Niagara River Biomonitoring Study 2012 Caged Mussels (*Elliptio complanata*) and Semi Permeable Membrane Devices (SPMDs)

Lisa Richman Ontario Ministry of Environment Water Monitoring Section Environmental Monitoring and Reporting Branch November 2015

ADDENDUM: April 2022

Estimated 2012 water concentrations of contaminants using SPMD data provided in an earlier version of this report have been updated to reflect changes in the Performance Reference Compound (PRCs) values used for the calculations.

Table 4 has been replaced with the updated version of the table and text has been changed accordingly.

Estimated water concentrations have increased significantly for some parameters using the modified PRCs, however, the contaminant trends spatially (i.e., location of suspected sources) remain the same.

Concentrations were compare Values that exceed the criter	ia were highlighted in			. ,													
	la were nigringrited i			am, <i>D</i> /O = 0	ownstream												
			2 Mile Creek			Pettit Flume ^a		Pettit Flume ^a		Pettit Flume ^a		Gratwick Riverside Park			Gratwick Riverside Park		
	Agency	Water Quality Criteria			Exceedence Factor (EF)	upstream	EF	outer	EF	Downstream	EF	upstream		EF	downstream		EF
		Criteria	Mean	SD	Factor (EF)		EF		EF		EF	Mean	SD	EF	Mean	SD	EF
		ng/L	ng/L	ng/L		ng/L		ng/L		ng/L		ng/L	ng/L		ng/L	ng/L	_
1,3-Dichlorobenzene	MECP	2500	3.2	0.35		0.42		24		6.1		1.11	0.12		1.5	0.21	
1,4-Dichlorobenzene	MECP	4000	9.3	0.61		3.7		72		12		5.2	0.49		10	2.0	
1,2-Dichlorobenzene	NYSDEC	3000	0.69	0.11		0.88		36		0.69		0.53	0.005		1.01	0.13	
1,3,5-Trichlorobenzene	MECP	650	0.42	0.03				1.5		0.36		0.03	0.003		0.02	0.003	
1,2,4-Trichlorobenzene	MECP	500	1.1	0.10		0.04		6.4		0.32		0.26	0.03		0.07	0.01	
1,2,3-Trichlorobenzene	MECP	900	0.08	0.01				3.2		0.05		0.03	0.004		0.02	0.004	
1,2,4,5-/1,2,3,5-Tetrachlorobenzen	ie		1.3	0.15		0.01		4.5		0.27		0.04	0.002		0.03	0.002	
1,2,3,4-Tetrachlorobenzene	MECP	100	1.8	0.20		0.01		8.2		0.14		0.02	0.004		0.02	0.003	
Hexachlorobutadiene	NYSDEC	10	0.03	0.003				0.03		0.06					0.00	0.001	
Pentachlorobenzene	MECP	30	2.5	0.32		0.02		5.5		1.05		0.08	0.01		0.07	0.01	
Hexachlorobenzene	NYSDEC	0.03	0.57	0.08	19	0.05	2	4.5	151	4.0	133	0.18	0.02	6	0.12	0.02	4
HCH, gamma (Lindane)	NYSDEC	8	1.0	0.05								0.12	0.11		0.07	0.07	_
HCH, alpha	NYSDEC	2	38	0.39	19										0.08	0.14	
HCH, beta			12	1.6													
HCH, delta			1.0	0.26						0.01		0.003	0.01				
Aldrin	NYSDEC	2		0.01													
Octachlorostyrene	NYSDEC	0.006	0.01	0.002	2			0.03	4.6	0.04	7.5						
2,4'-DDE			0.03	0.001		0.02		0.02		0.02		0.02	0.002		0.01	0.01	
4,4'-DDE	NYSDEC	0.007	0.21	0.02	30	0.08	11	0.18	26	0.08	12	0.07	0.01	10	0.04	0.01	6
2,4'-DDD			0.10	0.02				0.22				0.00	0.01		0.01	0.01	
4,4'-DDD	NYSDEC	0.08	0.44	0.05	6	0.07		0.71	9	0.07		0.05	0.01		0.04	0.01	
2,4'-DDT			0.05	0.01		0.03		0.02		0.03		0.04	0.00		0.01	0.01	
4,4'-DDT	NYSDEC	0.01	0.02	0.01	2							0.003	0.01				
Mirex	NYSDEC	0.001	0.11	0.02	105			0.06	63								
Chlordane, alpha (cis)	NYSDEC		0.12	0.01		0.04		0.23		0.04		0.03	0.001		0.02	0.005	
Chlordane, gamma (trans)	NYSDEC		0.08	0.01		0.03		0.14		0.03		0.02	0.001		0.01	0.002	
Nonachlor, cis-			0.02	0.004				0.03		0.01		0.01	0.002		0.004	0.001	
Nonachlor, trans-			0.07	0.01		0.03		0.12		0.03		0.02	0.001		0.02	0.003	
Heptachlor	NYSDEC	0.2															
Heptachlor Epoxide	NYSDEC	0.3	0.03	0.003		0.03		0.05		0.02		0.02	0.003		0.02	0.002	
alpha-Endosulphan	MECP (proposed)	3	0.32	0.01				0.04		0.07		0.05	0.05		0.05	0.05	
beta-Endosulphan			0.68	0.05				0.19									
Endosulphan Sulphate			0.22	0.20		0.16		0.61		0.09							
Dieldrin	NYSDEC	0.0006	0.10	0.01	165	0.13	218	0.14	233	0.12	200	0.08	0.01	141	0.07	0.01	121
Endrin	NYSDEC	2															
Methoxychlor	NYSDEC	30	0.13	0.01								0.01	0.02				
Total PCB ^c	NYSDEC	0.001	6.2	0.74	6152	8.8	8827	151	150582	10	10004	52	4.5	52233	15	3.4	14954
^a n=1																	
^b n=2																	

