112 114 84		ND ND ND		0.161 0.254
Heptachlor Epoxide Dieldrin Endrin Endrin Endrin Aldehyde Endrin Ketone	ND ND ND ND ND ND		0.15 0.0893 0.127 0.131 0.171 0.0629		128 126 77 89			ND ND ND ND			113 115 89.7 98.9			112 114 84 119		ND ND ND		0.161 0.254 0.108
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor	ND ND ND ND ND ND ND		0.15 0.0893 0.127 0.131 0.171 0.0629 0.137		128 126 77 89 89.4			ND ND ND ND			113 115 89.7 98.9 88.4			112 114 84 119 115		ND ND ND ND		0.161 0.254 0.108 0.236
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Ketone Methoxychlor Algha-Endosulphan	ND ND ND ND ND ND ND J	0.12	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105		128 126 77 89 89.4 110			ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7			112 114 84 119 115 92.3		ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Methoxychlor alpha-Endosulphan beta-Endosulphan	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110			ND ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7 102			112 114 84 119 115 92.3 90.4		ND ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Methoxychlor alpha-Endosulphan beta-Endosulphan	ND ND ND ND ND ND ND J	0.12	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105		128 126 77 89 89.4 110			ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7			112 114 84 119 115 92.3		ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146
Heptachlor Epoxide Dieldrin Endrin Atlehyde Endrin Atlehyde Endrin Ketone Methoxychlor alpha-Endosulphan beta-Endosulphan Endosulphan Sulphate Endosulphate	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110			ND ND ND ND ND ND	99.1		113 115 89.7 98.9 88.4 93.7 102			112 114 84 119 115 92.3 90.4		ND ND ND ND ND ND	82.8	0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor alpha-Endosulphan Endosulphan Sulphate D-alpha-Endosulphan (% Recovery) DB5	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110			ND ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7 102 94.1 101			112 114 84 119 115 92.3 90.4 111 87.1		ND ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Methoxychlor alpha-Endosulphan Endosulphan Endosulphan Sulphate D4-alpha-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110 86.3			ND ND ND ND ND ND	99.1 79.6		113 115 89.7 98.9 88.4 93.7 102 94.1			112 114 84 119 115 92.3 90.4 111		ND ND ND ND ND ND	82.8 76.8	0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor alpha-Endosulphan Endosulphan D4-alpha-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110 86.3			ND ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7 102 94.1 101			112 114 84 119 115 92.3 90.4 111 87.1		ND ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor alpha-Endosulphan Endosulphan D4-alpha-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110 86.3			ND ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7 102 94.1 101			112 114 84 119 115 92.3 90.4 111 87.1		ND ND ND ND ND ND		0.161 0.254 0.108 0.236 0.146 0.154
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Methoxychlor alpha-Endosulphan Endosulphan Endosulphan Sulphate D04-alpha-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB5	ND ND ND ND ND ND J J ND	0.12	0.15 0.0893 0.127 0.131 0.0629 0.137 0.105 0.124		128 126 77 89 89.4 110 110 86.3 106 67.7			ND ND ND ND ND ND			113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6			112 114 84 119 115 92.3 90.4 111 87.1		ND ND ND ND ND ND	76.8	0.161 0.254 0.108 0.236 0.146 0.154 0.199
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Dethox;chlor Balpa-Endosulphan Deta-Endosulphan Deta-Endosulphan Deta-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) D8-beta-Endosulphan (% Recovery) D8-B17 D4-beta-Endosulphan (% Re	ND ND ND ND ND ND ND ND ND	0.12	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7	DB17		ND ND ND ND ND ND ND	79.6		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6	DB5		112 114 84 119 115 92.3 90.4 111 87.1 80.6	DB17	ND ND ND ND ND ND	76.8	0.161 0.254 0.108 0.236 0.146 0.154 0.199
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor alpha-Endosulphan Endosulphan Sulphate D4-abpta-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID	ND ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix [0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank			ND ND ND ND ND ND ND	79.6 DB17		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank			112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank		ND ND ND ND ND ND	76.8 Lab Blank	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketore Methoxychlor alpha-Endosulphan Endosulphan Obeta-Endosulphan Endosulphan Sulphate D4-alpha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CHENT_ID Axys ID	ND ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E VG52400-10	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236	9-101		ND ND ND ND ND ND ND Lab Blank WG5237	79.6 DB17 '1-101		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237	1-101		112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244	9-101	ND ND ND ND ND ND	76.8 Lab Blank WG52449	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Dettoxychlor alpha-Endosulphan Deta-Endosulphan Deta-Endosulphan D4-abta-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID Axys ID WORKGROUP	ND ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix [0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236	9-101 69		ND ND ND ND ND ND ND Lab Blank WG5237 WG52	79.6 DB17 '1-101 371		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237	1-101 371		112 114 84 119 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG524	9-101 449	ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 H101 49
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wettworychlor alpha-Endosulphan Deta-Endosulphan Palapha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID QXIS ID WORKGROUP Sample Size	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E WG52400-10 WG52400	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 Ile		ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 '1-101 371 ple		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 Die		112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple	ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 101 49 le
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wettworychlor alpha-Endosulphan Deta-Endosulphan Palapha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID QXIS ID WORKGROUP Sample Size	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E VG52400-10	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	flag	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236	9-101 69	flag	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 DB17 '1-101 371	flag	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371	flag	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449	ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 101 49 le
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Bathar Endosulphan DetaE-Endosulphan DetaBathar Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID WoRKGROUP Sample Size NITS	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E WG52400-10 WG52400 % Recovery	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151		128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 Ile ng/sample (RL)		ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 '1-101 371 ple ng/sample (RL)		113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 871 ole ng/sample (RL)		112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL)	ND ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 H101 49 le ng/sample (RI
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wethoxychlor alpha-Endosulphan Peta-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 CLIENT_ID VoRKGROUP Sample Size JNITS CH, deta	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E WG52400-10 WG52400-10 % Recovery 105	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 Ile ng/sample (RL) 0.0659	ND	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 '1-101 371 ple ng/sample (RL) 0.097	ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 871 ng/sample (RL) 0.172	NĎ	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098	ND ND ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 0.199 DB5
Heptachlor Epoxide Dieldrin Endrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Methoxychlor Jalpha-Endosulphan Deta-Endosulphan Pa-alpha-Endosulphan (% Recovery) DB5 D4-abeta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID Work KGROUP Sample Size JNITS HCH, delta Heptachlor Epoxide	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400-10 WG52400 % Recovery 105 93.4	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 Ing/sample (RL) 0.0659 0.0555	ND ND	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 1-101 371 ple ng/sample (RL) 0.097 0.135	ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 871 ng/sample (RL) 0.172 0.0203	ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149	ND ND ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 H01 49 le ng/sample (RI 0.132 0.0762
Heptachlor Epoxide Dieldrin Indrin Indrin Endrin Katone Methoxychlor Japha-Endosulphan Delabra Indra Kosulphan Data-Endosulphan Padapla-Endosulphan Padapla-Endosulphan Ya-alpha-Endosulphan Ya-alpha-Endosulphan (% Recovery) DB5 Ya-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Strokoulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID VORKGROUP Sample Size JNITS 4CH, delta Heptachlor Epoxide Jeidrin	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400-10 WG52400-10 % Recovery 105 93.4 109	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	0-101 169 19 19 19 10 10 10 10 10 10 10 10 10 10	ND ND ND	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 DB17 1-101 371 ple ng/sample (RL) 0.097 0.135 0.0385	ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ble ng/sample (RL) 0.172 0.0203 0.132	ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149 0.213	ND ND ND ND ND ND ND ND flag ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Indrin Indrin Endrin Katone Methoxychlor Japha-Endosulphan Delabra Indra Kosulphan Data-Endosulphan Padapla-Endosulphan Padapla-Endosulphan Ya-alpha-Endosulphan Ya-alpha-Endosulphan (% Recovery) DB5 Ya-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Strokoulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID VORKGROUP Sample Size JNITS 4CH, delta Heptachlor Epoxide Jeidrin	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400-10 WG52400 % Recovery 105 93.4	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 Ing/sample (RL) 0.0659 0.0555	ND ND	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 1-101 371 ple ng/sample (RL) 0.097 0.135	ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 871 ng/sample (RL) 0.172 0.0203	ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149	ND ND ND ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 H01 49 le ng/sample (R 0.132 0.0762
Heptachlor Epoxide Dieldrin Indrin Indrin Fordrin Aldehyde Fordrin Ketone Wettwaychlor alpha-Endosulphan Beta-Endosulphan Erdesulphan Sulphate 24-alpha-Endosulphan (% Recovery) DB5 24-abeta-Endosulphan (% Recovery) DB17 24-beta-Endosulphan (% Recovery) DB17 204-alpha-Endosulphan (% Recovery) DB17 204-beta-Endosulphan (% Recovery) DB17 205-beta-Endosulphan (% Recovery) DB17 205-beta-Endosulphan (% Recovery) DB17 205-beta-Endosulphan (% Recovery) DB17 205-beta-Endosulphan (% Recovery) DB17 205	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400-10 WG52400-10 % Recovery 105 93.4 109	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	0-101 169 10 10 10 10 10 10 10 10 10 10	ND ND ND	ND ND ND ND ND ND ND ND ND VD ND ND ND ND ND ND ND ND ND ND ND ND ND	79.6 CDB17 1-101 371 ple ng/sample (RL) 0.097 0.135 0.0385 0.0387	ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134	ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149 0.213 0.219	ND ND ND ND ND ND ND ND flag ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 101 49 le ng/sample (R 0.132 0.0762 0.254
Heptachlor Epoxide Dieldrin Indrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wethoxychlor Lipha-Endosulphan Endosulphan Sulphate D4-alpha-Endosulphan (% Recovery) DB5 D4-beta-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recove	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E WG52400 WG52400 % Recovery 105 93.4 109 109 72.6	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 1e ng/sample (RL) 0.0659 0.0555 0.0656 0.0854 0.0289	ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 x DB17 11-101 371 ple 0.135 0.0385 0.0397 0.0517	ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ole 0.172 0.0203 0.132 0.134 0.212	ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ng/sample (RL) 0.098 0.149 0.213 0.219 0.286	ND ND ND ND ND ND ND flag ND ND ND ND ND	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5 -101 49 le ng/sample (R 0.132 0.0762 0.254 0.259 0.41