Table 4 (updated April 20) Concentrations were compared		Critorio: Evo	oodonoo Eat	oore (EE)	roproc	ont the ratio of the	water con	oontro	tion actimate (o the oritori	~									-			
Values that exceed the crite							e water con	icentia	liion estimate i	o the chief	a.			_						_			
				, =/ =																			-
			102nd Street			Little Niagara River			Cayuga Creek			Little Niagara River			Occidental Sewer ^b			Gill Creek upstream			Gill Creek mouth		
	Agency	Water Quality	Upstream			(near 102nd St)						(downstream Cayuga ck)						(in creek)					
		Criteria			EF			EF			EF			EF			EF			EF			EF
		201	Mean	SD	_	Mean	SD		Mean	SD		Mean	SD	_	Mean	SD		Mean	SD	_	Mean	SD	
1.3-Dichlorobenzene	MECP	ng/L 2500	ng/L 1.1	ng/L 0.12	-	ng/L 4.6	ng/L 0.68		ng/L 9.1	ng/L 7.9		ng/L 1.2	ng/L 0.18	-	ng/L 3.0	ng/L 0.50		ng/L 3.0	ng/L 0.46		ng/L 13	ng/L 1.6	
1,3-Dichlorobenzene	MECP	4000	2.8		_	4.6	0.84		9.1	16		9.7	0.18		4.4	0.50		24	7.7		42	1.6	
	NYSDEC	3000		0.11	-																	1.7	
1,2-Dichlorobenzene			3.5	1.1	-	0.64	0.05	-	0.13	0.22		0.08	0.14		0.78	0.24	-	3.5	1.2	-	29		
1,3,5-Trichlorobenzene	MECP	650	0.003	0.01	_	0.65	0.04		0.03	0.001		0.12	0.01	_	0.12	0.11		0.14	0.08		0.03	0.01	
1,2,4-Trichlorobenzene	MECP	500	0.03	0.002	_	1.0	0.06		0.20	0.01		0.11	0.02	_	2.1	1.8		1.3	0.68		2.2	0.73	_
1,2,3-Trichlorobenzene	MECP	900	0.005	0.01	_	0.13	0.01	_	0.04	0.03		0.03	0.01	_	0.41	0.33		0.11	0.04	_	0.51	0.17	
1,2,4,5-/1,2,3,5-Tetrachlorobenze			0.09	0.01	_	1.4	0.24	_	0.06	0.01		0.28	0.01		8.8	1.5	_	0.62	0.30	_	0.74	0.13	
1,2,3,4-Tetrachlorobenzene	MECP	100	0.03	0.004	_	1.9	0.23		0.06	0.01		0.37	0.02	_	11	15		0.37	0.15		0.36	0.07	_
Hexachlorobutadiene	NYSDEC	10	0.01	0.001	_	0.01	0.01		0.001	0.002				_	0.20	0.07		0.02	0.02		11	2.8	1.1
Pentachlorobenzene	MECP	30	0.06	0.001		2.0	0.20		0.27	0.04		0.53	0.05		0.14	0.14		0.38	0.15		0.49	0.11	
Hexachlorobenzene	NYSDEC	0.03	0.24	0.004	8	0.69	0.10	23	0.65	0.11	22	0.19	0.02	6	0.02	0.01		0.42	0.18	14	0.52	0.13	17
HCH, gamma (Lindane)	NYSDEC	8	0.03	0.06								0.52	0.23		0.11	0.01		3.9	0.73		1.0	0.23	
HCH, alpha	NYSDEC	2				0.42	0.04					2.7	0.22	1.3	0.21	0.29		68	5.1	34	26	1.4	13
HCH, beta												1.3	0.24		0.12	0.16		18	0.64		6.0	0.65	
HCH, delta			0.01	0.004	_	0.03	0.00		0.04	0.02		0.21	0.05				_	1.3	0.34	_	0.14	0.01	