Heptachlor Epoxide Dieldrin Indrin Indrin Addehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wethoxychlor alpha-Endosulphan Endosulphan Sulphate 34-alpha-Endosulphan (% Recovery) DB5 34-alpha-Endosulphan (% Recovery) DB17 24-alpha-Endosulphan (% Recovery) DB17 24-beta-Endosulphan (% Recovery) DB17 25LENT_ID Vors ID VORKGROUP Sample Size JNITS CH, deta Heptachlor Epoxide Endrin Endrin Endrin Endrin Endrin Chidhiyde Endrin Kotone	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400 % Recovery 105 93.4 109 109 72.6 88.4	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 10 10,0659 0.0659 0.0555 0.0656 0.0854 0.0289 0.0134	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple ng/sample (RL) 0.097 0.135 0.0385 0.0397 0.0517 0.0451	ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358	ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple 0.098 0.149 0.213 0.219 0.286 0.0247	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Indrin Indrin Fordrin Aldehyde Fordrin Ketone Wethoxychlor Japha-Endosulphan Endesulphan Sulphate 24-alpha-Endosulphan (% Recovery) DB5 24-alpha-Endosulphan (% Recovery) DB17 24-beta-Endosulphan (% Recovery) DB17	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-105 93.4 109 109 109 72.6 88.4 84.3	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 ng/sample (RL) 0.0659 0.0555 0.0656 0.0854 0.0289 0.0134 0.0291	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 DB17 1-101 371 0.097 0.135 0.0385 0.0397 0.0517 0.0451 0.098	ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358 0.078	ND ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ng/sample (RL) 0.098 0.149 0.213 0.219 0.286 0.0247 0.0537	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Indrin Indrin Fordrin Aldehyde Fordrin Ketone Wethoxychlor Japha-Endosulphan Endesulphan Sulphate 24-alpha-Endosulphan (% Recovery) DB5 24-alpha-Endosulphan (% Recovery) DB17 24-beta-Endosulphan (% Recovery) DB17	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400 % Recovery 105 93.4 109 109 72.6 88.4	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 10 10,0659 0.0659 0.0555 0.0656 0.0854 0.0289 0.0134	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple ng/sample (RL) 0.097 0.135 0.0385 0.0397 0.0517 0.0451	ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358	ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple 0.098 0.149 0.213 0.219 0.286 0.0247	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Indrin Indrin Fordrin Ketone Wethxxychlor Jipha-Endosulphan Deader Indra Kosulphan Data-Brudosulphan Padpa-Endosulphan Indrasulphan Sulphate D4-alpha-Endosulphan Va-alpha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan D4-beta D4-beta D4-beta D4-beta D4-beta D4-beta D4-beta	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 WG52400-10 WG52400-10 WG52400-10 WG52400-10 % Recovery 105 93.4 109 72.6 88.4 88.4 84.3 90.7	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	0-101 169 10 10 0.0659 0.0555 0.0656 0.0854 0.0289 0.0134 0.0291 0.102	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple 0.097 0.0385 0.0385 0.0397 0.0451 0.0451 0.098 0.098 0.0263	ND ND ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358 0.078 0.0955	ND ND ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149 0.213 0.213 0.229 0.286 0.0247 0.0537 0.193	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketore Methoxychlor alpha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB5 D4-alpha-Endosulphan (% Recovery) DB17 D4-beta-Endosulphan (% Recovery) DB17 CLIENT_ID Aysy ID WORKGROUP Sample Size UNITS Hoth, delta Heptachlor Epoxide Dieldrin Endrin Aldehyde Endrin Endrin Endrin Aldehyde Endrin	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix IC WG52400-10 WG52400- 105 93.4 109 12.6 88.4 84.3 90.7 91.2	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 182 ng/sample (RL) 0.0659 0.0656 0.0854 0.0289 0.0134 0.0291 0.102 0.0546	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple 0.097 0.135 0.0385 0.0397 0.0451 0.098 0.0263 0.0263 0.0376	ND ND ND ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ole ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358 0.078 0.0955 0.129	ND ND ND ND ND ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple 0.098 0.149 0.213 0.219 0.226 0.0247 0.0537 0.193 0.208	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.154 0.199 DB5
Heptachlor Epoxide Dieldrin ndrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Ketone Wethoxychlor Japha-Endosulphan Deta-Endosulphan 94-alpha-Endosulphan (% Recovery) DB5 94-alpha-Endosulphan (% Recovery) DB17 94-beta-Endosulphan (% Recovery) DB17 94-beta-Endosulphan (% Recovery) DB17 924-beta-Endosulphan 924-beta-Endosulphan 924-beta-Endosulphan 924-beta-Endosulphan 924-beta-Endosulphan 924-beta-Endosulphan 924-beta-Endosulphan 924-Endosulphan 924-Endosulphan 924-Endosulphan 924-Endosulphan 924-Endo	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix E WG524001 WG52400 % Recovery 105 93.4 109 109 109 12.6 88.4 84.3 90.7 91.2 85.6	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	0-101 169 10 10 0.0659 0.0555 0.0656 0.0854 0.0289 0.0134 0.0291 0.102	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple 0.097 0.0385 0.0385 0.0397 0.0451 0.0451 0.098 0.098 0.0263	ND ND ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 94.1 101 87.6 Lab Blanh WG5237 WG5237 WG5237 Sample	1-101 371 ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358 0.078 0.0955	ND ND ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple ng/sample (RL) 0.098 0.149 0.213 0.213 0.229 0.286 0.0247 0.0537 0.193	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52445 WG524 1sample	0.161 0.254 0.108 0.236 0.146 0.154 0.199 DB5
leptachor Epoxide liptachor Epoxide liptachor Epoxide liptachor Epoxide liptachor Extension liptachor Exte	ND ND ND ND ND ND ND ND	0.12 89.6 88.4 iked Matrix IC WG52400-10 WG52400- 105 93.4 109 12.6 88.4 84.3 90.7 91.2	0.15 0.0893 0.127 0.131 0.171 0.0629 0.137 0.105 0.124 0.124 0.151	ND ND ND ND ND ND ND ND ND	128 126 77 89 89.4 110 110 86.3 106 67.7 Lab Blank WG5236 WG5236 WG523	9-101 169 182 ng/sample (RL) 0.0659 0.0656 0.0854 0.0289 0.0134 0.0291 0.102 0.0546	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND VD VD VD VD VG5237 WG52 1sam	79.6 CDB17 1-101 371 ple 0.097 0.135 0.0385 0.0397 0.0451 0.098 0.0263 0.0263 0.0376	ND ND ND ND ND ND ND ND ND	113 115 89.7 98.9 88.4 93.7 102 94.1 101 87.6 Lab Blank WG5237 WG5237 WG523	1-101 371 ole ng/sample (RL) 0.172 0.0203 0.132 0.134 0.212 0.0358 0.078 0.0955 0.129	ND ND ND ND ND ND ND ND ND ND ND	112 114 84 119 115 92.3 90.4 111 87.1 80.6 Lab Blank WG5244 WG52 1sam	9-101 449 ple 0.098 0.149 0.213 0.219 0.226 0.0247 0.0537 0.193 0.208	ND ND ND ND ND ND ND ND ND ND ND ND ND N	76.8 Lab Blank WG52449 WG524 1samp	0.161 0.254 0.108 0.236 0.146 0.154 0.154 0.199 DB5

	Spiked Ma	atrix (102)	Spiked Matrix (102) Spike	ed Matrix (102)		Spil	ked Matrix (102	2)	Spiked Ma	trix (102)	Spik	ed Matrix (10
	WG5308	36-102 i	WG52369-102 i2	WG	652371-102 i		W	G52400-102 i		WG5244	49-102	W	G52450-102
								WG52400					WG52450
flag	% Recovery	-	flag % Recovery	flog	% Recovery		flac	% Recovery	- flac	% Recovery	-	flag	% Recovery
nag				nag			nag		nag			nag	130
													105
													121
	99.3							87.8		78.7			97.9
	98.3		92.9		79.6			95		89			104
													110
													96.1
	101		101		105			96.8		98.9			99.6
	99.9		100		103			99		99.5			99.8
	94.2		95.1		94.2			91.8		92.6			92.4
	79.5		86.4		82.4			82.7		81.7			85.1
													99.8
													101
								95.4					87.6
	98.1		94.9		103			98.2		97.7			98.6
													99.3
													103
													92
	95.5		104		90.3			91.8		91.7			85.4
	97.4		98.6		103			98.6		97.3			99.6
													116
													99.8
													94.2
	93.7		96.9		94.3			93.8		93.9			93
	91.1		98.9		98.9			95		94.8			95.3
													96.8
													97.8
													97.2
	5.33		11.8		2.87			9.1		5.61			7.54
	10.5		33.2		9.47			16.9		13.7			15.1
													20
V							V					V	25.9
	42.2		59.3		56.8			39.8		46.4			41
	47.3		69.6		53.4			45.5		58.3			50.2
													48.5
													48.6
	63.1		77		71.5			59.1		62.3			54.2
	82.4		83.5		84.2			80		80.3			75.5
	83.9		83.3		88.8			81.7		81.6			77.2
													84.2
	86.3		93.1		85.7		_	98.9		88.8			81.2
	Lab Bla	nk DB5	Spiked M	atrix DB5	Spiked M	atrix DB17	Spik	ed Matrix DB1	7	Lab Blan	k DB17	Spik	ed Matrix DE
													/G52400-102
			WG5	3086	WG5	2369		WG52371					WG52400
flag	ng/sample	ng/sample (RL)	flag % Recovery	 ng/sample (RL) 	flag	% Recovery -	 flag 	% Recovery	 flag 	ng/sample	ng/sample (RL)	flag	% Recovery
					Ŭ		Ŭ					Ŭ	100
													96.9
ND				0.0998				01.0					
				0.0998				100			0.0998		120
ND		0.141	103			121		122	ND				
ND ND		0.144	105	0.0465		117		119	ND		0.103		117
ND											0.103 0.134		75.6
ND ND ND		0.144 0.228	105 66.5	0.0465 0.0634		117 88.7		119 99.8	ND ND		0.134		75.6
ND ND ND		0.144 0.228 0.059	105 66.5 89.6	0.0465 0.0634 0.0304		117 88.7 99.7		119 99.8 121	ND ND ND		0.134 0.0581		75.6 88.3
ND ND ND ND		0.144 0.228 0.059 0.129	105 66.5 89.6 92.2	0.0465 0.0634 0.0304 0.0662		117 88.7 99.7 88.2		119 99.8 121 116	ND ND ND		0.134 0.0581 0.126		75.6 88.3 85.2
ND ND ND ND ND ND		0.144 0.228 0.059 0.129 0.123	105 66.5 89.6 92.2 93.6	0.0465 0.0634 0.0304 0.0662 0.0859		117 88.7 99.7 88.2 97.7		119 99.8 121 116 96	ND ND ND ND		0.134 0.0581 0.126 0.0847		75.6 88.3 85.2 111
ND ND ND ND ND ND ND		0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111		119 99.8 121 116 96 98	ND ND ND ND ND ND		0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8
ND ND ND ND ND ND		0.144 0.228 0.059 0.129 0.123	105 66.5 89.6 92.2 93.6	0.0465 0.0634 0.0304 0.0662 0.0859		117 88.7 99.7 88.2 97.7		119 99.8 121 116 96	ND ND ND ND		0.134 0.0581 0.126 0.0847		75.6 88.3 85.2 111
ND ND ND ND ND ND ND		0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111		119 99.8 121 116 96 98	ND ND ND ND ND ND		0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8
ND ND ND ND ND ND ND	94	0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111		119 99.8 121 116 96 98	ND ND ND ND ND ND		0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8
ND ND ND ND ND ND ND		0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111 105		119 99.8 121 116 96 98 120	ND ND ND ND ND ND	02.4	0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8 93.5
ND ND ND ND ND ND ND	94	0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111 105 101		119 99.8 121 116 96 98 120 85.5	ND ND ND ND ND ND	83.1	0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8 93.5 98.5
ND ND ND ND ND ND ND	94	0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111 105		119 99.8 121 116 96 98 120	ND ND ND ND ND ND	83.1 80.7	0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8 93.5
ND ND ND ND ND ND ND	94	0.144 0.228 0.059 0.129 0.123 0.138	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2	0.0465 0.0634 0.0304 0.0662 0.0859 0.107		117 88.7 99.7 88.2 97.7 111 105 101		119 99.8 121 116 96 98 120 85.5	ND ND ND ND ND ND		0.134 0.0581 0.126 0.0847 0.0975		75.6 88.3 85.2 111 97.8 93.5 98.5
ND ND ND ND ND ND ND	94 92.4	0.144 0.228 0.059 0.129 0.123 0.138 0.178	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496	9 Blank DB17	117 88.7 99.7 88.2 97.7 111 105 101	Lah	119 99.8 121 116 96 98 120 85.5 75.3	ND ND ND ND ND ND	80.7	0.134 0.0581 0.126 0.0847 0.0975 0.141	Vatri×	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5
ND ND ND ND ND ND ND	94 92.4 Spiked Ma	0.144 0.228 0.059 0.129 0.123 0.138 0.178	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496	9 Blank DB17	117 88.7 99.7 88.2 97.7 111 105 101		119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5	ND ND ND ND ND Spikec	80.7 Matrix DB17	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M		75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524	0.144 0.228 0.059 0.129 0.123 0.138 0.138 0.178 trix DB17 49-102	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5 WG52449-102	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496	G52450-101	117 88.7 99.7 88.2 97.7 111 105 101	WG	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101	ND ND ND ND ND Spikec WG	80.7 Matrix DB17 52450-102	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked N WQ52	2450-1	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102