Aldrin	NYSDEC	2													0.67	0.65		0.02	0.02				
Octachlorostyrene	NYSDEC	0.006							0.01	0.01	1.3				2.8	3.92	467	0.02	0.03	3	0.02	0.01	4
2,4'-DDE			0.01	0.002		0.01	0.01		0.06	0.01		0.02	0.001		0.04	0.01		0.02	0.01			0.003	
4,4'-DDE	NYSDEC	0.007	0.03	0.001	5	0.13	0.02	19	0.36	0.04	52	0.09	0.02	13	0.03	0.02	4	0.22	0.08	31	0.04	0.01	5
2,4'-DDD			0.01			0.13	0.02		0.21	0.05		0.04	0.01					0.06	0.02		0.01	0.002	
4,4'-DDD	NYSDEC	0.08	0.03	0.002		0.49	0.05	6	0.78	0.17	10	0.14	0.02	2				0.30	0.13	4	0.04	0.01	
2,4'-DDT			0.01	0.002		0.04	0.004		0.10	0.02		0.03	0.01					0.04	0.01		0.01	0.002	
4,4'-DDT	NYSDEC	0.01	0.004	0.004					0.06	0.01	5	0.01	0.01										
Mirex	NYSDEC	0.001	0.01	0.01	12	0.70	0.12	120	0.27	0.05	47	0.09	0.03	27	0.04	0.05	52	0.08	0.04	40	0.01	0.01	7
Chlordane, alpha (cis)	NYSDEC		0.02	0.002		0.04	0.004		0.41	0.06		0.06	0.01		0.02	0.02		0.09	0.04		0.02	0.004	
Chlordane, gamma (trans)	NYSDEC		0.02	0.002		0.03	0.01		0.26	0.04		0.04	0.01		0.35	0.46		0.06	0.03		0.01	0.003	
Nonachlor, cis-			0.01	0.001		0.01	0.01		0.05	0.01		0.01	0.003		0.03	0.05		0.02	0.01		0.002	0.002	
Nonachlor, trans-			0.02	0.001		0.03	0.01		0.22	0.04		0.05	0.01		0.04	0.05		0.05	0.03		0.01	0.003	
Heptachlor	NYSDEC	0.2													0.32	0.41	1.6						1
Heptachlor Epoxide	NYSDEC	0.3	0.01	0.002		0.01	0.002		0.15	0.02		0.01	0.01		0.03	0.004		0.01	0.01		0.01	0.002	-
alpha-Endosulphan	MECP (proposed)	3	0.20	0.04		0.13	0.01		0.17	0.15		0.18	0.05		0.41	0.16	-	0.36	0.10	-	0.18	0.01	-
beta-Endosulphan						0.19	0.01					0.21	0.25					0.19	0.08				-
Endosulphan Sulphate			0.03	0.05		0.03	0.06		0.51	0.20		0.10	0.10					0.24	0.003		0.10	0.01	
Dieldrin	NYSDEC	0.0006	0.07	0.00	115	0.07	0.01	118	0.44	0.08	736	0.05	0.004	91	0.09	0.02	154	0.20	0.07	341	0.08	0.01	138
Endrin	NYSDEC	2	0.07	0.01	113	0.07	0.01	110	0.77	0.00	7.50	0.00	0.004		0.00	0.02	104	0.20	0.07	341	0.00	0.01	130
Methoxychlor	NYSDEC	30	0.002	0.003					0.30	0.05		0.02	0.04										-
Total PCB ^c	NYSDEC	0.001	7.9	0.003	7917	19	2.6	19480		11	53666	7.7	1.0	7721	237	61.4	236909	19	8.0	18621	12	3.3	1187
	NIGDLO	0.001	1.3	0.04	1911	17	2.0	13400			33000	1.1	1.0	1121	231	01.4	230309	13	0.0	10021	12	3.3	110/
^a n=1																							-
^b n=2																	1						-

Values that exceed the crite	ared with Water Qualit						of the wate		centration ea			sna.								
values that exceed the child	ena were nignlighted ir	i rea iont. C	J/S = upstrear	11; D/5 = 00	wnstre	eam											_			-
																				_
			Millers Creek			Boyers Ck		_	Chippawa			Fort Erie ^b			NOTL			Balsam Lake		
	Agency	Water Quality							Channel											
		Criteria	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF
		ng/L	ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	
1,3-Dichlorobenzene	MECP	2500	0.37	0.06		0.15	0.14		0.37	0.34					0.40	0.35				
1,4-Dichlorobenzene	MECP	4000	2.4	0.42		2.1	0.06		3.0	1.6		2.3	0.15		1.9	0.29		1.3	0.14	_
1,2-Dichlorobenzene	NYSDEC	3000				0.09	0.15		1.5	2.7		2.2	1.6		3.0	0.27				
1,3,5-Trichlorobenzene	MECP	650	0.005	0.001																
1.2.4-Trichlorobenzene	MECP	500	0.01	0.001		0.004	0.01								0.05	0.01				
1.2.3-Trichlorobenzene	MECP	900				0.01	0.01		0.005	0.01					0.02	0.002				
1.2.4.5-/1.2.3.5-Tetrachlorobenze	-		0.01	0.001		0.00	0.004		0.000	0.002		0.002	0.003		0.02	0.002				
1,2,3,4-Tetrachlorobenzene	MECP	100	0.003	0.001		0.002	0.003		0.005	0.002		0.01	0.01		0.10	0.01				
Hexachlorobutadiene	NYSDEC	100	0.000			0.002	0.003		0.005	0.004		0.01	0.01		0.03	0.02		0.01	0.02	
Pentachlorobenzene	MECP	30	0.01	0.002		0.004	0.004		0.005	0.004		0.01	0.002		0.00	0.01		0.01	0.02	-
Hexachlorobenzene	NYSDEC	0.03	0.01	0.002		0.01	0.004		0.02	0.01	1.3	0.01	0.002		0.10	0.02	3	0.03	0.02	0.89
HCH, gamma (Lindane)	NYSDEC	8	0.01	0.002		0.37	0.40		0.14	0.02	1.5	0.02	0.17		0.09	0.03	J	0.00	0.02	0.03
HCH, alpha	NYSDEC	2				0.07	0.40	_	0.14	0.14	_	0.17	0.17		0.03	0.06				
HCH, beta	NIODEO	-													0.05	0.00				
HCH, delta			0.001	0.001		0.01	0.01				_	0.01	0.001		0.01	0.01				
Aldrin	NYSDEC	2	0.001	0.001		0.01	0.01					0.01	0.001		0.01	0.01				
Octachlorostyrene	NYSDEC	0.006													0.01	0.001	2			_
2,4'-DDE									0.01	0.01					0.005	0.001				
4,4'-DDE	NYSDEC	0.007	0.19	0.04	27	0.03	0.01	5	0.12	0.09	17	0.04	0.001	6	0.03	0.003	4	0.05	0.03	8
2,4'-DDD			0.03	0.01				-	0.01	0.02		0.01	0.001	-	0.00	0.003	-			-
4,4'-DDD	NYSDEC	0.08	0.15	0.02	2				0.07	0.08		0.03	0.004		0.02	0.004		0.02	0.01	_
2.4'-DDT		0.00		0.02	-				0.05	0.09		0.002	0.003		0.01	0.001		0.02	0.01	_
4,4'-DDT	NYSDEC	0.01		0.004					0.00	0.02		0.002	0.003		0.01	0.01				_
Mirex	NYSDEC	0.001		0.001					0.01	0.02		0.002	0.000		0.01	0.01				_
Chlordane, alpha (cis)	NYSDEC		0.01	0.003		0.01	0.01		0.02	0.02		0.01			0.01	0.001				
Chlordane, gamma (trans)	NYSDEC		0.01	0.001		0.01	0.01		0.01	0.01		0.003	0.004		0.01	0.001				_
Nonachlor, cis-			0.00	0.001					0.01	0.01		0.003								-
Nonachlor, trans-			0.00	0.002		0.01	0.01		0.02	0.01		0.01	0.001		0.01	0.001		0.01	0.01	
Heptachlor	NYSDEC	0.2	0.01	0.002		0.01	0.0.		0.02	0.0.		0.0 .	0.001		0.003	0.001		0.01	0.0.	-
Heptachlor Epoxide	NYSDEC	0.3	0.003	0.003					0.03	0.03		0.01			0.000	0.001				
alpha-Endosulphan	MECP (proposed)	3	0.14	0.00		0.38	0.02		0.03	0.07	+	0.07	0.02		0.01	0.001	-	0.12	0.03	
beta-Endosulphan		-	0.07	0.06		0.25	0.02		0.00	0.28		0.01	0.02		0	0.02		02	0.00	
Endosulphan Sulphate			0.07	0.06		0.50	0.06		0.04	0.20	+ +	0.04	0.06		0.06	0.05		0.22	0.05	
Dieldrin	NYSDEC	0.0006	0.03	0.00	44	0.04	0.00	63	0.13	0.10	218	0.04	0.00	105	0.06	0.003	98	0.06	0.04	106
Endrin	NYSDEC	2	0.00	0.01			0.01		0.10	0.10		0.00	0.01			0.000		0.00	0.04	
Methoxychlor	NYSDEC	30													0.002	0.003				-
Total PCB ^c	NYSDEC	0.001	0.47	0.13	474	0.70	0.30	696	0.79	0.53	789	0.27	0.02	267	0.99	0.19	993	0.13	0.05	127
^a n=1																				_
⁻ n=1 ^b n=2								_												