ND ND ND ND ND ND ND	94 92.4 Spiked Ma	0.144 0.228 0.059 0.129 0.123 0.138 0.138 0.178 trix DB17 49-102	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496	G52450-101 WG52450	117 88.7 99.7 88.2 97.7 111 105 101	WG V	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450	ND ND ND ND ND Spikec WG	80.7 Matrix DB17	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked N WQ52		75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DBS WG52449-102 WG52449	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4	WG V	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450 1sample	ND ND ND ND ND ND Spikec WG WG	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DBS WG52449-102 WG52449	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4	WG V	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450 1sample	ND ND ND ND ND ND Spikec WG WG	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52 % Recovery	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5 WG52449-102 WG52449	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 g/sample (RL g	WG V g/sam	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 V(552450-101 V(552450-101 Sample Igy'sample (RL	ND ND ND ND ND ND Spikec WG WG	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 (teco)	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52 WG524 WG52 WG52 S7.9	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5 WG52449-102 WG52449-102 WG52449 104	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 g/sample (RLg 0.152	WG V g/sam	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450-101 VG52450 1sample ng/sample (RL 0.319	ND ND ND ND ND ND ND ND ND ND ND Spikec WG WG 92	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 1 tecov 104	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52 % Recovery 87.9 87.5	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5 WG52449-102 WG52449 104 89.7	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 g/sample (RL) 0.152 0.21	WG V g/sam D	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VC52450 15ample ng/sample (RL 0.319 0.0788	ND ND ND ND ND ND Spikec WG WG glecov 92 90	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG52 % Recovery 87.9 87.5 110	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 Spiked Matrix DB5 WG52449-102 WG52449-102 WG52449 104	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 g/sample (RLg 0.152	WG V g/sam D	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450-101 VG52450 1sample ng/sample (RL 0.319	ND ND ND ND ND ND ND ND ND ND ND ND ND 100	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52 % Recovery 87.9 87.5	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 WG52449-102 WG52449-102 VG52449-104 89.7 104 89.7 102	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.04070000000000	G52450-101 WG52450 1sample	117 88.7 99.7 99.7 88.2 97.7 111 105 101 85.4 g/sample (RLu 0.152 0.21 0.137	WG V g /sam D D D	119 99.8 121 116 96 98 98 120 85.5 75.3 Blank DB5 52450-101 VG52450-101 VG52450-101 VG52450-101 VG52450-101 9g/sample (RL 0.319 0.0788 0.157	ND ND ND ND ND ND ND ND ND ND ND ND ND 100	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG52 % Recovery 87.9 87.5 110 107	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 94.5 81.6 98.2 86.9 WG52449-102 WG52449 Idag % Recovery 104 89.7 102 105	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 9/sample (RLig 0.152 0.21 0.21 0.137 0.137	WG V g/sam D D D D	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 52450-101 VG52450 1sample Qv/S52450 1sample (RL 0.319 0.0788 0.157 0.16	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 92.4 WG524 WG52 WG52 % Recovery 87.9 87.5 110 107 79.6	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 88.9 88.9 WG52449-102 WG52449 flag % Recovery 104 89.7 102 105 72.8	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 Lab WW VW VW VW VW VW VW VW VW VW VW VW VW	G52450-101 WG52450 1sample	117 88.7 99.7 99.7 97.7 111 105 101 85.4 g/sample (RLug 0.152 E 0.21 E 0.137 E 0.137 E 0.134 E	WG 9 /sam 0 0 0 0 0	119 99.8 121 116 96 98 120 85.5 75.3 81ak DB5 552450-101 VG52450 15ample (RL 0.319 0.0788 0.157 0.16 0.254	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 WG52449-104 88.7 104 89.7 102 105 72.8 104	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.045 0.045 0.045 0.045 0.045 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0662 0.0659 0.064 0.0659 0.064 0.0662 0.0659 0.004 0.0659 0.047 0.0496 0.040 0.0659 0.047 0.0496 0.000 0.000 0.000 0.00000000000000000	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 9 (sample (RLg 0.152 0.152 0.152 0.137 0.141 0.184 0.0236	WG 9 20 20 20 20 20 20 20 20 20 20 20 20 20	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 552450-101 VG52450-101 VG52450-101 VG52450-101 0.0788 0.157 0.167 0.167 0.254 0.0339	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61 103	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 92.4 WG524 WG52 WG52 % Recovery 87.9 87.5 110 107 79.6	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 88.9 88.9 WG52449-102 WG52449 flag % Recovery 104 89.7 102 105 72.8	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 5 Lab 5 Lab 7 V V V V V V V V V V V V V V V V V V	G52450-101 WG52450 1sample	117 88.7 99.7 99.7 97.7 111 105 101 85.4 g/sample (RLug 0.152 E 0.21 E 0.137 E 0.137 E 0.134 E	WG 9 20 20 20 20 20 20 20 20 20 20 20 20 20	119 99.8 121 116 96 98 120 85.5 75.3 81ak DB5 552450-101 VG52450 15ample (RL 0.319 0.0788 0.157 0.16 0.254	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 WG52449-104 88.7 104 89.7 102 105 72.8 104	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.045 0.045 0.045 0.045 0.045 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0634 0.0662 0.0659 0.064 0.0659 0.064 0.0662 0.0659 0.004 0.0659 0.047 0.0496 0.040 0.0659 0.047 0.0496 0.000 0.000 0.000 0.00000000000000000	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 9 (sample (RL) 0.152 0.21 0.152 0.21 0.137 0.141 0.0184 0.0236 0.0513	WG 9 /sam 0 0 0 0 0 0 0 0	119 99.8 121 116 96 98 120 85.5 75.3 Blank DB5 552450-101 VG52450 15ample (PL 0.319 0.0788 0.157 0.16 0.254 0.0339 0.0739	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61 103	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 92.4 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 104 89.7 102 105 72.8 104 105 91	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0455 0.0	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 9(sample (RL) 0.152 0.137 0.137 0.137 0.137 0.137 0.184 0.0236 0.0236	WG 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	119 99.8 121 116 96 98 98 120 85.5 75.3 Blank DB5 552450-101 VC52450-101 VC52450-101 VC52450-101 VC52450-101 0.0788 0.157 0.254 0.0339 0.0739 0.0739 0.223	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61 103 97 94	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1 99.8	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 98.2 Spiked Matrix DB5 WG52449-102 WG52449-102 WG52449 104 89.7 102 105 72.8 104 105 91 91 92.9	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.000 0.0496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 0.152 0.21 0.137 0.21 0.137 0.0236 0.0513 0.0236 0.0513 0.0236	WG V g'sam D D D D D D D D D D D D D	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 552450-101 V(552450-101 V(552450-101 V(552450) Isample (RL 0.319 0.0788 0.157 0.16 0.254 0.0739 0.0739 0.223 0.154	ND ND ND ND ND ND ND ND Spikec WG glecov 92 90 100 92 90 100 95 71 104 96 99 99	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 552450 104 89 94 91 61 103 97 94 91	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 92.4 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 88.9 98.2 86.9 VG52449-102 WG52449-102 WG52449 104 89.7 102 105 72.8 91 92.9 95.7	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0455 0.0	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 9(sample (RL) 0.152 0.137 0.137 0.137 0.137 0.137 0.184 0.0236 0.0236	WG // g/sam D D D D D D D D D D D D D	119 99.8 121 116 96 98 98 120 85.5 75.3 Blank DB5 552450-101 VC52450-101 VC52450-101 VC52450-101 VC52450-101 0.0788 0.157 0.254 0.0339 0.0739 0.0739 0.223	ND ND ND ND ND ND ND ND ND ND ND ND ND N	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 552450 104 89 94 91 61 103 97 94 91 92	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 102 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1 99.8	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 WG52449-102 WG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 104 89.7 102 105 72.8 104 105 91 92.9 95.7 75	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.000 0.0496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	G52450-101 WG52450 1sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 0.152 0.21 0.137 0.21 0.137 0.0236 0.0513 0.0236 0.0513 0.0236	WG W g'sam D D D D D D D D D D D D D	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 552450-101 V(552450-101 V(552450-101 V(552450) Isample (RL 0.319 0.0788 0.157 0.16 0.254 0.0739 0.0739 0.223 0.154	ND ND ND ND ND ND ND ND Spikec WG glecov 92 90 100 92 90 100 95 71 104 96 99 99	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61 103 97 94 91 92 87	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 02 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1 99.8	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 88.9 98.2 86.9 VG52449-102 WG52449-102 WG52449 104 89.7 102 105 72.8 91 92.9 95.7	0.0465 0.0634 0.0304 0.0662 0.0659 0.107 0.0496 0.040 0.0496 0.000 0.0496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	G52450-101 WG52450 1sample ng/sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 0.152 0.21 0.137 0.21 0.137 0.0236 0.0513 0.0236 0.0513 0.0236	WG // g/sam D D D D D D D D D D D D D	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 552450-101 V(552450-101 V(552450-101 V(552450) Isample (RL 0.319 0.0788 0.157 0.16 0.254 0.0739 0.0739 0.223 0.154	ND ND ND ND ND ND ND ND Spikec WG glecov 92 90 100 92 90 100 95 71 104 96 99 99	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 552450 104 89 94 91 61 103 97 94 91 92	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 02 02
ND ND ND ND ND ND ND	94 92.4 Spiked Ma WG524 WG524 WG524 WG52 % Recovery 87.9 87.5 110 107 79.6 110 119 96.1 99.8	0.144 0.228 0.059 0.129 0.123 0.138 0.178 trix DB17 49-102 2449	105 66.5 89.6 92.2 93.6 94.5 81.6 98.2 86.9 VG52449-102 WG52449-102 WG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 VG52449-102 104 89.7 102 105 72.8 104 105 91 92.9 95.7 75	0.0465 0.0634 0.0304 0.0662 0.0859 0.107 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.000 0.0496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	G52450-101 WG52450 1sample ng/sample	117 88.7 99.7 88.2 97.7 111 105 101 85.4 0.152 0.21 0.137 0.21 0.137 0.0236 0.0513 0.0236 0.0513 0.0236	WG W g'sam D D D D D D D D D D D D D	119 99.8 121 116 96 98 85.5 75.3 Blank DB5 552450-101 V(552450-101 V(552450-101 V(552450) Isample (RL 0.319 0.0788 0.157 0.16 0.254 0.0739 0.0739 0.223 0.154	ND ND ND ND ND ND ND ND Spikec WG glecov 92 90 100 92 90 100 95 71 104 96 99 99	80.7 Matrix DB17 52450-102 /G52450	0.134 0.0581 0.126 0.0847 0.0975 0.141 Spiked M WG52 WG	2450-1 52450 104 89 94 91 61 103 97 94 91 92 87	75.6 88.3 85.2 111 97.8 93.5 98.5 83.5 DB5 02 02
	V flag	WG3300 flag % Recovery wG33 97.3 113 83.1 99.3 98.3 114 93 98.3 101 99.9 98.3 101 99.9 99.2 93.7 99.7 99.5 94.2 99.7 99.7 99.5 94 95.5 97.4 107 114 93.9 94.5 97.4 90.7 91.1 96.7 94.2 96.7 94.2 96.6 5.33 10.5 16.5 V 25.7 42.2 47.3 55.8 60.6 63.1 82.4 83.9 91.2 86.3 10.2 WG5300 WG5300 WG5301 1sam flag ng/sample	WG63086-102 i WG53086 III WG53086 III 97.3 III 97.3 97.3 97.3 97.3 97.3 98.3 98.3 98.3 98.3 99.3 99.3 99.3 99.3 99.4 93 99.7 99.2 99.7 99.1 99.7 99.5 99.7 99.5 99.5 99.5 99.7 99.5 99.7 99.5 99.7 99.5 99.7 99.5 99.7 99.5 99.7 99.5 99.7 91.1 90.7 94.2 96.7 94.2 96.7 94.2 96.7 94.2 96.7 94.2 96.7 94.2 96.7 94.2 96.7 94.2 96.6 55.3	WG53086-102 i WG52369-102 i2 WG53086 WG52369 flag % Recovery - 97.3 113 113 113 114 91.7 99.3 86.9 92.9 114 96.6 92.9 114 96.6 93.3 99.9 101 101 101 99.9 101 101 99.9 101 101 99.9 101 101 99.2 101 101 99.5 99.7 98.8 97.9 88.7 99.7 98.1 94.9 92.3 95.5 104 97.4 98.6 107 103 114 95.3 93.7 98.6 97.7 96.9 91.1 98.9 96.7 103 114 95.3 93.9 96.7 103 94.2 102 96.9 91	WGS3086-102 i WGS2369-102 i2 WG WG53086 WG52369 WG 113 113 113 113 113 114 83.1 91.7 99.3 98.3 92.9 113 114 96.6 93 99.3 99.9 100 91.1 101 101 99.9 100 94.2 98.1 94.9 95.1 98.1 94.9 99.7 98.1 94.9 99.7 98.1 94.9 99.7 98.1 94.9 92.3 95.5 104 99.7 94 92.3 90.7 94 92.3 90.7 94.1 94.9 93.7 95.5 104 95.3 93.7 96.9 91.1 94.9 95.3 93.7 95.5 104 95.3 93.7 96.9 91.1	WG53086-102 i WG52369-102 i2 WG52371-102 i Iflag % Recovery - flag % Recovery - 113 113 113 73.3 - flag % Recovery - 113 113 114 81 - 60.9 - 60.9 99.3 99.3 86.9 67.5 - 60.9 - 60.9 114 96.6 90.7 - 60.9 - - - 60.9 - - 60.9 - - 60.9 - - - 60.9 - - - 60.9 - - 60.9 - - - - 60.9 -	WG53086 WG52371-102 i WG52369 WG52371-102 i WG52371 flag % Recovery - flag % Recovery - 97.3 113 114 81 - 113 114 81 - - 99.3 86.9 67.5 - - 98.3 92.9 79.6 - - 114 96.6 90.7 - - 98.3 99.9 99.3 - - 101 101 105 - - 99.9 90.0 103 - - 94.2 95.1 94.2 - - 99.7 96.8 93.3 - - 99.7 98.5 104 - - 99.7 98.5 104 - - 99.5 99.7 90.2 - - 99.5 99.7 90.2 - - 99.5 104	WG53086-102 i WG52369 WG52369 WG52371-102 i WG52371 WG52371 flag % Recovery - flag % Recovery - flag 97.3 113 73.3 - flag % Recovery - flag 97.3 113 114 81 - flag % Recovery - flag 98.3 92.9 77.6 - - - - - - flag % Recovery - flag % Recovery - flag - - - flag % Recovery - flag - - - - - - flag % Recovery - flag -	WG52086-102 i WG52086 WG52389-102 i WG52309 WG52371-102 i WG52000 WG52000 Ilag % Recovery 97.3 - Ilag % Recovery 113 - Ilag % Recovery 97.3 - Ilag % Recovery 97.4 - Ilag % Recovery 97.6 97.6 97.6 97.6 97.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.2 99.9 99.9 99.7 99.9 99.7 99.9 99.7 99.9 99.7 99.9 99.7 99.9 99.7 99.7 90.2 99.7 99.7 99.9 99.7 99.7 99.7 99.2 99.7 99.7 90.2 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7<	WG53086-102 i WG52369-102 i WG52307-102 i WG52400-102 i Ilag % Recovery - flag % Recovery - flag % R	WG53086-102 i WG52369 WG52369-102 i WG52371-102 i WG52369 WG5240-102 i WG52400 WG52400 WG52400 flag % Recovery - 113 flag % Recovery - 133 flag % Recovery - 97.5 flag % Recovery - 97.5 flag % Recovery - 97.5 flag % Recovery - 97.5 flag % Recovery - 97.6 flag % Recovery - 97.6 flag % Recovery - 97.7 flag % Recovery - 99.9 flag % Recovery - 99.9 flag % Recovery - 99.7 glag & flag % Recovery - 99.7 glag & flag & flag % Recovery - 99.7 glag & flag & flag & flag % Recovery - 99.7 glag & flag & fl	WG53086 WG52389 WG52399 WG52371-1021 WG52400 WG52409 flag % Recovery - flag % Recovery - <td>WG53086 WG523891 WG52391 WG52401 WG52402 <</td>	WG53086 WG523891 WG52391 WG52401 WG52402 <

Appendix F2: SPMD data for American dep		00011114		5 iig/ 01																			
Gratwick Riverside Park (GRP)																							
Little Niagara River (LNR)																							
Niagara-on-the-Lake (NOTL)																							
															_								
CLIENT_ID	GRP		Bloody Run C		hers Ck		Mile Ck		Mile Ck	Two N			t Flume		t Flume		Flume		Flume		t Flume		t Flume
	(Middle of F	Park)	Field Blank	Fie	eld Blank	(N	louth)-1	(M	outh)-2	(Mo	uth)-3	(D	/S)-1	(D	/S)-2	(D	/S)-3	(Outer	Site B)-1	(Outer	Site B)-2	(Outer	Site B)-3
	Field Bla	nk																					
Axys ID	L23776-	1 i	L23776-2 i	L2	3776-4 i	L23	3776-5 L	L23	776-6 L	L237	76-7 L	L23	776-8 i	L237	776-9 L	L237	76-10 L	L2377	76-11 L	L237	76-12 L	L237	76-13 L
WORKGROUP	WG5236	69	WG52369	W	G52369	W	G52369	WO	652369	WG	52369	WG	52369	WG	52369	WG	52369	WG	52369	WG	52369	WG	52369
Sample Size	1sample	е	1sample	1	sample	1:	sample	1s	ample	1sa	mple	1sa	ample	1sa	ample	1sa	mple	1sa	Imple	1sa	ample	1s	ample
UNITS	flag ng/sa		flag ng/sam	ple flag	ng/samp		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample	flag	ng/sample		ng/sample		ng/sample		ng/sample
1,3-Dichlorobenzene	J 2.6		J 2.38				2.84	J			1.94	nag	6.71	nag	4.79	nag	4.71	nag	311	nag	373	NQ	ngoounpi
1,4-Dichlorobenzene	14		12.2		11	3	21.6	5	1.73	J	17.6		24		32.3		32.1		608		848	NQ	
1,2-Dichlorobenzene	3.2	22	J 2.84			J	2.47	J		J	2.66	J	2.87		4.46		4.67		150		199	NQ	070
1,3,5-Trichlorobenzene	ND		ND	NE		J	2.57	J		J	1.96		6.61		6.51		6.76		336		326		378
1,2,4-Trichlorobenzene	ND		ND	NDR .			10.4		7.55		8.06		15.6		14.4		17		1400		1250		1560
1,2,3-Trichlorobenzene	ND	N	DR J 2.11				3.61	J		J	2.82		6.43		6.56		7.57		880		762		968
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	ND		ND	NE		J	3.45	J	3.1	J	3.03		16.1		16.4		17.1		897		980		965
1,2,3,4-Tetrachlorobenzene	J 0.2	24	ND	NE			3.33		3.02		3.3		19.9		20		21.4	D	1440	D	1530	D	1630
Hexachlorobutadiene	ND		ND	NE		J	1.61	NDR J	1.09	J	0.992	J	0.391	NDR J	0.404	J	0.352		10.5		13.7		10.4
Pentachlorobenzene	ND		J 0.554				12		11.3		11.6		28.2		27.6		29.7	D	1160	D	1230	D	1150
Hexachlorobenzene	J 0.6	606	J 0.866				25.5		24.1		26.2		29.1		27.2		29.2	D	542	D	558	D	527
HCH, alpha	ND 0.0		ND 0.000			ND	_3.0	ND		ND		ND		ND									
HCH, beta	ND		ND	NE		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, gamma	ND		ND	NE		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		ND	NE		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor																							
Aldrin	ND		ND	NE		ND		ND		ND		ND		ND		ND .		ND		ND		ND	
Chlordane, gamma (trans)	ND		ND	NE			14.8		14.8		15.9	J	2.6	J	2.69	J	2.74		13.5		14.5		14.2
Chlordane, alpha (cis)	ND		ND	NE			23.9		24		26.2	J	3.4	J	3.84	J	3.99		23		22.9		23
Octachlorostyrene	ND		ND	NE		ND		J	0.416	ND		ND		ND		ND		J	1.57	J	1.6	J	1.39
Chlordane, oxy-	NDR 24	.8	NDR 20.6	NDF	21.6	NDR	23.1	NDR	22	NDR	22.6	NDR	19.3	NDR	15.3	NDR	20.9	NDR	28.8	NDR	26.3	NDR	29.7
Nonachlor, trans-	ND		ND	NE)		9.64		9.76		10.2	J	1.88	J	1.84	J	2.31		8.42		8.39		8.14
Nonachlor, cis-	ND		ND	NE)	J	2.57	J	2.56	J	2.82	J	0.624	J	0.58	J	0.669	J	2.3	J	2.11	J	2.21
Mirex	ND		ND	NE)	NDR	18.1	NDR			10.7	ND		ND		ND		ND	-	ND		NDR	10.5
2,4'-DDE (o,p' DDE)	ND		ND	NE		ND		J	2.01	NDR J	2.4	NDR J	1.44	NDR J	0.846	ND		NDR J	2.22	NDR J	2.41	NDR J	2.63
4,4'-DDE (p,p' DDE)	ND		ND	NE			14.9	J	15.5	HER U	14.7	ADR J	5.75	HER J	4.79		5.48	HER U	14.3	ALCIN J	14.8	TOR J	15.2
	ND		ND	NL					15.5				1.26	-			5.48 1.43		14.3		14.8		
2,4'-DDD (o,p' DDD)							11.3				10.6	J		J	1.67	J							11.5
4,4'-DDD (p,p' DDD)	ND		ND	NE			39.9		38.5		39.8		6.16		5.93		6.19		53.7		50.2		48.7
2,4'-DDT (o,p' DDT)	ND		ND	NE		NDR	5.74	NDR	5.63	NDR	6.15	NDR J	3.25	NDR J	2.31	NDR J	2.68	NDR	3.9	NDR	6.36	ND	_
4,4'-DDT (p,p' DDT)	ND		ND	NE			7.03		5.89		7.97	ND		ND		ND		ND			4.15		5.2
HCH, delta	JQ 0.1	82	JQ 0.158			JQ	0.4	ND		JQ	0.659	ND		JQ	0.294	JQ	0.305	ND		ND		J	0.615
Heptachlor Epoxide	ND		ND	NE			9.17	Q	9.35	Q	9.68	Q	3.47		3.25	Q	3.47	Q	3.89	Q	4.84	Q	4.05
Dieldrin	ND		J Q 0.053	3 J C	0.036		29.6		27.6		30.6	Q	6.18		5.51		5.48		10.5		9.88		10.7
Endrin	ND		ND	NE)	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	ND		ND	NE		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Ketone	ND		ND	JC		ND		ND		ND		ي	2	ND		ND		ND		ND		ND	
Methoxychlor	ND		ND	NE		ND			7.4	Q	3.76	ND	-	ND		ND		ND		ND		ND	
alpha-Endosulphan	ND		ND	NE		ND		JQ	1.02	ND	00	ND		ND		ND		ND		ND		ND	
beta-Endosulphan	ND		ND	NE		ND		ND	1.02	ND		ND		ND		ND		ND		ND		ND	
Endosulphan Sulphate	ND		ND	NL		ND		ND		JQ	1 17	ND		ND		ND		JQ	1.73	JQ	1.56	ND	
· ·						IND	40.0	ND	40.0	JQ	1.17	ND	0.0	ND	F 70	ND	F.0.1	JQ		JQ			
13C-1,4-Dichlorobenzene (% Recovery)	8.		9.08		26.5		10.3		10.9		5.06		8.8		5.78		5.01		5.84		9.57	NQ	40.1
13C-1,2,3-Trichlorobenzene (% Recovery)	20		22.1		58.4		31.9		32.4		21.7		23.1		20.9		18.5		20.5		32.7	-	18.4
13C-1,2,3,4-Tetrachlorobenzene (% Recovery)	29		30.1		64.9		38.3		43.6		36.7		33.6		26.4		28	NDR	35	NDR	35.4	NDR	33.4
13C-Pentachlorobenzene (% Recovery)	41	.4	38.2		69.5		55.2		64.7		59.6		49.3		39.8		42.8	NDR	101	NDR	89	NDR	92.9
13C-Hexachlorobenzene (% Recovery)	61	.3	59.1		77.3		80		84.1		83.4		69.9		66.7		68.1		96		87		90
13C-beta-HCH (% Recovery)	63	.9	71		70.2		72		74.6		65.7		69.1		68.1		72.1		86.2		81.1		72.4
13C-gamma-HCH (% Recovery)	67		67.4		79.1		83.1		82.8		86		82.5		73.5		75.9	NDR	69.2	NDR	97.8	NDR	92.6
13C-Heptachlor (% Recovery)	61		63.5		74.4		71.3		79.1		82		69.5		71.7		71.8		73.4		74.4		76
13C-Aldrin (% Recovery)	70		68.5		77.6		74.1		82.1		84.6		68.6		71.8		75.6		81		77.9		79.8
	80		78.3		86.2		86.9		92.5		93.7		82.7		92.5		89.2		92.6		88.7		90.9
13C-Chlordane, gamma (trans) (% Recovery)																							
13C-Nonachlor, trans- (% Recovery)	77		76.5		83.6		83.9		90.9		95.2		76.8		91.1		87.1		90.7		87.5		90.3
13C-4,4'-DDE (% Recovery)	87		84.1		90.5		90.7		97.2		103		81.9		97.6		90.7		94		92.2		94.5
13C-4,4'-DDT (% Recovery)	87		84.2		91.1		88.2		96.7		101		85.5		87.4		82.6		86.5		86.7		90.5
13C-4,4'-DDD (ng/sample)	98		99.1		103.2		91.3		97.7		90.5		87.5		90.3		93.8		86.6		88.1		89.5
D4-alpha-Endosulphan (% Recovery) DB5	10)2	98.3		104		144	V	145	V	146		119		101		102		111		108		106
D4-beta-Endosulphan (% Recovery) DB5	97	.8	92.3		101		98.2		102		99		97.6		89.6		88.4		105		99.2		93.9
D4-alpha-Endosulphan (% Recovery) DB17	98		94.1		101		90.3		91.8		94.3		105		95.4		93.1		92.9		91.8		87.7
D4-beta-Endosulphan (% Recovery) DB17	97		90.2		103		86.7		90		89.3		100		90.7		90.3		83.8		82.6		74

Gratwick Riverside Park (GRP) Little Niagara River (LNR)																								
Niagara-on-the-Lake (NOTL)																								
CLIENT ID	Dottit	Flume	Detti	t Flume	Detti	Flume	Fishers	on'o Dork	Fisherm	an's Park	Fisher	an's Park	Fisherm	an's Park	Fisher	nan's Park	Fisher	nonio Dork		RP		RP	0	RP
								nan's Park										nan's Park		Marina)-1		Marina)-2		Marina)-3
Axys ID WORKGROUP	(0	/S)-1	(0	I/S)-2	(U	/S)-3	(U	/S)-1	(D,	/S)-2	(U	/S)-3	(U	/S)-1	((J/S)-2	(L	J/S)-3	(0/5 01	wanna)- i	(0/5 01	wanna)-2	(0/5 01	wanna)-3
Sample Size	1 2277	6-14 Li2	1 227	76-15 L	1 227	76-16 L	1 227	76-17 L	1 227	76-18 L	1 227	76-19 i	1 227	76-20 i	1.22	776-21 i	1 227	776-22 i	1 227	76-23 i	1 227	76-24 i	1 227	76-25 i
UNITS		52369		52369		52369		52369		52369		52371		52371		352371		52371		52371		52371		52371
00013		ample		ample		ample		ample		mple		ample		imple		ample		ample		mple		ample		ample
		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample
1,3-Dichlorobenzene	NQ	ng/sample	J	2.13	NQ	ng/sample	NQ	ng/sample	nag	6.65	nag	8.22	nag	4.69	nag	4.35	nag	4.47	nag i	3.32	nag	6.81	nag	4.07
1.4-Dichlorobenzene	NQ		J	17.7	NQ		NQ			51		37.3		20		19.4		18		14.3		21.1		14.6
1,2-Dichlorobenzene	NQ			3.15	NQ		NQ			6.11		3.69	J	2.6		3.19	J	2.63	J	2.03	ND		J	2.02
1,3,5-Trichlorobenzene	J	0.68	ND	0.10	ND			7.57		6.9		6.54	J	4.22		4.22		4.28	J	2.48	J	2.3	J	2.48
1,2,4-Trichlorobenzene		5.11		3.79		4.39		39.6		40.3		39.9		7.76		7.52		6.89		4.23		4.66		4.52
1.2.3-Trichlorobenzene	NDR J	1.85	NDR J	2	NDR J	1.48		15.2		12.2		13.6	J	1.23	J	1.19	J	1.3	ND		NDR J	2.54	ND	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	J	2.79	J	2.57	J	2.37		16.9		18.1		18.9	-	7.42	-	7.58		8.05	J	4.12	J	4.02	J	4.71
1,2,3,4-Tetrachlorobenzene	J	1.28	J	1.02	J	0.88		21.8		21.5		22.1		3.14	J	2.94	J	2.92	J	2.29	J	2.26	J	2.49
Hexachlorobutadiene	NDR J	0.358	ND		ND		ND		J	0.4	NDR J	0.493	ND		J	0.263	J	0.278	NDR J	0.355	NDR J	0.798	J	0.273
Pentachlorobenzene		5.46		5.2		5.27		40.9	-	39.1		42.1		13.4		14.3	-	14.2		10.2		10.4	-	11.7
Hexachlorobenzene		4.45		4.66		4.58		44.3		42.1		47.6		24.7		25.1		24.8		20.8		15.6		17.7
HCH, alpha	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, beta	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, gamma	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Heptachlor	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Aldrin	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Chlordane, gamma (trans)	J	2.07	J	1.87	J	1.99	J	1.97	J	1.96	J	2.49	J	2.41	J	2.36	J	2.39	J	2.14	J	2.3	J	2.35
Chlordane, alpha (cis)	J	3.09	J	2.93	J	2.66	J	3.07	J	3	J	3.5	J	3.5	J	3.41	J	3.6	J	2.75	J	3.06	J	3.07
Octachlorostyrene	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Chlordane, oxy-	NDR	20.3	NDR	21.6	NDR	26.4	NDR	28.1	NDR	22.8	NDR	17.2	ND		NDR	16.9	NDR	12.1	ND		ND		NDR	20.4
Nonachlor, trans-	J	1.61	J	1.69	J	1.62	J	1.8	J	1.84	J	1.97	J	1.92	J	1.9	J	1.81	J	1.54	J	1.63	J	1.8
Nonachlor, cis-	J	0.596	J	0.53	J	0.501	J	0.482	J	0.502	J	0.548	J	0.623	J	0.618	J	0.603	J	0.468	J	0.438	J	0.532
Mirex	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
2,4'-DDE (o,p' DDE)	NDR J	1.29	J	0.773	NDR J	1.35	ND		ND		NDR J	1.08	NDR J	1.47	ND		ND		ND		NDR J	2.04	NDR J	1.46
4,4'-DDE (p,p' DDE)		5.35		4.74		4.72		6.14		6.68		7.39		6.39		6.93		6.4		5.29		5.54		6.37
2,4'-DDD (o,p' DDD)	ND		J	1.54	NDR J	1.31	ND		J	1.66	NDR J	1.9	ND		ND		ND		ND		ND		ND	
4,4'-DDD (p,p' DDD)		5.27		4.72		4.18		5.84		5.39		6.59		5.52		6.97		5.63		5.61		5.99		5.34
2,4'-DDT (o,p' DDT)	NDR	4.62	NDR J	2.95	NDR J	3.11	NDR J	3.09	NDR J	2.03	NDR	3.77	ND		NDR	5.28	NDR	3.62	NDR	5.76	NDR	6.43	ND	
4,4'-DDT (p,p' DDT)	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, delta	J	0.339	J	0.565	J	0.767	JQ	0.222	JQ	0.186	flag	ng/sample	J	0.5	ND		ND		ND		ND		ND	
Heptachlor Epoxide	Q	3.35	Q	3.21	Q	3.57	J	2.26	JQ	1.03	ND		Q	3.04	Q	3.38	Q	3.05		4.65		4.63		4.46
Dieldrin		6.22		6.88		7.52		6.61		6.23		2.53		6.59		6.64		7.05		8.02		8.24		7.28
Endrin	ND		JQ	0.122	ND		ND		ND			6.32	ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Ketone	JQ	0.913	JQ	1.25	J	1.53	JQ	0.098	ND		ND		ND		ND		JQ	0.232	JQ	0.239	ND		JQ	0.299
Methoxychlor	ND		ND		ND			2.88	ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Endosulphan	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
beta-Endosulphan	ND		JQ	0.058	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endosulphan Sulphate	ND		JQ	0.133	ND		JQ	0.352	ND		ND		ND		ND		ND		ND		ND		ND	
13C-1,4-Dichlorobenzene (% Recovery)	NQ			6.55	NQ		NQ			9.46		11.9		6.44		6.08		15.3		9.57		3.03		12.3
13C-1,2,3-Trichlorobenzene (% Recovery)		13.3		18.9		15.2		9.83		31.9		28.6		17.9		19.3		40.4		23.7		11.6		32.7
13C-1,2,3,4-Tetrachlorobenzene (% Recovery)		25.8		26.4		25.7		17.5		38.4		46.2		28		32.2		55.1		35.3		24.7		43.7
13C-Pentachlorobenzene (% Recovery)		39.5		41.2		41		36.3		51.8		64.8		43		46.1		65		50.3		42.1		55.7
13C-Hexachlorobenzene (% Recovery)		65.8		69.8		70.2		68		75.9		85.5		64		62.8		83.3		74.8		66.2		76
13C-beta-HCH (% Recovery)		74.7		75.2		78.2		76.1		84.3		62.8		50.6		48.4		64.9		71.7		59.7		69.9
13C-gamma-HCH (% Recovery)		72.6		75.5		77.3		79.8		82.8		83.6		61.4		60.6		80.9		80.3		65		82.3
13C-Heptachlor (% Recovery)		66.1		76.4		75.1		65.3		83.3		92.8		68.5		66.6		96		74.6		68.3		79.2
13C-Aldrin (% Recovery)		68.9		71.4		75.9		70.6		73.4		61.8		64		56.6		84.1		66		61.3		67.1
13C-Chlordane, gamma (trans) (% Recovery)		89.5		90		90.3		91.3		96.1		97.1		80.6		74.7		99.1		88.8		83.4		90
13C-Nonachlor, trans- (% Recovery)		86.8		87.5		86		87.9		91.8		98.8		83		75.8		102		90.7		85.9		88.8
13C-4,4'-DDE (% Recovery)		89.6		90.6		90.5		94.2		97.2		95.6		79		71.8		94.1		86		84.1		86.7
13C-4,4'-DDT (% Recovery)		94.6		84.1		87.3		79.9		90.8		78.6		71.9		66.5		102		82.9	++	70		77.5
13C-4,4'-DDD (ng/sample)		91.7		96.1		98.5		104.1		98.7	ND	96.0		90.1		84.1		76.3		95.4		100.1		103.2
D4-alpha-Endosulphan (% Recovery) DB5		106		113		102		108		97.4	ND			82.2		86.1		113		116		105		119
D4-beta-Endosulphan (% Recovery) DB5		86.7		85.6		83.1		95.1		81		95.8		72.6		76.2		91.3		96.6		85.6		98.9
D4-alpha-Endosulphan (% Recovery) DB17		97.5		99.8		92.6		96.2		91.9		86.6		75.8		79.2		100		103		95.8		106

Appendix F2: SPMD data for US de	pioyment	s - conce	entration	is represe	nt ng/SF	PMD																							
Gratwick Riverside Park (GRP)																													
Little Niagara River (LNR)																													
Niagara-on-the-Lake (NOTL)																													
CLIENT ID	G	RP	Ģ	GRP	Ģ	GRP		GRP	(GRP		GRP	GRP		GRP		GRP	G	RP	G	RP	G	RP	102	nd St	102	nd St	1	02nd St
Axys ID	(in Ma			farina)-2		farina)-3		of Dump)-1		f Dump)-2		of Dump)-3		-1 (Mid	dle of Park)-2	(Midd			/S)-1		/S)-2		/S)-3		/S)-1		/S)-2		(U/S)-3
WORKGROUP	((1011110) L	(ianna) o	(0/0	or bramp) r	(0/0 0	r Bamp) E	(0,0,	or Bamp) o	(inidale of Fair)	. (alo or r any 2	(imadi		(2	,0, .	(2,	0/2	(5,	0)0	(0,	0) !	(8,	(0) 2		,0,0,0
Sample Size	L2377	6-261	1 237	76-27 L	1 237	76-28 L	123	776-29 i	1 23	776-30 i	123	776-31 i	L23776-32 i	1.	23776-33 i	12	3776-34 i	1 2 3 7	76-35 i	1 237	76-36 i	1 237	76-37	1 237	76-38	1 23	776-39	P	23776-40