Acknowledgments

The author would like to acknowledge John Thibeau and Patrick Padovan of MOECC for the 2012 field work. The efforts of the MOECC Laboratory Services Branch organic contaminant analysis unit and dioxin unit are also acknowledged.

The author would also like to acknowledge and thank Duncan Boyd, Tanya Long, Cheriene Vieira and Rick Day for their review and comments on this report.

Executive Summary

The Niagara River is the interconnecting channel between Lake Erie and Lake Ontario. Numerous persistent toxic and bioaccumulative contaminants from waste disposal sites, industrial outfalls, municipal point sources and non point sources have been discharged to the Niagara River for decades. Since 1983 the Ontario Ministry of Environment and Climate Change (MOECC) has been committed to the biomonitoring of contaminants in the Niagara River using caged mussels (*Elliptio complanata*) as part of Ontario's commitment to the Niagara River Toxics Management Plan. These studies have provided information on suspected contaminant sources and source areas in the river between upstream Fort Erie and downstream Niagara-on-the-Lake.

This current report summarizes data from the 2012 survey which included the deployment of caged mussels, semi-permeable membrane devices (SPMDs) and polyethylene strips. A comparison of all three contaminant monitors was one of the objectives of this survey. However, data for the polyethylene strips are currently unavailable since they have not been analysed to date. Accordingly, this report only summarizes the caged mussel and SPMD data. SPMD data, reported as ng/SPMD were used to estimate mean water concentrations using the United States Geological Survey (USGS) SPMD Water Concentration Estimator. These values were compared with the most stringent of either the relevant New York State Department of Environmental Conservation (NYSDEC) guideline and/or MOECC Provincial Water Quality Criteria (WQC).

SPMDs and mussels have different uptake routes thereby providing different but complementary information on environmental contaminants. Due to their mechanisms of uptake, the SPMDs provided a more accurate determination of the presence of compounds in water compared with the caged mussels. However, they can underestimate the presence of contaminants and bioavailability of compounds that preferentially bind to sediment. If understanding and assessing contaminant bioavailability from sediment is also an objective of these surveys, then including biomonitors such as caged mussels for some parameters may be desirable.

The contaminant tissue data from the deployment of caged mussels at various sites on the Canadian side of the river were consistent with previous years of monitoring. Data suggested that only a few contaminants were bioavailable at trace concentrations; in particular, the metabolites of DDT which were likely related to legacy contamination in the area, and PCBs which were likely related to atmospheric sources. The SPMDs provided results that were consistent with the caged mussel data, however, they also identified the presence of legacy organochlorine pesticide use on the Canadian side of the river (e.g., alpha-endosulphan, beta-endosulphan, endosulphan sulphate, and dieldrin all detected at low concentrations). PCBs, Hexachlorobenzene (HCB), pentachlorobenzene and 1,2,3,4-tetrachlorobenzene were detected in SPMDs deployed at Niagara-on-the-Lake (NOTL) at higher concentrations than the other Canadian sites, but this was to be expected at the mouth of the river since contaminants discharged

from American sources were mixed with the Canadian water mass once the river passes over the falls.

Sources of organic contaminants identified on the US side were consistent with previous mussel monitoring surveys. Occidental Chemical Corp, Buffalo Avenue Sewer 003 (OCC Sewer 003) had the highest tissue concentrations of 1,2,3,4-tetrachlorobenzene, pentachlorobenzenes and HCB, and the Pettit Flume and Bloody Run Creek were also sources of pentachlorobenzene and HCB. This pattern was confirmed with SPMDs deployed at the Pettit Flume and OCC Sewer 003 (SPMDs were not deployed at Bloody Run Creek). SPMDs at Two Mile Creek showed high concentrations of tetra- and hexachlorobenzene relative to other sites. These contaminants have not been identified in previous mussel surveys. With the exception of the OCC Sewer 003, all stations on the US side of the river had estimated HCB water concentrations that were from 2 to 124 times greater than the NYSDEC WQC of 0.03 ng/L indicating sources of HCB throughout the Niagara River.

The highest concentrations of PCBs were present in mussels deployed at OCC Sewer 003, Cayuga Creek, Two Mile Creek and Gill Creek. PCB concentrations in SPMDs confirmed the unusually high bioavailability of PCBs at the Occidental site and Cayuga Creek. The mean estimated water concentration for OCC Sewer 003 was 142 ng/L which significantly exceeded the NYSDEC water guality criteria of 0.001 ng/L, and suggested that the discharge of PCBs from this site could be problematic if this occurred regularly. PCB data for SPMDs deployed at Gratwick Riverside Park suggested that contaminants may still be leaching from this waste site into the Niagara River in spite of remedial actions being completed, or alternatively, there is an additional source upstream of the Park. This possibility will be investigated in 2015 by deploying SPMDs at locations upstream of GRP. Estimated water concentrations for PCBs associated with the area were 24 ng/L. As well, the Pettit Flume had high concentrations of PCBs in the SPMDs (estimated water concentration: 57 ng/L). The homologue pattern showed that the total PCB concentration was represented by mono and dichlorobiphenyl which was not analysed in caged mussels, providing an explanation as to why PCBs had not been identified previously at this location.

The 2012 data confirm the previous survey data that showed the Pettit Flume and Bloody Run Creek to be sources of dioxins and furans. Data for sediment and mussels deployed downstream of the Pettit Flume at Fisherman's Park showed that dioxin contaminated sediment from the Pettit Flume may have migrated off-site.

Although organochlorine pesticides were below the detection limits in mussels (with the exception of metabolites of DDT), they were detected at most stations in the SPMDs. Most noteworthy was dieldrin which exceeded the NYSDEC WQC (0.001 ng/L) at every station in the study (US and Canadian sites) by a factor of 23 to 309 times. The highest concentrations of dieldrin and α and γ chlordane were present in Cayuga Creek. The WQC was also exceeded at all stations for 4,4'-DDE (0.007 ng/L). Gill Creek had the highest concentrations of hexachlorobutadiene and metabolites of the pesticide lindane, consistent with previous mussel surveys. SPMDs deployed at sites downstream of the

102nd St. Hazardous Waste site all had mirex present and estimated water concentrations exceeded the NYSDEC WQC by 54 to 836 times. Mirex has been associated with these sites in past mussel and juvenile fish surveys and was present in mussels at the OCC Sewer 003 in 2012.