UNITS	WG5			52371		52371		G52371		52371		G52371	WG52371		VG52371		G52371		52371		52371		52400		52400		52400		VG52400
	1sa			ample		ample		sample		ample		ample	1sample		1sample		sample		ample		mple		mple		mple		ample		1 sample
		g/sample	flag	ng/sample	flag	ng/sample		ng/sample		ng/sample		ng/sample	flag ng/sam		ag ng/sample		ng/sample		ng/sample	flag	ng/sample		ng/sample		ng/sample		ng/sample		g ng/sample
1,3-Dichlorobenzene		34.1		32.5		23		7.83		4.55		6.69	4.84		4.8		8.05		4.53		5.28	NQ			5.91		4.99		4.18
1.4-Dichlorobenzene		93.8		115		77.4		25		22.4		31.4	22.8		27.5		28.2		28.2		23.4	NQ			20		20.2		18
1,2-Dichlorobenzene		10.2		15.4		10.1	J	2.58		3.2		4.92	3.05		4.27		5.41		3.97		3.94	NQ		J	2.16	J	2.29		J 2.66
1,3,5-Trichlorobenzene		13.6		11.6		12	J	2.66	J	2.61	L	2.81	J 2.45		J 2.37	J		J	2.26	J	1.97	J	2.2	J	2.29	J	2.52		J 2.29
1,2,4-Trichlorobenzene		31.9		29.2		27.4		7.18		5.38		5.77	14.7		13.1		13.8		5.21		4.6		4.64		7.03		6.12		6.14
1,2,3-Trichlorobenzene		4.76	NDR	8.67		5.21	J	2.85	J	1	J	1.37	J 2.86		3.26	J		ND		J	1.2	J	1.09	NDR J	0.975	J	0.961	NDR	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		17.3		17		17.4	J	6.05	J	4.98	J	4.98	J 4.71		J 4.99	J	4.78	J	4.01	J	3.83	J	3.43		18.7		13.9		14.4
1,2,3,4-Tetrachlorobenzene		13.2		13.4		13.2		6.14	J	2.45	J	2.49	3.06		3.27		3.18	J	2.15	J	2.15	J	2.14		3.15		3.08		3.23
Hexachlorobutadiene	NDR J	0.566	ND		NDR J	0.518	ND		ND		ND		NDR J 0.71		J 0.383	J		ND		ND		NDR J	0.249	NDR J	0.295	J	0.295	NDR	
Pentachlorobenzene		16.9		17.6		18.4		13.8		11.3		11.6	9.83		9.76		10.3		10.3		10.8		10.2		10.8		10.7		10.3
Hexachlorobenzene		17.1		17.7		19.2		20.1		17.1		17.5	16.8		16.2		14.9		14.5		16.5		15.4		18.8		18.2		18
HCH, alpha	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		NDR J	1.95	ND		N	
HCH, beta	ND		ND		ND		ND		ND		ND		ND		ID	ND		ND		ND		ND		ND		ND		N	
HCH, gamma	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		NDR J	5.1	N	3
Heptachlor	ND		ND		ND		ND		ND		ND		ND	N	ID	ND		ND		ND		NDR J	0.57	NDR J	1.01	ND		NE	J
Aldrin	ND		ND		ND		ND		ND		ND		ND	N	ID	ND		ND		ND		NDR J	0.483	ND		ND		N	٥
Chlordane, gamma (trans)	J	4.76	J	4.6	J	4.77	J	2.18	J	2.06	J	2	J 2.26		J 2.33	J	2.52	J	2.48	J	2.43	J	2.26	J	2.43	J	2.25		J 2.4
Chlordane, alpha (cis)	J	5.76	J	5.88		6.34	J	3.21	J	2.99	J	3.17	J 3.51		J 3.3	J	3.19	J	3.4	J	3.85	J	3.35	J	3.57	J	3.42		J 3.39
Octachlorostyrene	NDR J	0.568	J	0.558	J	0.496	ND		ND		ND		ND	N	ID	ND		ND		ND		ND		ND		ND		N	٥
Chlordane, oxy-	NDR	29.7	NDR	23.9	ND		ND		NDR	14	NDR	24.5	ND	N	ID	NDR	21.9	ND		NDR	17.8	NDR	16.3	NDR	19.8	NDR	15.2	NDF	R 21.8
Nonachlor, trans-	J	1.8	J	1.8	J	2.14	J	1.67	J	1.54	J	1.55	J 1.88		J 1.74	J	1.79	J	2.1	J	2.08	J	2.05	J	2.06	J	1.99		J 1.9
Nonachlor, cis-	J	1.16	J	1.2	J	1.29	J	0.49	J	0.56	J	0.519	J 0.568	1	J 0.501	J	0.517	J	0.652	J	0.887	NDR J	0.715	J	0.679	J	0.615	NDR -	J 0.683
Mirex	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		NDR J	0.924	ND		ND		NDR -	
2,4'-DDE (o,p' DDE)	NDR	11.3	NDR	8.5	ND		ND		NDR J	1.51	ND		ND	NDR	J 1.94	ND		NDR J	1.16	NDR J	1.7	NDR J	1.56	NDR J	1.13	NDR J	1.02	NDR -	J 1.03
4,4'-DDE (p,p' DDE)		18.2		19.1		19		5.82		5.5		5.75	6.39		5.97		5.96		6.02		7.63		6.95		5.75		6.05		5.66
2,4'-DDD (o,p' DDD)	ND		ND		ND		ND		J	1.99	J	2.23	ND		3.27	ND		ND		J	1.98	J	1.42	J	1.82	J	1.99		J 1.61
4,4'-DDD (p,p' DDD)		19.6	NDR	19.8		19.8		7.09		7.59		7.17	4.81		5.34		5.8		6.87		8.01		6.42		6.46		5.99		5.56
2,4'-DDT (o,p' DDT)	NDR	26.6	NDR	17	NDR	14.5	NDR	5.38	ND		NDR	5.57	NDR 3.82	N	ID	ND		NDR	4.49	NDR	4.36	NDR	3.3	NDR J	2.64	NDR J	2.07	NDR -	J 2.42
4,4'-DDT (p,p' DDT)	ND		ND		ND		ND		ND		ND		ND		ID	ND		ND		ND		J	1.12	J	1.07	ND		NDR -	
HCH, delta	ND		ND		ND		ND		ND		ND		ND		ID	ND		ND		ND		ND		ND		ND			J 0.859
Heptachlor Epoxide	J	2.11	ND		JQ			4.16		4.26		4.13	Q 4.72		Q 4.41	Q		Q	4.17	Q	4.45		4.58	Q	3.42	Q	3.78	0	
Dieldrin		4.62		4.94		5.14		7.11		7.21		6.83	6.93		7.21		6.86		8.16		9.54		8.25		7.66		7.07		7.41
Endrin	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		ND		NE	
Endrin Aldehyde	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		ND		NE	
Endrin Ketone	ND		ND		ND		JQ	0.39	ND		ND		ND		Q 1.65	JQ		ND		ND		ND		ND		JQ	0.226	JC	
Methoxychlor	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		ND		NE	
alpha-Endosulphan	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		ND		NE	
beta-Endosulphan	ND		ND		ND		ND		ND		ND		ND	N		ND		ND		ND		ND		ND		ND		NE	
Endosulphan Sulphate	ND	2.00	ND	2.04	ND	1 5 4	ND	2.07	ND	7.00	ND	3.82	ND 0.57	N		ND		ND	6.24	ND	4.05	ND NQ		ND	6 00	ND	12.4	NE	
13C-1,4-Dichlorobenzene (% Recovery)	0	3.98 13.2		2.01 8.43		4.51 15.7		3.67 14		7.32 19		3.82	9.57 25.3		12.1 30.4		3.88		6.24 15.2		4.65 14.7	NQ	13.8		6.29 14		13.1 24.8		10.8
13C-1,2,3-Trichlorobenzene (% Recovery 13C-1,2,3,4-Tetrachlorobenzene (% Recovery		26		25.4		28.2		29.8		35.6		25.3	25.3		42.2		30.9		23.5		32.2		27.2		26.1		24.8		30.6
13C-1,2,3,4-1 etrachlorobenzene (% Reco 13C-Pentachlorobenzene (% Recovery)	svery)	48.2		25.4 52		28.2 48.3		29.8 49		35.6 56.3		25.3 46.2	35.5		42.2		30.9 45.6		23.5		32.2 53.1		41.3		37.1		35.7 44.9		30.6
13C-Pentachlorobenzene (% Recovery)		46.2 79.4		52 80.7		78.4		49 75		80.6		46.2	71.3		63.6		45.6		50.5		81.2		61.1		57		44.9 65		65.1
13C-hexachioroberizene (% Recovery) 13C-beta-HCH (% Recovery)		79.4 88.4		61.5		81.6		75		73.1		73.6	71.3		41.8		63.3		34.9		81.6		68.2		67.8		77.3		64.6
13C-gamma-HCH (% Recovery)		90.5		76.7		85.3		74.6		90.5		73.6	71.8		58.2		73.3		44.5		86.8		77.9		77.8		88.7		82.1
13C-Heptachlor (% Recovery)		90.5 58.1		61.8		79.3		92.5		90.5		82.3	82.5		70.5		73.3		44.5 56.4		87.9		75		74.4		80.4		70.3
13C-Aldrin (% Recovery)		59.6		56.7		67.4		58		65.2		61.7	71.6		70.8		74.0		57		75.1		69.6		46.1		67.4		69.8
13C-Chlordane, gamma (trans) (% Recov	(erv)	96.9		91.2		98.1		96.9		102		96.5	88.8		72.3		82.6		62.7		100		92.3		87.6		97.5		94.1
13C-Nonachlor, trans- (% Recovery)		95.3		90.5		99.6		97		102		97.6	89		74.6		84.1		66.7		100		91.2		84.8		93.8		90.8
13C-4,4'-DDE (% Recovery)		97.9		92.3		98.2		93.6		99.1		93.6	84.9		68.3		80.6		63.3		95.7		94.4		86.4		94.9		94
13C-4,4'-DDT (% Recovery)		89.2		78.7		100		89.2		85.5		82	84.2		66.1		77.8		58.4		95.9		110		101		116		102
13C-4,4'-DDD (ng/sample)		78.7		77.9		81.2		97.7		100.1		102.4	91.7		89.1		92.4		84.0		91.3		79.3		86.1		80.4		80.9
D4-alpha-Endosulphan (% Recovery) DB	5	117		89.2		76		110		100.1		102.4	92.3		80.5		87.6		80.7		105		112		63.9		105		103
D4-beta-Endosulphan (% Recovery) DB		103		84.2		68.1		94.9		91.2		94.6	81.3		64.2		78		64.8		86.7		103		58.5		103		90.3
D4-alpha-Endosulphan (% Recovery) DB		110		89.2		74.4		100		95.8		98.7	81.3		78.4		80.6		78.1		96		99.3		53.2		93.4		87.8
D4-beta-Endosulphan (% Recovery) DB		97.5		83.1		66.8		91.9		86.8		90.1	78.1		69.5		78.8		69.5		89.2		98.2		55.3		104		89.3

Appendix F2: SPMD data for	us deb	oyments -	concen	u auons re	present r	iy/SPIVID																		
Gratwick Riverside Park (GRP)																								
ittle Niagara River (LNR)																								
liagara-on-the-Lake (NOTL)																								
											_													
CLIENT_ID		NR		LNR		NR		iga Creek		uga Creek		uga Creek	(D/0.0	LNR	(D/0.0	LNR	(D/0.0	LNR		cidental		ccidental	U/S Oc	
Axys ID	(Near 1	02nd St)-1	(Near 1	102nd St)-2	(Near 1	02nd St)-3	(Within	the creek)-1	(Within	the creek)-2	(Withir	the creek)-3	(D/S C	ayuga Creek)-1	(D/S Ca	ayuga Creek)-2	(D/S C	ayuga Creek)-3	Fac	ility-1	Fac	cility-2	Faci	ility-3
WORKGROUP																								
Sample Size		76-41		3776-42		776-43		776-44 L		776-45 L		3776-46 L		23776-47		23776-48		_23776-49		76-50		76-51		76-52
UNITS		52400		652400		52400		352400		G52400		/G52400		VG52400		/G52400		WG52400		52400		52400		52400
		ample		ample		ample		sample		sample		sample		1sample		Isample		1sample		mple		Imple		mple
		ng/sample	flag	ng/sample	flag	ng/sample		ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample		ng/sample	flag r	ng/sampl
1,3-Dichlorobenzene	NQ			21.9		15	NQ			9.01		5.82	NQ		NQ			6.41		5.78	NDR	4.49		5.23
1,4-Dichlorobenzene	NQ			41.4		38.9	NQ			30.7		27.6	NQ		NQ			24.1		17.7		18.9		19.2
1,2-Dichlorobenzene	NQ			3.39	J	2.63	NQ			6.58		4.71	NQ		NQ		J	1.7	J	1.68	ND		J	2.44
1,3,5-Trichlorobenzene		14.6		14.7		14.6		14.1		16.2		15.7		5.93		4.21		5.13	J	3	J	2.92		3.12
1,2,4-Trichlorobenzene		47		47.2		46.9		33.2		35.8		35.3		6.77		6.76		8.71		4.04		3.61		3.86
1,2,3-Trichlorobenzene		12.6		11.4		11.7		4.91		3.6		3.62	J	2.23	J	1.84	J	2.38	ND		J	0.802	NDR J	0.926
1,2,4,5-/1,2,3,5-Tetrachlorobenze	ene	70.8		71.2		72.4		51		52.7		55.8		17.5		17.2		18.7		7.68		7.29		7.71
1,2,3,4-Tetrachlorobenzene		247	NDS	230		225		80.5	NIP P	76.9		80.9		29.5	NES :	27.7		27.6	-	8.02		8.38	· ·	8.51
Hexachlorobutadiene	NDR J	0.333	NDR J	0.381	J	0.432	J	1.33	NDR J	2.02	J	1.9	NDR J	0.694	NDR J	0.281	J	0.34	J	0.545	NDR J	0.479	J	0.416
Pentachlorobenzene		260		222		213		69		67.9		70.9		38.1		37.1		36.8		20.5		20.1		20.8
Hexachlorobenzene		61.4	NDS	56		54.7		23.7		22.8		22.1		19.9		19.8		20.1		19.4		18.5		20.1
HCH, alpha	NDR J	2.24	NDR J	2.05	J	2.64		335		333	NDC	344	NIDD 1	13	NDD	11.5	NDE	14.7		9.77	NDD /	9.23		8.41
HCH, beta	ND		ND		ND			82.5		85	NDR	87.1	NDR J	4.9	NDR J	3.61	NDR	6.12	ND		NDR J	2.14	ND	
HCH, gamma	ND		NDR J	2.23	NDR J	2.68		18.2		18.8	NDR	16.3	ND		NDR J	2.5	ND		ND		ND		NDR J	1.98
Heptachlor	ND	0.57	ND	0.001	ND		ND		ND		ND		ND		NDR J	0.911	ND		ND		ND	0 70	NDR J	0.698
Aldrin	NDR J	0.57	NDR J	0.604	ND	0.1	ND	F F7	ND	E 07	ND	0.01	ND	<u> </u>	NDR J	0.83	ND	4.70	ND	0.47	NDR J	0.73	ND	0.40
Chlordane, gamma (trans)	J	2.31	J	2.22	J	2.1	J	5.57		5.97		6.01	J	3.7	J	4.36	J	4.78	J	3.17	J	3.17	J	3.13
Chlordane, alpha (cis)	J	3.65	J	3.59	J	3.2		10.1		10.2		9.97		5.96		6.81		7.1	J	4.96	J	4.8	J	4.92
Octachlorostyrene	ND		ND		ND		J	0.378	J	0.311	NDR J	0.219	ND		NDR J	0.231	J	0.248	J	0.366	J	0.446	J	0.482
Chlordane, oxy-	NDR	16.5	NDR	16.8	NDR	17.7	NDR	20.2	NDR	23.9	ND		NDR	18.5	NDR	12.3	NDR	15	NDR	18.3	NDR	16.6	NDR	13.9
Nonachlor, trans-	J	1.97	J	1.81	J	1.74	J	4.03	J	4.1	J	3.84	J	3.72	J	4.04	J	4.22	J	2.45	J	2.48	J	2.32
Nonachlor, cis-	NDR J	0.583	J	0.651	J	0.539	J	1.21	J	1.26	J	1.19	J	1.25	J	1.45	J	1.27	J	0.837	J	0.8	J	0.835
Mirex	ND		ND		NDR J	0.676	NDR	7.87	NDR	6.29	NDR	5.65		3.71		4.01		4.19	NDR J	1.81	J	1.68	J	1.77
2,4'-DDE (o,p' DDE)	NDR J	1.22	NDR J	1.36	NDR J	1	NDR J	2.34	NDR J	2.48	NDR J	2.37	NDR J		NDR J	2.41	NDR J	2.36	NDR J	2.29	NDR J	2.21	NDR J	2.25
4,4'-DDE (p,p' DDE)		5.95		6.34		6.43		18.8		18.7		17.1		10.6		10.7		11.6		8.31		8.3		8.71
2,4'-DDD (o,p' DDD)		7.16		6.32		5.75		5.98		5.9		5.39		4.4		4.64		4.48		3.22		3.5	J	2.93
4,4'-DDD (p,p' DDD)		27.1		24.6		22.5	NDD	26.9	NDD	29.1	NDD	26.7		17.3	NDD	17.2	NDD	16.7	NDD	10.4	NDD	10.7	NDD	9.43
2,4'-DDT (o,p' DDT)	NDR J	2.62	NDR J	2.61	NDR J	2.05	NDR	4.51	NDR	5.06	NDR	5.45	NDR	5.81	NDR	6.58	NDR	5.8	NDR	4.89	NDR	5.48	NDR	4.74
4,4'-DDT (p,p' DDT)	J	1.33	J	1.4	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, delta	J	1.12	J	1.01	J	0.954		33.7		39.3		47.7	J	2.01	J	2.3	J	2.61	J	0.879	J	1.03	J	0.849
Heptachlor Epoxide	Q	3.6	Q	3.02	Q	2.94	Q	2.97		3.84		4.08		3.57		3.12	Q	2.99		4.57		4.22		4.51
Dieldrin		7		6.42	Q	6.12		6.99		7.74		6.39		6.47		6.04		5.99		7.53		7.85		7.56
Endrin	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	ND		ND		ND		ND	0.404	ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Ketone	ND		ND		ND		JQ	0.431	ND		ND		ND		ND		ND		ND		ND		ND	
Methoxychlor	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Endosulphan	ND ND		ND ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
beta-Endosulphan Endosulphan Sulphate	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
Endosulphan Sulphate 13C-1,4-Dichlorobenzene (% Red			ND	8.14	ND	7.26	NQ		ND	6.05	ND	10.6	ND		ND		ND	9.86	NDR	15.2	NU	6.98	ND	6.71
		0.24					INQ	11.6				24.7	NQ	6.54	INQ	12.2		24.7	NUR	36.3		18.1		
13C-1,2,3-Trichlorobenzene (% F		9.34		16.7		13.2		11.6		14.9 22.3		32.7				13.3								13.4
13C-1,2,3,4-Tetrachlorobenzene 13C-Pentachlorobenzene (% Rec		23.9 47		27.3 46.8		19.3 31.5		26.1 50.5		22.3 39.1		48.3		13.5 33.9		32.4 51.6		37.3 47.1		49.5 56.1		33.9 48.8		23.2 38.2
13C-Pentachlorobenzene (% Rec 13C-Hexachlorobenzene (% Rec		47 65.2		46.8		54.4		50.5 78.1		67.6		48.3		63.6		69.1		63.8		69.3		48.8		38.2 58.1
13C-Hexachiorobenzene (% Rec 13C-beta-HCH (% Recovery)	overy)	67.2		81.9		54.4 68.6		76.8		65.7		75.5		66.5		64.2		65.8		65.1		72		56.8
		84.4		90.9		72.8		84.1		69.2		75.5		69.6		64.Z 82.7		76.3		83.5		84.5		72.3
13C-gamma-HCH (% Recovery) 13C-Heptachlor (% Recovery)		63.8		90.9 70.2		63.7		76.6		59.6		75.9 57.1		47.2		53.5		54.3		83.5 57.4		84.5 55.8		65.3
13C-Aldrin (% Recovery)		73.9		70.2		64.3		59.6		53.5		36.5		66.8		53.5 69.6		54.3		57.4 75.1		73.2		64.5
13C-Aldrin (% Recovery) 13C-Chlordane, gamma (trans) (%	A Recov	95.2		98.8		93.7		98.9		53.5 90.8		36.5		87.8		88.2		87.2		91.8		87.2		64.5 86.2
13C-Uniordane, gamma (trans) (% 13C-Nonachlor, trans- (% Recove		95.2 91.2		98.8		93.7		98.9		90.8		85.7		87.8		85.5		87.2		91.8 88.1		87.2		86.2
	siy)	91.2		95		92.4		95 99.7		86.4 95		80.7 90.1		91.7		85.5 91.3		83.7		92.5		82.4		83.9
13C-4,4'-DDE (% Recovery)		96.9 98.4				96.4 110		99.7		95 90.7		90.1 92.2		91.7 77.4		91.3 82.7		88.5		92.5 96.1		87.4 87.7		86.6 102
13C-4,4'-DDT (% Recovery)				106																				
13C-4,4'-DDD (ng/sample)		93.7		89.8		79.0		93.3		95.1		95.5		102.6		86.6		91.6		84.5		87.9		82.5
D4-alpha-Endosulphan (% Recov		96.7		90.4		96		106		117		104		89.8		92.7		111		106		111		102
D4-beta-Endosulphan (% Recove		98.6		88.6		101		102		96.3		91.9		87.8		95.5		103		102		104		99.8
D4-alpha-Endosulphan (% Recov		80.7		77.5		80.9		87.1		99		86.7		76		75		95.4		87.4		84.3		75.3
D4-beta-Endosulphan (% Recove	ery) DB17	94.7		85.2		98		95.3		92.5		90.6		83.4		85.5		98.8		98.8		85		113

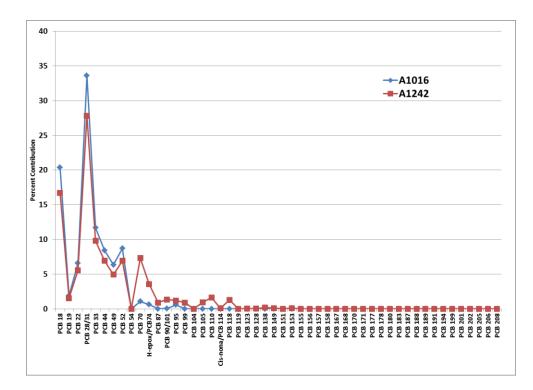
Appendix F2: SPMD data for US Gratwick Riverside Park (GRP)																								
Little Niagara River (LNR)																								
Niagara-on-the-Lake (NOTL)																								
CLIENT_ID	D/S Sto	rm Sewer	D/S Storr	n Sewer	D/S Sto	rm Sewer	D/S Stor	m Sewer	D/S Sto	orm Sewer	D/S Sto	rm Sewer	At Sto	rm Sewer	At Sto	rm Sewer	At Sto	rm Sewer	Occiden	tal Sewer	Occidenta	al Sewer	Occider	ntal Sewer
Axys ID		A-1	A-			4-3		-1		B-2		3-3		C-1		C-2		C-3)3-1	003			03-3
WORKGROUP																								
Sample Size	L23	776-53	L2377	76-54	L237	76-55	L237	76-56	L23	776-57	L237	76-58	L23	776-59	L23	776-60	L23	776-61	L237	76-62	L2377	76-63	L23	776-64
UNITS	WG	52400	WG5	2400	WG	52449	WG5	52449	WO	52449	WG	52449	WG	52449	WG	52449	WG	52449	WG5	52449	WG5	2449	WG	652449
	1s	ample	1san	nple	1sa	mple	1sa	mple	1s	ample	1sa	mple	1s	ample	1s	ample	1s	ample	1sa	mple	1san	nple	1sa	ample
	flag	ng/sample	flag n	g/sample		ng/sample	flag r	ng/sample	flag	ng/sample	flag r	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
1,3-Dichlorobenzene		4.65		7.6	NQ		ND			3.1		5.62		6.69	ND			4.65		197		178		166
1,4-Dichlorobenzene		19.5		15.6	NQ			16.4		16.2		20.5		18.2		14.2		16.6		113		119		107
1,2-Dichlorobenzene	J	2.35	J	2.16	NQ		ND		J	2.76	ND		J	2.54	ND		J	2.24		13.3		13.3		12.4
1,3,5-Trichlorobenzene	J	2.86	J	2.53	ND			3.81		3.97		3.65		6.25		5.05		5.6	Т	68.2	Т	68.7	Т	58.5
1,2,4-Trichlorobenzene		4.86		4.76		3.54		5.17		4.52		4.95		8.21		6.67		6.85	T	836	T	838	T	727
1,2,3-Trichlorobenzene	J	1.36	J	1.22	NDR J	1.88	J	1.79	NDR J	1.85	J	1.32	NDR J	1.99	ND		J	1.62	Т	139	Т	142	Т	125
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		10.8		9.88		9.14		13		12.5		12.2		25		22.2		26.4		326		312		292
1,2,3,4-Tetrachlorobenzene		26.9	-	24.6		23.1		26.8		26.9		25.7		34.2		32.4		34.9	P	1000	-	1700		1080
Hexachlorobutadiene	J	2.44 44	J	1.56	NDR J	2.19	NDR J	2.84	J	2.25	J	1.86		5.13		3.26		3.8	D D T	1900	D	1730	т	1190
Pentachlorobenzene				48		34.9		55		56.1		49.2		73		75.8		79.3	וט		DT	926	1	748
Hexachlorobenzene		19.7	NDD	19.5		18.4		21.8		23.2		20.2		97.7	J	98.3		111		442		459		402
HCH, alpha HCH, beta	ND	7.96	NDR NDR J	5.89 1.9	J NDR J	5.2 2.4	J ND	4.61	ND	5.71	J ND	4.62	J	4.55 3.52	J	4.62 3.29	J	4.37 4.57		8.66 7.73	NDR	7.85 6.65	. I	6.93 4.98
HCH, gamma	ND		NDR J ND	1.9	NDR J ND	2.4	ND		ND		ND		ND	3.52	ND	3.29	NDR J	2.35	J	2.99	J	2.03	ND	4.90
Heptachlor	ND		NDR J	0.809	ND		ND		ND		ND		ND		ND		NDR J ND	2.30	J ND	2.99	NDR J	1.36	ND	
Aldrin	ND		NDR J	0.53	ND		ND		ND		ND		ND		ND		NDR J	0.443	ND		NDR J	0.716	ND	
Chlordane, gamma (trans)	J	2.71	INDIX J	2.46	J	2.52	J	2.28	J	2.46	J	2.25	J	1.77	J	1.64	INDIX J	1.75	J	2.3	J	2.27	J	2.52
Chlordane, alpha (cis)	J.	4.2	J	3.69	J	3.7	J	3.18	J	3.74	J	3.44	J.	2.66	J	2.14		2.5	J	3.71	J	3.73	J	3.86
Octachlorostyrene	J	0.841	J	0.664	NDR J	0.503	J	0.709	J	0.722	J	0.347		5.86		5.58	0	6.47		21.6	Ū	21.9		18
Chlordane, oxy-	NDR	19.5	NDR	14.9	NDR	9.87	ND	0.100	ND	0.722	ND	0.0 11	NDR	14.2	NDR	12.1	NDR	9.66	ND	21.0	ND	2110	NDR	7.99
Nonachlor, trans-	J	2.25	J	2.02	J	1.97	J	1.8	J	2.23	J	1.74	J	1.59	J	1.46	J	1.46	J	2.12	J	2.17	J	2.19
Nonachlor, cis-	J	0.715	J	0.778	J	0.627	J	0.706	J	0.854	J	0.648	J	0.534	J	0.483	J	0.635	J	0.736	J	0.632	J	0.626
Mirex	NDR J	2.18	NDR J	1.66	ND		ND		ND		ND			8.87		9.51		9.83		70.9		76.4		147
2,4'-DDE (o,p' DDE)	NDR J	2.08	NDR J	1.86	ND		ND		ND		ND		ND		ND		ND		ND		NDR J	1.49	ND	
4,4'-DDE (p,p' DDE)		6.93		6.73		6.85		6.09		6.71		5.69		4.81		4.39		4.97		7.03		6.55		6.21
2,4'-DDD (o,p' DDD)	J	2.26	J	2.22	ND		J	1.95	ND		ND		ND		ND		J	1.31	ND		J	1.65	J	2.3
4,4'-DDD (p,p' DDD)		6.64		7.82		6.69		6.06		6.52		5.51		5.37		4.76		4.94		5.92		6.55		6.32
2,4'-DDT (o,p' DDT)	NDR	3.8	NDR	3.92	ND		NDR	3.49	ND		ND		ND		ND		ND		ND		NDR	3.44	NDR J	3.18
4,4'-DDT (p,p' DDT)	J	1.44	J	1.65	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, delta	J	1.19	J	0.846	JQ	0.647	JQ	0.511	J	0.694	J	0.799	J	0.751	JQ	0.491	JQ	0.514	J	1.54	J	1.49	J	1.3
Heptachlor Epoxide	Q	4.42		4.53		4.6		4.03		4.24		4.3		3.12		2.69		2.81		4.61		4.86		4.99
Dieldrin		8.73		7.81		9		7.76		7.86		7.98		6.33		5.8		5.92		7.27		7.12		7.42
Endrin	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	ND	0.077	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	0.470
Endrin Ketone	JQ	0.277	ND		ND		ND		ND	2.2	ND		ND		ND		ND		ND		ND		JQ	0.478
Methoxychlor	ND ND		ND ND		ND ND		ND ND		J	2.3	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
alpha-Endosulphan	ND		ND ND		ND		ND		ND		ND		ND		ND		ND		ND ND		ND		ND	
beta-Endosulphan Endosulphan Sulphate	ND		ND ND		ND ND		ND		ND		ND		ND		ND		ND		ND ND		ND		ND	
13C-1,4-Dichlorobenzene (% Recover		12.3	ND	5.82	NQ		ND	10.7	ND	8.65	ND	5.74	ND	11.1	UVI	5.95	ND	8.1	ND	9.3	ND	11.8	ND	5.72
13C-1,2,3-Trichlorobenzene (% Recover		32.8		15.6	TNO2	12.8		21.7		19.8		19.4		28.8		15.1		18.8	NQ	3.5	NQ	11.0	NQ	5.12
13C-1,2,3,4-Tetrachlorobenzene (% R		42.3		27.7		21.7		26.6		29.4		30.8		37.8		23.8		26.8	1102	29.5	IN Q	45		26.3
13C-Pentachlorobenzene (% Recover		50.6		45.3		35.1	V	29.3		44.9		43.1		50.2		36.6		31.8	NDR D T	41.6	NDR D T	55.4	NDR	46
13C-Hexachlorobenzene (% Recovery		68		67.8		54.8	•	33.9		64.1		62.2		66.6		55.1		38.1		44.7		66.9		65.7
13C-beta-HCH (% Recovery)	1	71		71.9		55.5		34.8		72.4		68.1		70.2		58.9		40.8		43.9		77.5		70.3
13C-gamma-HCH (% Recovery)		81.6		81.1		70.6		45		87.3		81.6		81.6		68.9		49.7		62.8		105		111
13C-Heptachlor (% Recovery)		75.5		74.2		59.2		35.4		73.6		67.7		73		64.5		44.1		50.3		77.6		75.1
13C-Aldrin (% Recovery)		77.7		75.3		63.4		38.5		74.8		75.9		77.2		66.4		45.1		47.2		69.6		76.1
13C-Chlordane, gamma (trans) (% Re	covery)	93.2		95.3		79.6		43.8		92.9		91.5		90.8		84.6		55.3		55.9		84.2		90.2
13C-Nonachlor, trans- (% Recovery)		89.9		90.4		76.6		41.6		90		89.4		87.3		83.7		52.3		55.3		82.1		89.5
13C-4,4'-DDE (% Recovery)		94.2		94.3		80.4		45.2		96.5		96.1		92.7		89		56.6		57.2		88.8		95.7
13C-4,4'-DDT (% Recovery)		114		113		96.3		50.3		116		116		112		105		65		67.2		112		117
13C-4,4'-DDD (ng/sample)		75.8		82.8		82.8		82.7		82.1		84.6		89.8		88.6		82.1		81.7		85.8		87.6
D4-alpha-Endosulphan (% Recovery) I		120		108		85.7		97.9		109		95.8		95.3		44.8		94.3		98.5		86.8		92.3
D4-beta-Endosulphan (% Recovery) D	B5	110		102		81.6		93		104		93.5		94.4		43.1		94.9		99.8		90		90.8
D4-alpha-Endosulphan (% Recovery) I	DB17	66.9		97.1		70.5		81.3		82.5		87.3		75.7		41.5		70.1		84.2		73.1		73.9
D4-beta-Endosulphan (% Recovery) D		83.3		99.5		72.1		88.7		86.1		93.2		88.6		42.3		87.8		89.6		78.5		79

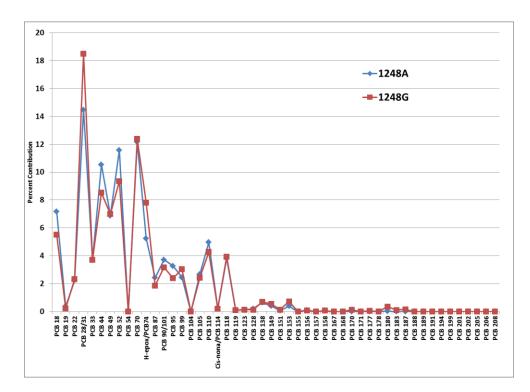
Gratwick Riverside Park (GRP)																								
Little Niagara River (LNR)																								
Niagara-on-the-Lake (NOTL)																								
CLIENT ID	U/S Gi	I Creek Mouth	U/S Gill Cre	eek Mouth	U/S Gill	Creek Mouth	Ģ	Gill Ck		Gill Ck	Gil	l Ck	Blood	y Run Ck	Bloody	/ Run Ck	Bloodv	Run Ck-1	Bloody	Run Ck-2	Bloo	dy Run Ck	Blood	y Run C
Axys ID		agara River)-1				ara River)-3	(M	louth)-1		Nouth)-2		uth)-3		J/S)-1		/S)-2)			D/S)-1)/S)-2
WORKGROUP		J					,							,		- /					,		Ì	,
Sample Size	L2	3776-65 i	L2377	6-66	L23	3776-67	L2	3776-68	L2	23776-69	L237	76-70	L23	776-71	L23	776-72	L23	776-74	L237	76-75 i	L23	3776-77 i	L237	776-78 i
UNITS		/G52449	WG52			G52449		G52449		/G52449		52449		52449		52449	WG	52449		52450		G52450		52450
	1	Isample	1sam	alar	1:	sample	1:	sample	1	sample	1sa	mple	1s	ample	1sa	ample	1sa	ample	1sa	ample	1	sample	1s	ample
	flag			ng/sample	flag	ng/sample	flag	ng/sample				ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/samp
1,3-Dichlorobenzene		3.47	J	2.45	NQ			41.3		37.7		34		3.24		3.37	J	2.72	NDR	3.26		4.96		4.01
1,4-Dichlorobenzene		10.6		9.9	NQ			89.3		85.1		77.1		12.2		11.6	-	15.2		11.8		10.3		10.3
1,2-Dichlorobenzene	J	1.9	J	1.58	NQ			41.1		36.1		34.3	J	2.67	ND			3.18	ND		J	2.7	J	2.75
1,3,5-Trichlorobenzene	J	0.912	J	0.763	NQ		т	7.19	Т	7.12	т	5.87	ND		ND		J	2.35	Т	8.56	T	3.96	T	4.13
1,2,4-Trichlorobenzene	J	2.1	J	1.57	NQ		Т	158	T	155	T	137		4.55		4.64		3.59	T	11.3	T	14.1	T	14.5
1,2,3-Trichlorobenzene	J	0.484	J	0.499	NQ		Т	45.5	T	45.1	T	40.5	NDR J	3.08	NDR J	2.77	J	1.32	NDR T	5.51	Т	4.61	T	5.37
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		7.58		6.7	NDR J	4.71		44.1		44.7		44.1		10.3		9.59		50.9		59.1		36.9		37.6
1,2,3,4-Tetrachlorobenzene	J	3.09	J	2.48	J	2.61		24.8		24.8		24.1		17.5		17.2		62.2		67.1		48.6		48.3
Hexachlorobutadiene	J	0.646	J	0.633	NDR J	1.9	D	1080		907		790	NDR	5.07		4.88		39.8		53.5		24.2		23.5
Pentachlorobenzene		5.38	-	4.84		4.74	_	36.9		36.2		38.7		36.8		37.5		434		609		277		273
Hexachlorobenzene		7.8		7.27		7.33		35		35.5		35		93		104	D	378		395		271		263
HCH, alpha	ND		ND		ND			153		150		151	ND		ND		NDR J	1.77	J	1.95	ND		ND	200
HCH, beta	ND		ND		ND		NDR	20	NDR		NDR	23.1	ND		ND		ND		ND		ND		ND	
HCH, gamma	ND		ND		ND			27.7		27	NDR	29.5	ND		J.	3.66	NDR	11.5	NDR J	5.66	ND			9.97
Heptachlor	ND		ND		ND		ND		ND		ND		ND		NDR J	0.777	ND		ND	2.50	ND		ND	
Aldrin	ND		ND		ND		NDR J	0.613	ND		ND		ND		ND		NDR J	1.49	NDR J	1.8	ND		ND	
Chlordane, gamma (trans)	J	0.736	J	0.614	J	0.746	J	0.918	J	0.907	J	0.954	J	0.883	J	0.907	J	0.733	J	0.883	J	0.974	J	0.828
Chlordane, alpha (cis)	J	1.24	J	0.986	J	1.17	J	1.47	J	1.38	J	1.54	J	1.39	J	1.45	J	1.1	J	1.38	J	1.42	J	1.39
Octachlorostyrene	J.	0.585	J	0.502	NDR J	0.384	J	0.896	J	1.03	J	0.805	Ű	8.95		10.2		8.65	J	9.9	Ű	10.6	Ű	10.3
Chlordane, oxy-	NDR	14.6	NDR	14.4	NDR	14	NDR	12	NDR	16.2	NDR	18.6	NDR	15.7	NDR	10.6	NDR	10.6	NDR	18.5	NDR		NDR	17.2
Nonachlor, trans-		0.781	J	0.72	J	0.747	J	0.874	J	0.984	J	0.888	J	0.986	J	1.03		1.08	J	1.28		0.95	J	0.858
Nonachlor, cis-	NDR J	0.247	J.	0.263	J	0.252	J	0.347	J	0.34		0.349	J	0.286	J	0.326		0.415	J	0.506	J.	0.358	J	0.387
Mirex	ND	0.241	ND	0.200	ND	0.202	ND	0.047	ND	0.04	ND	0.040	ND	0.200	ND	0.020	1	2.7		2.91	1	1.83	J	1.57
2,4'-DDE (o,p' DDE)	NDR J	0.443	ND		ND		ND		ND		ND		ND		ND		NDR J	0.299	ND	2.01	ND		ND	1.07
4,4'-DDE (p,p' DDE)	I I I	2.34	NDR J	2.55		2.28	THE	3.28	ND	3.35		3.36		3.08		3.33	NDR 0	6.88		9.3		3.84	THE	3.42
2,4'-DDD (o,p' DDD)	ND	2.04	ND	2.00	ND	2.20	ND	0.20	ND	0.00	ND	0.00	ND	0.00	ND	0.00		0.638	J	0.482	ND		J	0.598
4,4'-DDD (p,p' DDD)		1.98		1.7	J	1.8	J	2.92	J	2.81		3.44	J	2.33	J	2.42	J	2.67	J	2.86	110	2.21	J	2.89
2,4'-DDT (o,p' DDT)	ND	1.00	NDR J	1.16	J	1.12	ND	2.02	J	1.32	NDR J	1.61	ND	2.00	L L	1.2	ND	2.07	ND	2.00	1	1.12	ND	2.00
4,4'-DDT (p,p' DDT)	ND		ND		ND		ND		ND	1.02	ND		ND		ND			1.43	J	1.5	J	1.46	ND	
HCH, delta	J	0.784	JQ	0.388	J	0.776		12.6		11.2		12.3	J	0.721	ND		JQ	0.911	ND	1.0	ND		JQ	0.645
Heptachlor Epoxide		4.09		3.48	Q	3.57		3.36		3.45		3.92	Ű	3.55		3.52	° u	3.08	JQ	1.57	Q		Q	2.87
Dieldrin		6.81		6.21	~	7.06		6.73		6.88		7.32		8.54		8.85		6.73		6.7	~	8.64	~	7.55
Endrin	ND	0.01	ND	0.21	ND	1.00	ND	0.10	ND	0.00	ND	1.02	ND	0.01	ND	0.00	ND	0.10	ND	0.1	ND	0.01	ND	1.00
Endrin Aldehyde	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Ketone	ND		ND		ND		JQ	0.206	ND		ND		ND		ND		ND		ND		JQ	0.343	J	0.254
Methoxychlor	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Endosulphan	ND		ND		ND		ND		ND		ND		ND		ND		J	1.52	J	1.27	ND		ND	
beta-Endosulphan	ND		ND		ND		ND		ND		ND		ND		ND		ND		J	0.579	ND		ND	
Endosulphan Sulphate	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
13C-1,4-Dichlorobenzene (% Recover		10.9		17	NQ			9.34		10.2		5.96		5.69		6.49		5.14		5.02		13.7		11.7
13C-1,2,3-Trichlorobenzene (% Recov		25		35.4	NQ		NQ	0.01	NQ	10.2	NQ	0.00		17.8		17.1	NDR	38.9	NQ	0.02	NQ		NQ	
13C-1,2,3,4-Tetrachlorobenzene (% R		36.4		47.3		6.94		35.8		35.1		25.6		26		25.2		24.5		20.7		37.9		35.1
13C-Pentachlorobenzene (% Recovery		49		55.1	v	25.8		47.5		45.2		38.6		39		38.7	NDR	45.5	V	28.7		50.1		45.3
13C-Hexachlorobenzene (% Recovery		69.7		69.6		49.6		65.5		61.2		59.3		58		61		59.7		52.9		57.7		56.1
13C-beta-HCH (% Recovery)	,	71.5		72.3		59.1		68.7		61.7		72.6		74.9		71.6		73.4		60.3		65.2		65.8
13C-gamma-HCH (% Recovery)		81		81.7		62.2		82.3		75.7		72		79.6		77.8		77.6		59.8		65.1		66.6
13C-Heptachlor (% Recovery)		87.3		83.4		59.7		77.7		70.5		67.7		76.3		71.9		71.7		64		67.7		65.7
13C-Aldrin (% Recovery)		80.1		78.7		71.3		80.1		76.3		71.5		67.9		55.3		53.9		42.9		58.9		42.5
13C-Chlordane, gamma (trans) (% Red	overy)	97.6		95.4		85.6		93.8		89.4		92.2		98.3		93.6		94.5		86.8		90.1		90.2
13C-Nonachlor, trans- (% Recovery)		93.7		90		82.7		91		86.7		88		93.8		92.2		91.9		84.3		87.4		87.5
13C-4,4'-DDE (% Recovery)		96		92.2		88.8		95.4		92.5		95.5		96.9		95.3		95.6		89.2		89.1		90.3
13C-4,4'-DDT (% Recovery)		110		98.4		90.9		101		90.1		95.7		97.3		90.8		90.5		91.4		96.7		93
13C-4,4'-DDD (ng/sample)		90.8		82.7		89.9		88.8		84.0		89.6		90.5		93.3		91.6		88.4		90.3		96.6
D4-alpha-Endosulphan (% Recovery) [)B5	75.3		81		97.4		83.2		83.8		92.6		91.7		94.4		85.9		88.7		48.5		92.8
D4-beta-Endosulphan (% Recovery) D		79.4		82.5		91.2		90		88.5		93.8		90		93.6		87.6		96.5		45.7		95.1
D4-alpha-Endosulphan (% Recovery) [68.3		75.3		87.7		77.8		79.3		86		85.5		90.4		80.7		80.4		44.6		83.7
D4-apria-Endosulphan (% Recovery) D		76.6		79.9		89.8		90.4		88.7		89.4		87.1		90.9		85.1		90.4		44.0		92.6

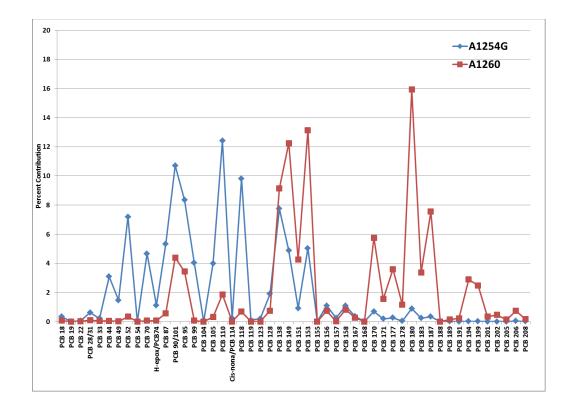