Table of Contents

INTRODUCTION AND BACKGROUND	
OBJECTIVES	2
METHODS	
Sample Locations	3
Collection Methods and Ambient Measurements	4
Mussel Deployment/Retrieval and Sample Preparation	4
Sediment	6
Water Chemistry	
SPMD Deployment	6
Analytical Methods	7
Data Analysis	7
RESULTS	9
Balsam Lake Control Mussels, SPMDs and SPMD Field Blanks	
Balsam Lake	
Field Blanks	
Caged Mussel and SPMD Data: Canadian Sites	11
Polychlorinated Biphenyls (PCBs) at Canadian Sites	
Caged Mussel and SPMD Data: American Sites	
Two Mile Creek	
Pettit Flume	
Fisherman's Park	
Gratwick Riverside Park (GRP)	
102nd Street Hazardous Waste Site, Little Niagara River (LNR), and Cayuga Creek	
Occidental Chemical Corporation (OCC), Buffalo Avenue Plant, Niagara Falls, New York Bloody Run Creek	
Using SPMDs to Estimate Water Concentrations	35
SPMDs vs Caged Mussels	41
CONCLUSIONS & RECOMMENDATIONS	44
REFERENCES	45
APPENDICES	

List of Tables

Table 1: Parameter List.

Table 2: Mussel sampling locations for the 2012 survey and contaminants identified at each station.

Table 3: Concentrations of total PCB (sum of 55 congeners) in caged mussels and surface sediment collected from the Niagara River and tributaries (2006-2012).

Table 4. Estimated mean water concentrations (ng/L) of organic compounds based on SPMD data and comparison with water quality guidelines.

List of Figures

Figure 1: Niagara River: Mussel biomonitoring sampling stations 2012.

Figure 2: PCB homologue distribution patterns in caged mussels and SPMDs deployed in Balsam Lake, and SPMD field blanks exposed to the air during deployment and retrieval, 2012. NOTE: Mussels were not analysed for Mono or Di-chlorinated biphenyls.

Figure 3: Chlorinated Benzenes in SPMDs (ng/SPMD) for the Niagara River, 2012 **NOTE**: on all figures stations are listed from upstream to downstream. Canadian sites begin at Fort Erie and extend to the end of the X axis.

Figure 4: DDT metabolites in SPMDs (ng/SPMD) for the Niagara River, 2012.

Figure 5: Organochlorine Pesticides in SPMDs (ng/SPMD) for the Niagara River, 2012.

Figure 6: Mean and standard deviation total PCB concentrations (sum of 55 congeners) (ng/g dry wt.) in caged mussels deployed at sites along the Niagara River.

Figure 7: Total PCB (sum of 209 congeners) data for SPMDs deployed in the Niagara River, 2012.

Figure 8: PCB homologue distribution patterns in SPMDs, Balsam Lake Control Mussels and caged mussels deployed at various Canadian locations in the Niagara River, 2012. **Note** that the x axis for the SPMDs includes mono and dichloro biphenyl.

Figure 9: Comparison of homologue concentrations (ng/SPMD) in SPMD field blanks with SPMDs deployed at selected Canadian sites.

Figure 10: PCB homologue distribution patterns in caged mussels and SPMDs deployed at the mouth of Two Mile Creek, 2012 and in Balsam Lake mussels.

Figure 11: Mean (bars) and standard deviation (whiskers) of total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Two Mile Creek through time (1987-2012).

Figure 12: Dichlorobenzene and trichlorobenzene concentrations (ng/SPMD) in SPMDs for the Niagara River, 2012.

Figure 13: OC pesticide concentrations in SPMDs (ng/SPMD) for the Niagara River, 2012.

Figure 14: Concentrations of organic compounds in caged mussels deployed at the Pettit Flume Cove through time (1987-2012).

Figure 15: Dioxin and furan congener patterns in sediment and mussels collected from the Pettit Flume and Fisherman's Park, 2012 and from SPMDs deployed at Pettit Flume. The Pettit Flume upstream sediment data is from 2009.

Figure 16: Mean PCB homologue concentrations (ng/SPMD) in SPMDs deployed at the upstream and downstream end of Gratwick Riverside Park and the mean field blank concentration.

Figure 17: Mirex and methoxychlor concentrations in SPMDs (ng/SPMD) for the Niagara River, 2012.

Figure 18: Total PCB concentrations in caged mussels (ng/g dry wt.) and SPMDs (ng/SPMD) deployed in the LNR and Cayuga Creek, 2012.

Figure 19: Chlordane and alpha-endosulphan concentrations in SPMDs (ng/SPMD) for the Niagara River, 2012.

Figure 20: Concentrations of chlorinated organic compounds in caged mussels deployed at the Occidental Chemical Corp. Sewer 003 through time (1983-2012).

Figure 21: Concentrations of organic compounds detected in caged mussels deployed at Bloody Run Creek (1987-2012).

Figure 22: Dioxin and furan isomer patterns in sediment and caged mussels deployed at the mouth of Bloody Run Creek, 2012.

Figure 23: PCB concentrations in SPMDs (ng/g triolein) and Caged Mussels (ng/g lipid; dry wt.) deployed in the Niagara River, 2012.