Niagara-on-the-Lake (NOTL)																		
CLIENT_ID	For	rt Erie	Fo	rt Erie	Fo	rt Erie	Ush	ers Ck-1	Ush	ers Ck-2	Ushe	rs Ck-3	Niag	ara River	Nia	agara River	Niag	ara River
Axys ID	at Robe	ertson St-1	at Rob	ertson St-2	at Robe	ertson St-3							ĩ	J/S of		U/S of	ĩ	J/S of
WORKGROUP													Chippav	wa Channel-1	Chipp	awa Channel-2	Chippa	wa Channel-3
Sample Size	L237	776-80 i	L23	776-81 i	L23	776-82 i	L23	776-83 i	L23	3776-84	L2377	6-85 RXi		3776-86	Ĺ	23776-87	L2	3776-88
UNITS	WG	652450	WC	352450	WG	652450	W	352450	WC	352450	WG	53086	W	G52450	V	NG52450	W	G52450
	1s	ample	1s	ample	1s	ample	15	ample	1s	ample	1sa	ample	1:	sample		1sample	1:	sample
		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
1,3-Dichlorobenzene	J	1.5	J	1.83	ND		J		ND		ND		NQ		ND		J	2.2
1,4-Dichlorobenzene		10.5		11.3		10.2		9.56		8.38	NDR	11	NQ			8.47		11.1
1,2-Dichlorobenzene	J	1.39	J	1.29	ND		J	1.62	ND		J	3.39	NQ		ND		J	1.3
1,3,5-Trichlorobenzene	ND ND		ND ND		ND ND		NDR J	0.607	ND ND		ND ND		ND		ND ND		ND ND	
1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	ND		ND		ND		ND ND		NDR J	2.02	ND		ND NDR J	1.37	ND		NDR J	1.6
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	ND			0.28	ND		J	1.72	J	1.62	ND		NDR J ND	1.57	J	0.329	NDR J ND	1.0
1,2,3,4-Tetrachlorobenzene	J	0.28	J	0.258	J	0.305	J	0.473	J	0.458	ND		ND		ND	0.329	ND	
Hexachlorobutadiene	ND	0.20	ND	0.200	ND	0.000	ND	0.475	NDR J	0.672	ND		NDR J	0.753	ND		ND	
Pentachlorobenzene	J	1.55	J	1.31	J	1.52		5.64		5.61	J	5.57	NDR J	0.946	J	1.37	J	1.07
Hexachlorobenzene	J	3.76	J	3.58	J	3.34	J	1.6	J	1.72	J	1.76	J	2.44	J	2.52	J	2.53
HCH, alpha	ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, beta	ND		ND		ND		ND		ND		ND		ND		ND		ND	
HCH, gamma	ND		NDR J	4.74	ND		ND		ND		ND		ND		ND		ND	
Heptachlor	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Aldrin	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Chlordane, gamma (trans)	J	0.997	J	1.06	J	0.951	J	1.38	J	1.53	J	1.34	J	0.64	J	0.604	J	0.696
Chlordane, alpha (cis)	J	1.75	J	1.67	J	1.69	J	2.47	J	2.21	J	1.95	J	0.972	J	1.04	J	1.06
Octachlorostyrene	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Chlordane, oxy-	NDR	28	NDR	18.5	NDR	15.9	NDR	22.2	NDR	28.1	NDR	32.1	NDR	14.2	NDR	27.9	NDR	19.4
Nonachlor, trans-	J	1.19	NDR J	1.15	J	1.19	J	3.25	J	3.03	J	2.63	J	0.72	J	0.592	J	0.779
Nonachlor, cis-	J	0.385	J	0.342	J	0.479	NDR J	1.45	J	1.1	NDR J	0.794	J	0.277	ND		J	0.27
	ND	4.04	ND		ND	4.05	ND		ND		ND		ND		ND		ND	
2,4'-DDE (o,p' DDE)	J	1.24	J	1.41	J	1.25	ND	40.0	ND	40.0	ND	40.4	ND	0.00	ND	0.4	ND	0.07
4,4'-DDE (p,p' DDE) 2,4'-DDD (o,p' DDD)		90.6 5.78		104 5.75		104 5.32	J	13.8 0.988	J	13.2 1.25		12.1 0.873	J	6.89 0.629	J	6.4 0.636	J	6.67 0.497
4,4'-DDD (p,p' DDD)		24.8		28.9		28.2	J	5.1	J	4.92	J	4.02	J	3.66	J	3.5	J	3.29
2,4'-DDT (o,p' DDT)	J	1.34	I	1.57	J	1.77	NDR J	0.388	ND	4.32	ND	4.02	ND	3.00	ND	5.5	ND	5.29
4,4'-DDT (p,p' DDT)	3	5.21	3	6.03	3	6.15	J	1.05	J	1.17	J	0.887	J	0.96	J	0.88	J	1.02
HCH, delta	ND	0.21	ND	0.00	ND	0.10	ND		ND		ND	0.001	ND	0.00	ND	0.00	ND	
Heptachlor Epoxide	Q	2.95	Q	2.93	Q	2.82	JQ	1.3	JQ	1.5	J	1.47	JQ	2.35	JQ	2.34	JQ	2.46
Dieldrin		8.65		7.85		7.54		3.33		3.47		3.41		6.3		6.29		5.85
Endrin	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endrin Ketone	J	0.912	JQ	0.311	JQ	0.31	ND		ND		ND		ND		ND		ND	
Methoxychlor	ND		ND		ND		ND		ND		ND		ND		ND		ND	
alpha-Endosulphan	ND		ND		ND		ND		ND		ND		ND		ND		ND	
beta-Endosulphan	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Endosulphan Sulphate	ND		ND		ND		ND		ND		ND		ND		ND		ND	
13C-1,4-Dichlorobenzene (% Recovery)		14		19.7		10.7		10.5		5.92		5.06	NQ	40.5		12.5		15
13C-1,2,3-Trichlorobenzene (% Recove		25.9		38.3		20.5		29		14.2		10.4		12.4		29.2		29
13C-1,2,3,4-Tetrachlorobenzene (% Red		33.4		46.6		27.2		39.9		21.9	V	18		22.7		37.7		33.9
13C-Pentachlorobenzene (% Recovery)		39.7		49.3		33.9		46.9	V	29.8	V	29.3		32.9		40.7		38.6
13C-Hexachlorobenzene (% Recovery) 13C-beta-HCH (% Recovery)		56.3 60.4		59.5 59.7		53.1 58.4		56.4 55.7		46.8 48.3		51 57		50.9 62.8		55 67.7		53.6 72.3
13C-beta-HCH (% Recovery) 13C-gamma-HCH (% Recovery)		59.8		59.7 61.2		56.4		55.7		48.3		62.7		62.8		67.7		67
13C-Heptachlor (% Recovery)		46.7		52.9		51.1		51.9		48.3		69.1		63.9		63.7		68.6
13C-Aldrin (% Recovery)		65.9		68.7		63.4		60.7		58.2		71.8		50.7	NDR	63.3	NDR	53.9
13C-Chlordane, gamma (trans) (% Reco	overv)	78.1		85.4		86.4		80.9		74.1		85.9		90.7		89.2	HUI	92.2
13C-Nonachlor, trans- (% Recovery)		74.4		82.5		82.6		77.1		71.9		88.5		86.2		87.3		92.5
13C-4,4'-DDE (% Recovery)		86.6		90.4		92.5		84.7		82		92		89.5		90.8		94.1
13C-4,4'-DDT (% Recovery)		68.8		77.2		78.6		76.8		72.4		92		94.5		93.4		100
13C-4,4'-DDD (ng/sample)		99.6		97.9		97.8		96.8		89.7		94.9		89.0		83.5		89.3
D4-alpha-Endosulphan (% Recovery) DI	B5	92		94.1		91.7		85.8		86.6		103		79.5		95		88.1
D4-beta-Endosulphan (% Recovery) DB		90.4		94.1		95.6		85		79.1		88.4		92		87.8		91.3
D4-alpha-Endosulphan (% Recovery) DI		78.3		79.9		72.3		87		77.5		90.9		73.8		79.8		72.7
D4-beta-Endosulphan (% Recovery) DB	17	95.3		91.1		93.9		9 276/1		79.3		79.9		84		102		88.1

Appendix F2: SPMD data for Cana Niagara-on-the-Lake (NOTL)	andir a	spioymente	001100		oproot	sint ng/or n						
niagara-or-the-Lake (NOTL)												
CLIENT_ID	N	OTL-1	N	OTL-2	N	IOTL-3	Bals	am Lake	Bak	am Lake	Bals	am Lake
Axys ID		0121		0122				ontrol-1		ontrol-2		ontrol-3
WORKGROUP							Ŭ		Ŭ		00	1111010
Sample Size	12	3776-89	123	3776-90	12	3776-91	1 2 37	76-92 RXi	12	3776-93	123	3776-94
UNITS		G52450		G52450		G52450		G53086		G52450		G52450
		sample		ample		sample		sample		sample		ample
		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample		ng/sample
1,3-Dichlorobenzene		3.89	J	2.68		3.25	J	2.05		3.13	J	
1,4-Dichlorobenzene		14.5	0	12.5		13.5	Ű	10.8		11.3	0	8.11
1,2-Dichlorobenzene	ND		J	2.12	ND	10.0	J	3.05	ND	1110	J	2.09
1,3,5-Trichlorobenzene	ND		NDR J	0.749	ND		ND		ND		ND	
1,2,4-Trichlorobenzene		4.28		3.98		3.94	ND		ND		ND	
1,2,3-Trichlorobenzene	NDR J	2.97	ND		ND		ND		ND		ND	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	J		J	4.44	J	3.99	ND		ND		ND	
1,2,3,4-Tetrachlorobenzene		9.58	-	10.6		9.59	ND		ND		ND	
Hexachlorobutadiene	J		J	1.91	J	1.92	ND		ND		ND	
Pentachlorobenzene	0	10.1	Ĵ	10.6	J	9.88	ND		J	0.56	NDR J	0.532
Hexachlorobenzene		13.5		14.5		13.3	J	1.56	J	1.74	J	1.53
HCH, alpha	ND		ND		ND	. 5.0	ND		ND		ND	
HCH, beta	ND		ND		ND		ND		ND		ND	
HCH, gamma	ND		ND		ND		ND		ND		ND	
Heptachlor	ND		NDR	3.74	ND		ND		NDR	7.38	NDR	7.54
Aldrin	ND		ND	0.14	ND		ND		ND		ND	
Chlordane, gamma (trans)	J	0.897	J	0.822	J	0.822	ND		J	0.47	NDR J	0.316
Chlordane, alpha (cis)	J	1.29	J		J	1.12	ND		J	0.513	J	0.507
Octachlorostyrene	J		J		J	2.34	ND		ND	0.010	ND	0.001
Chlordane, oxy-	NDR	20.8	NDR	20.9	NDR	17.3	NDR	17.4	NDR	24.7	NDR	26.9
Nonachlor, trans-	NDR J	0.774	NDR J	0.887	J	0.919	J	0.348	J	0.367	J	0.407
Nonachlor, cis-	ND	0.774	J	0.368	J	0.269	ND	0.040	ND	0.007	ND	0.407
Mirex	ND		ND	0.000	ND	0.200	ND		ND		ND	
2,4'-DDE (o,p' DDE)	ND		ND		ND		ND		ND		ND	
4,4'-DDE (0,p' DDE)	J	2.96	J	2.78	J	2.7	J	1.91	J	2.22	NDR J	2.12
2,4'-DDD (o,p' DDD)	ND	2.30	ND	2.70	ND	2.1	ND	1.01	ND	2.22	ND	2.12
4,4'-DDD (p,p' DDD)	J	2.56	J	1.6	J	2.14	J	0.746	ND		ND	
2,4'-DDT (o,p' DDT)	ND	2.00	NDR J	1.34	ND	2.14	ND	0.140	ND		ND	
4,4'-DDT (p,p' DDT)	ND		ND	1.04	ND		ND		ND		ND	
HCH, delta	J	0.759	ND		ND		ND		ND		ND	
Heptachlor Epoxide	Q		Q	2.84	JQ	2.32	J	1.28	JQ	1.19	JQ	1.21
Dieldrin	~	6.25	~	6.01	• ~	5.33	JQ	1.44	J	2.23	J	2.34
Endrin	ND	0.20	ND	0.01	ND	0.00	ND	1.14	ND	2.20	ND	2.04
Endrin Aldehyde	ND		ND		ND		ND		ND		ND	
Endrin Ketone	ND		ND		ND		ND		ND		ND	
Methoxychlor	ND		ND		ND		ND		ND		ND	
alpha-Endosulphan	ND		ND		ND		ND		ND		ND	
beta-Endosulphan	ND		ND		ND		ND		ND		ND	
Endosulphan Sulphate	ND		ND		ND		ND		ND		ND	
13C-1,4-Dichlorobenzene (% Recovery		5.73		7.72		7.06		11.1		9.53		12.9
13C-1,2,3-Trichlorobenzene (% Recovery		13.5		24.2		20.2		24.2		21.1		28.2
13C-1,2,3,4-Tetrachlorobenzene (% Re	.,	20		35		29.5		32		29.7		35.2
13C-Pentachlorobenzene (% Recovery		27.5		42.3		38.5		40.3		38.8		41.8
13C-Hexachlorobenzene (% Recovery)	v	49.9		57.3		57.6		58.6		56.2		55.4
13C-beta-HCH (% Recovery)		63.3		58.4		67.4		58.4		58.6		52.9
13C-gamma-HCH (% Recovery)		59.7		60.3		61.3		68.9		61.3		57.4
13C-Heptachlor (% Recovery)		51.6		56.8		54.6		76.7		57		59.2
13C-Aldrin (% Recovery)		62.9		67		65.2		76.9		64.4		62
13C-Chlordane, gamma (trans) (% Rec	overv)	87.2		86.7		85.2		89.4		76.8		75
13C-Nonachlor, trans- (% Recovery)	overy)	83.4		84.6		84.2		88.2		73.6		74.3
13C-4,4'-DDE (% Recovery)		91.7		88.6		89.3		93.3		85.2		80.1
13C-4,4'-DDE (% Recovery)		77.3		91.1		80.2		95.3		76		82.6
13C-4,4'-DDT (% Recovery) 13C-4,4'-DDD (ng/sample)		91.1		78.0		90.7		95.3		88.2		82.6
D4-alpha-Endosulphan (% Recovery) D	R5	91.1		94.7				92.8		84.5		
D4-aipna-Endosulphan (% Recovery) D D4-beta-Endosulphan (% Recovery) DE				94.7		88.8		139		84.5 87		115
D4-beta-Endosulphan (% Recovery) DE D4-alpha-Endosulphan (% Recovery) D		102 80.5				94.3 81.4		120		79		115 98.5
		97.1		86.5 91.7		92.8		130		83.9		98.5
D4-beta-Endosulphan (% Recovery) DE												

		Bloody Pur	n Ck (U/S)-3		Bloody	Run Ck-3		Bloody Bu	n Ck (D/S)-3	l ob E	Blank (101)	Blo		BLANK 2 OF 2	Spiked Matrix (102
CLIENT_ID			76-73			76-76			76-79		2451-101	DIU		776-3	WG52451-102
Axys ID WORKGROUP			2451			52451			52451		G52451-101			52451	WG52451-102 WG52451
			mple			mple			mple		sample			imple	WG52451
Sample Size	<u> </u>			<u> </u>			<u> </u>		1			<u> (</u>			flag 0/ Deservery
	flag			riag			tiag			0.00		~ ~	pg/sample		flag % Recovery
2,3,7,8-TCDD	J	5.81	0.762		128	1.46		40.8	0.76	U	0.757	U		0.762	97.1
1,2,3,7,8-PECDD	U		0.762	J	1.64	0.801	U		0.76	U	0.757	U		0.762	103
1,2,3,4,7,8-HXCDD	U		0.762	J	1.24	0.917	ΚJ		0.76	U	0.757	U		0.762	91.6
1,2,3,6,7,8-HXCDD	U		0.762	ΚJ	13.4	0.917	J	5.25	0.76	U	0.757	U		0.762	94.3
1,2,3,7,8,9-HXCDD	J	1.34	0.762	J	7.25	0.917	J	3.52	0.76	U	0.757	U		0.762	86.9
1,2,3,4,6,7,8-HPCDD	J	4.37	0.762	J		1.46	J	12.2	0.84	U	1.49	ΚJ	1.26	0.937	90.5
OCDD	J	15.3	0.762	J	15.9	1.98	J	15.5	1.29	K J 1.53	1.36	J	2.59	0.762	90.7
2,3,7,8-TCDF (225)	ΚJ	3.01	0.762	J	1.86	0.758	J	2.03	0.76						
2,3,7,8-TCDF	ΚJ	3.37	0.762	J	8.18	1.44	ΚJ	5.01	0.76	U	0.757	U		0.762	89.2
1,2,3,7,8-PECDF	U		0.762	ΚJ	2.3	1.66	U		0.76	U	0.757	U		0.762	93
2,3,4,7,8-PECDF	J	1.32	0.762	J	3.51	1.66	J	1.97	0.76	U	0.757	U		0.762	94.4
1,2,3,4,7,8-HXCDF	ΚJ	1.29	0.762	ΚJ	6.05	1.47	J	3.2	0.76	U	0.757	U		0.762	93.8
1,2,3,6,7,8-HXCDF	ΚJ	0.836	0.762	U		1.47	J	0.907	0.76	U	0.757	U		0.762	92.8
1,2,3,7,8,9-HXCDF	U		0.762	U		1.47	U		0.76	U	0.757	U		0.762	98.2
2,3,4,6,7,8-HXCDF	U		0.762	U		1.47	U		0.76	U	0.757	U		0.762	93.7
1,2,3,4,6,7,8-HPCDF	J	2.07	0.762	J	3.26	1.14	J	3.48	0.76	U	1.06	U		0.762	96.7
1,2,3,4,7,8,9-HPCDF	U		0.762	U		1.14	U		0.76	U	1.06	U		0.762	97.1
OCDF	ΚJ	4.97	0.762	J	5.32	0.758	J	8.01	0.762	U	1.14	U		0.762	118
TOTAL TETRA-DIOXINS		7.64	0.762		128	1.46		42.8	0.76	U	0.757	U		0.762	
TOTAL PENTA-DIOXINS	U		0.762		9.1	0.801		2.25	0.76	U	0.757	U		0.762	
TOTAL HEXA-DIOXINS		1.34	0.762		42.9	0.917		21.9	0.76	U	0.757	U		0.762	
TOTAL HEPTA-DIOXINS		10.1	0.762		36.3	1.46		18.2	0.84	U	1.49		1.47	0.937	
OCDD	J	15.3	0.762	J	15.9	1.98	J	15.5	1.29	K J 1.53	1.36	J	2.59	0.762	90.7
TOTAL TETRA-FURANS		29.4	0.762		81.4	1.44		16.2	0.76	U	0.757	U		0.762	
TOTAL PENTA-FURANS		4.34	0.762		29.7	1.66		12	0.76	U	0.757	U		0.762	
TOTAL HEXA-FURANS	U		0.762		5.51	1.47		6.64	0.76	U	0.757	U		0.762	
TOTAL HEPTA-FURANS		2.07	0.762		3.26	1.14		3.48	0.76	U	1.06	U		0.762	
OCDF	КJ	4.97	0.762	J	5.32	0.758	J		0.762	U	1.14	Ŭ		0.762	118
13C-2,3,7,8-TCDD (% Recovery)		78.2			84.9			64.5		59.6		-	71.8		57
13C-1,2,3,7,8-PECDD (% Recovery)		100			92.8			93		69.5			90.2		79.2
13C-1,2,3,4,7,8-HXCDD (% Recovery)		82.1			83.9			82.6		61.2			75.5		68.6
13C-1,2,3,6,7,8-HXCDD (% Recovery)		84.8			86.9			86.6		61.3			76.2		70.1
13C-1,2,3,4,6,7,8-HPCDD (% Recovery)		75.7			92.2			72.7		56			68.7		69
13C-OCDD (% Recovery)		70.1			75.2			39		50.6			65.9		47.2
13C-2,3,7,8-TCDF (% Recovery)		79			89.8			89.8		60.4			73.8		65.8
13C-1,2,3,7,8-PECDF (% Recovery)		76.1			81.5			76.6		59.2			69.5		62.9
13C-2,3,4,7,8-PECDF (% Recovery)		67.3			76.1			76.1		51.5			61.2		57
13C-1,2,3,4,7,8-HXCDF (% Recovery)		84			87.3			89.2		66.7			79		70.5
13C-1,2,3,4,7,8-HXCDF (% Recovery)		88.5			88.2			86.2		68.3			81.2		70.5
13C-1,2,3,6,7,8-HXCDF (% Recovery)		77.3			84.8			82		61.1			72.7		68.6
		77.3						82 88.2		58.3			74.3		65.9
13C-2,3,4,6,7,8-HXCDF (% Recovery)					88										
13C-1,2,3,4,6,7,8-HPCDF (% Recovery)		78.4			84.3			42.7		59.4			70.7		55
13C-1,2,3,4,7,8,9-HPCDF (% Recovery)		72.1			85.8			74.3		58			70.4		66.4
37CL-2,3,7,8-TCDD (% Recovery) 13C6-1,2,3,4-TCDD (pg/sample)		69.2 1296			79.5 1212			62.5 1753		56.3			60.8 1495		60.1


Appendix F4: Homologue data, ng/SP Gratwick Riverside Park (GRP)															
Little Niagara River (LNR)															
Niagara-on-the-Lake (NOTL)															
Nagara-On-the-Lake (NOTE)															
CLIENT ID		Two Mile Ck (Mouth)-1	Two Mile Ck (Mouth)-2	Two Mile Ck (Mouth)-	3 Petti	it Flume (D/S)-1	Pettit Flume (D/S)-2	F	Pettit Flume (D/S)-3	Pett	it Flume (Outer Site B)-1	Petti	t Flume (Outer Site B)-2	Pettit F	ume (Outer Site B)
Axys ID		L23776-5 L	L23776-6 L	L23776-7 L		L23776-8 i	L23776-9 L		L23776-10 L	1 00	L23776-11 LNK		L23776-12 LNK		23776-13 LNK
WORKGROUP		WG52369	WG52369	WG52369		WG52369	WG52369		WG52369		WG52369		WG52369		WG52369
UNITS		flag ng/sample	flag ng/sample	flag ng/sample	flag	ng/sample	flag ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
											4 4000		15000		
Total Monochloro Biphenyls	Mono		ND 24.2	ND		116	93.3	_	98 77		14200 3048		15200 2976.1		14400
Total Dichloro Biphenyls	Di	28.8	21.2	23		79.2	95.9								2896 47
Total Trichloro Biphenyls	Tri	151.1	145.4	155		102.3			108		45.9		44.9		
Total Tetrachloro Biphenyls	Tetra	642.8	599.2	640		118.9	103.9		116		45.7		43.8		42
Total Pentachloro Biphenyls	Penta	326	312	340		36.3	37.1		40		59.4		60.5		59
Total Hexachloro Biphenyls	Hexa	112	106	111		14.5	14		15		64.8		69.5		66
Total Heptachloro Biphenyls	Hepta		20.6	20		3.91	3.44		4		18.2		19.9		18
Total Octachloro Biphenyls	Octa	2.19	2.39	3		0.284	ND		1		1.95		1.33		1
Total Nonachloro Biphenyls	Nona	ND	ND	ND	ND		ND	ND		ND		ND		ND	
Decachloro Biphenyl	Deca		ND	ND	ND		ND	ND		ND			0.142		0.129
Total PCB=TOTAL PCBs		1282	1202	1286		470	424		457		17469		18367		17566
CLIENT ID		Pettit Flume (U/S)-1	Dottit Elumo (LL/S) 2	Pettit Flume (U/S)-3	Fishers	nan'a Dark (D/C) 1	L Fishermon's Park (D/C) 2	Field	harman'a Dark (D/C) 2	Eir	sherman's Park (U/S)-1	Field	hormonia Dark (LI/C) 2	Fisher	mania Dark (U/C) (
Axys ID		L23776-14 Li2	Pettit Flume (U/S)-2 L23776-15 L	L23776-16 L		_23776-17 L	Fisherman's Park (D/S)-2 L23776-18 L	FISI	L23776-19 i	FIS	L23776-20 i	FIS	herman's Park (U/S)-2 L23776-21 i	FISNE	man's Park (U/S)-3 L23776-22 i
WORKGROUP		WG52369	WG52369	WG52369		WG52369	WG52369		WG52371		WG52371		WG52371		WG52371
UNITS		flag ng/sample	flag ng/sample	flag ng/sample	flag	ng/sample	flag ng/sample	flag		flag	ng/sample	flag	ng/sample	flag	ng/sample
		ng/sample	nag ng/sample	nag ng/sample	nag	ng/sample	nag ng/sample	nag	i ig/sampic	nag	ng/sample	nag	ng/sampic	nag	ng/sumple
Total Monochloro Biphenyls	Mono	9	4.37	3		18.7	10.5		12		13.1		8.66		11
Total Dichloro Biphenyls	Di	52.9	50.4	52		46.8	35.3		37		52.5		53.9		50
Total Trichloro Biphenyls	Tri	116.2	133.2	131		103.2	102.5		133		143.3		151.3		155
Total Tetrachloro Biphenyls	Tetra	133.5	127.9	131		135.7	134.7		155		190.7		190.6		197
Total Pentachloro Biphenyls	Penta	45	41.9	40		46.5	47.1		56		63.6		63.5		62
Total Hexachloro Biphenyls	Hexa	13.5	13.8	14		17.4	17.8		20		20.9		20.1		20
Total Heptachloro Biphenyls	Hepta	3.44	3.07	3		4.24	4.52		5		5.22		4.64		5
Total Octachloro Biphenyls	Octa	0.236	ND	ND	ND		ND		1		0.364		0.669		1
Total Nonachloro Biphenyls	Nona		ND	ND	ND		ND	ND		ND	0.001	ND	0.000	ND	•
Decachloro Biphenyl	Deca		ND	ND	ND		ND		0.142		0.197	ne	0.111	ND	
Total PCB=TOTAL PCBs	Decta	375	374	374	ND	373	354		418		491		493	IND.	499
CLIENT_ID		GRP (U/S of Marina)-1	GRP (U/S of Marina)-2	GRP (U/S of Marina)-	-3 GRI	P (in Marina)-1	GRP (in Marina)-2		GRP (in Marina)-3	C	GRP (U/S of Dump)-1	G	RP (U/S of Dump)-2	GRF	P (U/S of Dump)-3
Axys ID		L23776-23 i	L23776-24 i	L23776-25 i	L	_23776-26 L	L23776-27 L		L23776-28 L		L23776-29 i		L23776-30 i		L23776-31 i
WORKGROUP		WG52371	WG52371	WG52371		WG52371	WG52371		WG52371		WG52371		WG52371		WG52371
UNITS		flag ng/sample	flag ng/sample	flag ng/sample	flag	ng/sample	flag ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
Total Monochloro Biphenyls	Mono	35.8	33.1	32		10.7	11.6	ND)		61.4		20.8		18
Total Dichloro Biphenyls	Di	591.7	523.9	546		296.6	304.1		313		183.2		175.5		113
Total Trichloro Biphenyls	Tri	2395.1	2460.3	2273		1162	1221		1359		553.8		541		509
Total Tetrachloro Biphenyls	Tetra	4024.4	3645	3594		1647.1	1734.3		1895		751.2		757.4		739
Total Pentachloro Biphenyls	Penta	960	859	835		460	471		509		194		198		197
Total Hexachloro Biphenyls	Hexa	110	99.6	102		107	108		118		35.6		35.1		40
Total Heptachloro Biphenyls	Hepta		25.9	28		25.8	25.6		28		8.87		8.91		12
Total Octachloro Biphenyls	Octa	6.16	5.73	6		3.63	3.35		4		1.43		1.04		3
Total Nonachloro Biphenyls	Nona	0.338	0.417	ND	ND	0.00	0.283		0.294		0.224	ND	1.07		0.323
Decachloro Biphenyl	Deca		0.417	ND	NU	0.236	0.269		0.294		0.224	ND	0.11		0.323
Total PCB=TOTAL PCBs	Deca	8161	7656	7417		3711	3877		4225		1790		1737		1627


Gratwick Riverside Park (GRP)																	
Little Niagara River (LNR)																	
Niagara-on-the-Lake (NOTL)																	
Storm Sewer (SS)																	
CLIENT ID	CPD	(Middle of Park) 1	CPE	o (Middle of Park)-2	CPE	(Middle of Park) 2		GRP (D/S)-1		GRP (D/S)-2	GRP (D/S)-	2 1	02nd St (U/S)	1 1)2nd St (U/S)-2	10)2nd St (U/S)-3
Axys ID	GRF	L23776-32 i	GRF	L23776-33 i	GKF	L23776-34 i		L23776-35 i		L23776-36 i	L23776-37		L23776-38	.1 11	L23776-39		L23776-40
WORKGROUP		WG52371		WG52371		WG52371		WG52371		WG52371	WG52400		WG52400		WG52400		WG52400
UNITS	flag	ng/sample	flag		flag	ng/sample	flag	ng/sample	flag		flag ng/samp	le fla		e flag		flag	
	nag	ng/oumpio	nag	ng/sumple	nag	ng/oumpio	nag	ng/oumpio	nag	ng/oumpio	nag ng/samp		g ng/oumpi		, ng/oumpio	nag	ng/oumple
Total Monochloro Biphenyls		17.2		17		16		20.2		22.5	20		7.76		12		7
Total Dichloro Biphenyls		122		112.8		114		112.2		123.9	112		75.1		77.9		91
Total Trichloro Biphenyls		371.3		382.5		372		326.1		394.5	335		252.1		254.5		239
Total Tetrachloro Biphenyls		454.5		453		436		366.5		430.6	381		293.9		290.9		283
Total Pentachloro Biphenyls		116		113		110		99.5		116	104		97		88.7		94
Total Hexachloro Biphenyls		27.1		26.1		25		22.6		26.9	26		30.1		27.5		29
Total Heptachloro Biphenyls		6.99		6.86		7		4.91		6.64	5		5.88		5		6
		0.483		0.472		1		0.403		0.564	0.461		0.306	NE			0.315
Total Octachloro Biphenyls		0.463	ND	0.472		I		0.403	NID	0.004		N 17				NIP	0.315
Total Nonachloro Biphenyls	ND		ND		ND	0.400	ND		ND	0.400	ND 0.157	NE		NE		ND	
Decachloro Biphenyl	ND		ND			0.102	ND			0.129	0.157		0.086	NE		ND	
Total PCB=TOTAL PCBs		1115		1112		1082		953		1123	979		763		756		750
		(Near 100 04) 1	LND	(Near 102-1 04) 0		(Near 102rd Ot) 0	~	outure Create 4	~		Con 11/20 Con 11			-) 4 1		0 1 115	
CLIENT_ID	LNR	(Near 102nd St)-1	LNR	R (Near 102nd St)-2	LNR	` '		ayuga Creek -1		ayuga Creek-2	Cayuga Creel		() 0	a)-1 LNF	R (D/S Cayuga)-		, , , ,
Axys ID WORKGROUP		L23776-41 WG52400		L23776-42 WG52400		L23776-43 WG52400		L23776-44 L WG52400		L23776-45 L WG52400	L23776-46 WG52400		L23776-47 WG52400		L23776-48 WG52400		L23776-49 WG52400
UNITS	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag		flag ng/samp	le fla		e flac		flag	
00013	nay	ng/sample	nay	ng/sample	nay	ng/sample	nay	ng/sample	nay	ng/sample	nay ny/samp		y ny/sampi	e naų	j ng/sample	nay	ng/sample
Total Monochloro Biphenyls		17		12.4		12	ND		ND		ND	N)		3.88	ND	
Total Dichloro Biphenyls		149.2		144.4		144		11.3		18	9		82.1		70.5		14.6
Total Trichloro Biphenyls		316.9		303.8		308		62.3		53.3	46		209.4		198.4		171.6
Total Tetrachloro Biphenyls		321.8		305.4		286		100.8		94.6	91		256.3		264.9		226.4
Total Pentachloro Biphenyls		107		103		98		73.8		72	68		79.8		83		84.7
Total Hexachloro Biphenyls		30.4		28.2		29		29.5		28.9	28		24.1		25.1		25.8
						4				4.06	4		4.17		4.48		4.55
Total Heptachloro Biphenyls		5.23		4.66		-		4.28									
Total Octachloro Biphenyls		0.507		0.681		0.143		0.265		0.225	ND		0.297		0.573		0.633
Total Nonachloro Biphenyls	ND		ND		ND		ND		ND		ND	NE		NE		ND	
Decachloro Biphenyl	ND		ND			0.092	ND		ND		ND		0.14	NE		ND	
Total PCB=TOTAL PCBs		950		908		877		283		271	247		656		651		660
CLIENT ID		U/S OCC1		U/S OCC2		U/S OCC3		arm Couver (CC) A	1	D/S SS A-2	D/S SS A-3		D/S SS B-1		D/S SS B-2		D/S SS B-3
Axys ID		L23776-50		L23776-51		L23776-52	D/3 30	orm Sewer (SS) A- L23776-53	1	L23776-54	L23776-55		L23776-56		L23776-57		L23776-58
WORKGROUP		WG52400		WG52400		WG52400		WG52400		WG52400	WG52449		WG52449		WG52449		WG52449
UNITS	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag		flag ng/samp	le fla		e flac		flag	
	nag	ng/oumpio	nag	ng/oumpio	nag	ng/oumpio	nag	ng/oumpio	nag	ng/oumpio	nag ng/samp		g ng/oumpi		, ng/oumpio	nag	ng/oumple
Total Monochloro Biphenyls		1.96		5.1		5		6.5		5.44	5		5.5		4.96		9
Total Dichloro Biphenyls		100.3		95.8		96		94.6		75.2	101		80.7		83.2		85
Total Trichloro Biphenyls		305.9		272		297		249.6		259.4	230		235.3		219.6		220
Total Tetrachloro Biphenyls		357		353.5		337		312		300.9	296		278.4		288		245
Total Pentachloro Biphenyls		105		99.1		105		91.4		87.9	87		83.9		88.7		75
Total Hexachloro Biphenyls		28.7		27.9		29		24.9		25.1	23		22.8		25		19
Total Heptachloro Biphenyls		5.84		5.91		6		5.67		5.26	6		3.68		5.66		4
Total Octachloro Biphenyls	ND	0.04		0.14		0.135		0.638	ND	0.20	0.356		0.495		0.333		1
Total Nonachloro Biphenyls	ND		ND	0.14	ND	0.155	ND	0.030	ND		ND 0.350	N		NE		ND	1
· · ·							ND	0.164	ND	0 4 9 4				INL		ND	0 4 4 4
Decachloro Biphenyl	ND		ND		ND			0.164		0.131	ND	N	ו		0.161		0.111


Gratwick Riverside Park (GRP)																		
Little Niagara River (LNR)																		
Niagara-on-the-Lake (NOTL)																		
Bloody Run Creek (BRC)																		
CLIENT ID		SS C-1		SS C-2		SS C-3		OCC 003-1	OCC 003-2		OCC 003-3		U/s	S Gill Creek (in NR)-1	U/S Gill Creek (NR)-2		U/S Gill Creek (in NF	
Axys ID		L23776-59		L23776-60		L23776-61		L23776-62		L23776-63	L23776-64			L23776-65 i	L23776-66		L23776-67	
WORKGROUP		WG52449		WG52449		WG52449		WG52449		WG52449		WG52449		WG52449		WG52449		WG52449
UNITS	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
Total Monochloro Biphenyls		4.94		3.8		2		7		6.05	ND		ND		ND		ND	
Total Dichloro Biphenvls		61.8		57.1		44		234.2		239.2		174	ND			1.2		1
Total Trichloro Biphenyls		165.8		152.7		162		3887.4		4619.9		2702		10.6		8.2		8
Total Tetrachloro Biphenyls		282.3		255.7		262		9593.8		11663.4		6056		14		12.9		12
Total Pentachloro Biphenyls		83.5		74.9		80		2150		2890		1340		9.31		7.83		7
Total Hexachloro Biphenyls		17.7		15.8		16		138		199		95		5		3.74		4
Total Heptachloro Biphenyls		3.77		2.68		3		14		21.2		10		1.24		0.845		1
Total Octachloro Biphenyls		0.651		0.402		0.347		2.98		5.2		1	ND		ND		ND	
Total Nonachloro Biphenyls	ND		ND		ND		ND			0.559	ND		ND		ND		ND	
Decachloro Biphenyl		0.167		0.141		0.177		0.504		0.495		0.391	ND		ND		ND	
Total PCB=TOTAL PCBs		620		564		570		15978		19671		10376		40		34		32
CLIENT ID	Gill	I Ck (Mouth)-1	Gi	ll Ck (Mouth)-2	Gi	I Ck (Mouth)-3		BRC (U/S)-1		BRC (U/S)-2		BRC-1		BRC-2		BRC (D/S)-1		BRC (D/S)-2
Axys ID		L23776-68		L23776-69		L23776-70		L23776-71		L23776-72		L23776-74		L23776-75 i		L23776-77 i		L23776-78 i
WORKGROUP		WG52449		WG52449		WG52449		WG52449		WG52449		WG52449		WG52450		WG52450		WG52450
UNITS	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
Total Monochloro Biphenyls	ND			1.88		2	ND		ND		ND		ND		ND		ND	
Total Dichloro Biphenyls		14.5		13.5		13		2.5		1		4.4		2		2.6		1
Total Trichloro Biphenyls		161.3		179.3		167		15.1		15		76.7		65		40.5		42
Total Tetrachloro Biphenyls		339		351.2		303		28.2		27		138.5		125		73.8		64
Total Pentachloro Biphenyls		93.9		97.6		81		13.5		13		48.3		46		26.8		25
Total Hexachloro Biphenyls		16.2		17.3		15		5.79		6		15.7		19		7.75		8
Total Heptachloro Biphenyls		2.89		3.05		3		1.39		2		4.17		6		1.12		1
Total Octachloro Biphenyls		0.191		0.298	ND		ND		ND			0.541		1	ND		ND	
Total Nonachloro Biphenyls	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Decachloro Biphenyl	ND		ND		ND		ND		ND			0.101	ND			0.129	ND	
Total PCB=TOTAL PCBs		628		664		583		67		64		289		264		153		140

Niagara-on-the-Lake (NOTL)																		
CLIENT ID		Fort Erie -1		Fort Erie -2	Fort Erie -3			Ushers Ck-1	Ushers Ck-2		Ushers Ck-3		Chippawa Channel-1		Chippawa Channel-2		Ch	ippawa Channel-
Axys ID		L23776-80 i		L23776-81 i	L23776-82 i		L23776-83 i		L23776-84			23776-85 RXi	Only	L23776-86	L23776-87		L23776-88	
WORKGROUP		WG52450		WG52450		WG52450		WG52450		WG52450		WG53086		WG52450	WG52450			WG52450
UNITS	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample
Total Monochloro Biphenyls	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Total Dichloro Biphenyls		2.3		1.9	ND		ND		ND		ND			1.3	ND			1
Total Trichloro Biphenyls		6.2		6.7		6		3.8		4.5		4		4.5		3.8		5
Total Tetrachloro Biphenyls		9.3		8.6		9		4.8		0.8		3		3.5		0.9		6
Total Pentachloro Biphenyls		7.84		7.98		8		1.9		2		2		3.46		3.06		3
Total Hexachloro Biphenyls		3.36		4.32		4		2.09		1.51		2		2.32		1.66		2
Total Heptachloro Biphenyls	ND			0.485		0.255		0.503		0.529	ND			0.232		0.214		0.408
Total Octachloro Biphenyls	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Total Nonachloro Biphenyls	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Decachloro Biphenyl	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Total PCB=TOTAL PCBs		29		30		28		13		9		11		15		9		18
CLIENT_ID																		
Axys ID		NOTL-1		NOTL-2		NOTL-3	Balsa	m Lake Control-1	Bak	am Lake Control-2	Bals	am Lake Control-3						
WORKGROUP		L23776-89	L23776-90		L23776-91		L23776-92 RXi		L23776-93		L23776-94							
UNITS	WG52450		WG52450		WG52450			WG53086	WG52450		WG52450							
	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample	flag	ng/sample						
Total Monochloro Biphenyls																		
Total Dichloro Biphenyls	ND		ND		ND		ND		ND		ND							
Total Trichloro Biphenyls		2.3		6.2		3	ND		ND		ND							
Total Tetrachloro Biphenyls		24.9		25.8		26		3.2		3.1		3						
Total Pentachloro Biphenyls		34.7		39.1		33		1.4		1.9		1						
Total Hexachloro Biphenyls		14.2		13.9		13	ND			0.34	ND							
Total Heptachloro Biphenyls		5.42		5.97		3	ND			0.701		0.457						
Total Octachloro Biphenyls		0.718		0.724		1	ND		ND		ND							
Total Nonachloro Biphenyls	ND		ND		ND		ND		ND		ND							
Decachloro Biphenyl	ND		ND		ND		ND		ND		ND							
Total PCB=TOTAL PCBs	ND		ND		ND		ND		ND		ND							
		83		91		80		5		6		5						