Figure 24: Contaminant concentrations in SPMDs (ng/g triolein) and Caged Mussels (ng/g lipid dry wt.) deployed in the Niagara River, 2013.

List of Appendices

- Appendix A: Sampling Location Coordinates.
- Appendix B1 &2: Water Temperature, Dissolved Oxygen and Conductivity Data.
- Appendix C: 2012 Mussel Tissue Wet and Dry Weights.
- Appendix D1: 2012 Caged Mussel Tissue Contaminant Data.
- Appendix D2: 2012 Caged Mussel Congener Specific PCB Data.
- Appendix D3: 2012 Dioxin and Furan Concentrations in Mussel Tissue and Sediment.
- Appendix E: Dioxin and Furan Concentrations in Mussels and Sediment 1985-2012.
- Appendix F1 F3: SPMD Data.
- Appendix G: PCB Homologue Patterns for Aroclor Technical Mixtures.
- Appendix H: Station Map of LNR and 102nd St. Hazardous Waste Site

Introduction and Background

The Niagara River (64 km long), is the interconnecting channel between Lake Erie and Lake Ontario. Since 1983, the Ontario Ministry of Environment and Climate Change (MOECC) has been committed to both routine and specialized biomonitoring of contaminants in the river using caged mussels (*Elliptio complanata*) as part of Ontario's commitment to the Niagara River Toxic Management Plan (NRTMP). These studies have provided information on suspected contaminant sources and source areas on the American as well as the Canadian side of the river between upstream Fort Erie and downstream Niagara-on-the-Lake (Richman *et al.* 2011).

Numerous persistent, toxic and bioaccumulative contaminants from waste disposal sites, industry, municipal point sources and non-point sources have been discharged to the Niagara River for decades. The river was identified as an Area of Concern by the International Joint Commission in 1987. Currently, due to environmental improvements through government and local stakeholder/industry remedial actions, the Niagara River (Ontario) RAP (Remedial Action Plan) is moving towards delisting the Canadian side of the river as an AOC. Because of the large number of point and non-point sources of contaminants on the American side of the river and the need for extensive remedial actions at many sites, delisting of the US AOC is not expected for at least 15 more years and possibly longer (Ecology and Environment, Inc. 2011).

The biota in the river can accumulate contaminants from the water, sediment and the food chain. Biota may be the most sensitive indicators of contaminants since current technology cannot always detect the low concentrations in water. Accordingly, the use of caged mussels as a biomonitor has been an effective tool to measure the presence of contaminants in the river.

The 2012 Biomonitoring Survey using mussels (*Elliptio complanata*) was a follow up to surveys every two to three years since 1983. In 2009, passive samplers known as semi permeable membrane devices (SPMDs) were introduced at selective stations to assess their effectiveness at accumulating organic compounds. Geographic contaminant patterns matched well with the caged mussels, and additional compounds not previously detected in the mussels were accumulated by the passive samplers. Accordingly, in 2012, SPMDs and polyethylene strips (another type of passive sampler) were deployed at 18 stations (plus 1 at Balsam Lake) to further assess their effectiveness as contaminant monitors and obtain a more complete database of the stations routinely monitored with mussels. A comparison of all three contaminant monitors was one of the objectives of this survey. It was anticipated that the polyethylene strips could be a useful monitor and had the potential of being analysed at the Rexdale MOECC laboratory making them more cost effective than the SPMDs. Currently, data for the polyethylene strips are unavailable for comparison in this report because the analysis has not been completed. Accordingly, this report only summarizes the caged mussel and SPMD data from the 2012 survey.

Objectives

The biota in the river can accumulate contaminants from the water, sediment and the food chain. The principle behind the mussel biomonitoring program was to take mussels from a relatively uncontaminated site and place them in an environment that was known or suspected of being contaminated with persistent, bioaccumulative, toxic substances. Mussels are abundant, easily collected and transported, and sedentary, which means that their contaminant exposure is reflective of relatively local conditions. They are responsive to their surrounding environment so tissue concentrations can often reflect short-term fluctuations in contaminant concentrations which may not be detected by routine water quality monitoring (Kauss and Hamdy, 1991; Lobel *et al.*, 1991; Metcalfe and Charlton, 1990; Muncaster *et al.*, 1989). *Elliptio complanata* is a filter feeder (feeding on plankton and organic detritus) and will accumulate contaminants directly from both the water column and particulate matter (Pennak, 1978). This makes it a good biomonitor since contaminants often partition between the dissolved and particulate phases.

SPMDs and other passive samplers efficiently sequester hydrophobic contaminants dissolved in the water and may be more reliable monitors than the caged mussels since the monitoring method is standardized among all stations. Biota don't always survive the exposure, or they may be stressed which can affect uptake and depuration leading to inaccurate measurements of ambient exposure concentrations. Additionally, there may be variability in the bioaccumulation due to their physical condition, sex or age (Lobel et al. 1991). Deployment of SPMDs between 14-30 days has been shown to be sufficient to accumulate most hydrophobic contaminants that are environmentally relevant, although studies have suggested that depending on the contaminant, they may require a longer deployment time to be in equilibrium with the environment (Huckins et al. 1996; Petty et al. 2000). While some studies have shown agreement in geographic contaminant trends between SPMDs and mussels (Prest et al. 1992; Prest et al. 1995; Herve et al. 1995; Peven et al. 1996), others did not find a good correlation (Richardson et al. 2001; Degger et al. 2011). One explanation was the variability in the performance of mussels had an effect on study outcomes, but these studies also highlighted the importance of the different contaminant uptake processes for SPMDs and mussels. Accordingly, it may be useful to use the two datasets in tandem to compare the relative patterns of contamination among the stations but not compare the actual concentrations between the monitors.

The objectives of the survey in 2012 were consistent with earlier surveys and are listed below:

- identify contaminant sources or source areas requiring more detailed follow-up investigations based on uptake of contaminants in selected biomonitors.
- compare results with ongoing long-term trace contaminant monitoring using indigenous species i.e., spottail shiners and identify spatial and temporal trends. Unfortunately,

juvenile fish were not collected in 2012 by MOECC. This objective will be revisited in the 2015 survey.

- augment ongoing upstream/downstream Niagara River Toxics Management Plan programs by providing information on contaminants present in the river between Fort Erie and Niagara-on-the-Lake.
- assess effectiveness of SPMDs and polyethylene strips as a possible replacement for caged mussels.

Methods

Sample Locations

During the week of July 16th 2012, mussels were deployed at 29 sites on the Canadian and US side of the river (Figure 1; Appendix A provides site coordinates). On the Canadian side these included the routine monitoring at the head and mouth of the river: Fort Erie and Niagara-on-the-Lake (NOTL), in addition to tributaries to the Niagara River (e.g., Millers Creek, Bakers Creek and Boyers Creek), and a site in the river along the Chippawa Channel. Mussels deployed at Bakers Creek did not survive, likely due to low oxygen concentrations measured at the time of deployment (DO = 2.3 mg/L.

On the US side, mussels were deployed at stations with long-term monitoring datasets (e.g., the Occidental Chemical Corp. (Buffalo Ave facility) sewer 003, Gill Creek, Two Mile Creek, Gratwick Riverside Park (GRP), Cayuga Creek, Bloody Run Creek, 102nd St. Hazardous Waste Site (Little Niagara River–LNR), and the Pettit Flume), and at two locations in the Tonawanda Channel that had not been previously monitored (upstream and downstream of Fisherman's Park). Deployment at Rattlesnake Creek, a small tributary in North Tonawanda that discharges to Two Mile Creek about 300 m above the mouth before it discharges to the Niagara River was cancelled while in the field since the creek was dry. Rattlesnake Creek was monitored using mussels in 2009. Cages deployed at the Bloody Run Creek upstream site were vandalized and therefore no 2012 mussel data are available for this site.

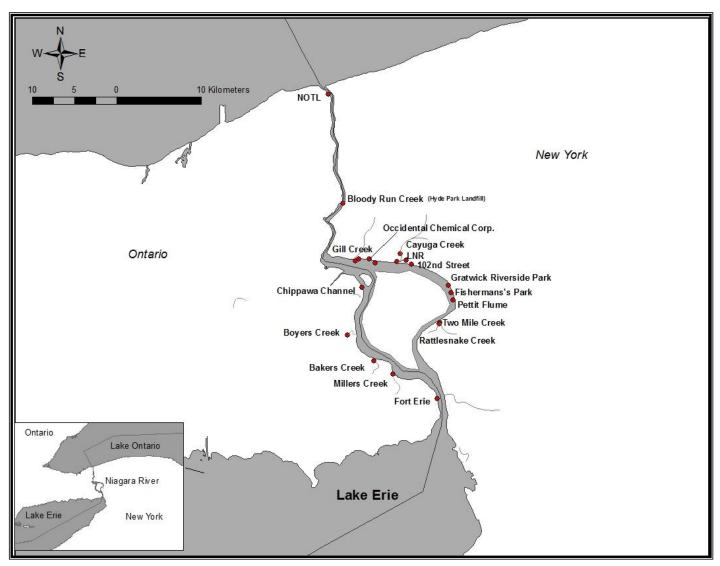


Figure 1: 2012 Niagara River caged mussel biomonitoring sites.

Collection Methods and Ambient Measurements

Mussel Deployment/Retrieval and Sample Preparation

Mussels were collected by divers from Balsam Lake, a relatively uncontaminated lake located in Victoria County, Ontario. Mussels of approximately the same size (6.5 to 7.2 cm) were selected to reduce variability due to tissue weight and mussel age. They were placed in buckets lined with clean bioassay (food-grade) polyethylene bags partially filled with lake water and then sealed with trapped air inside for transportation back to the laboratory. Rapid temperature fluctuations were avoided. Five, randomly selected mussels were submitted for analysis of contaminants described in Table 1 to determine initial tissue contaminant concentrations. These mussels are referred to as the "Balsam Lake control mussels".

Table 1: Parameter List

Organochlorinated Pesticides, Industrial	PCB congener		Dioxins and Furans
Chemicals and Chlorinated Benzenes	number		Dioxin-like PCBs
hexachloroethane	18	153	2378-tetrachlorofuran
1,3,5-trichlorobenzene	19	155	12378-pentachlorofuran
1,2,4-trichlorobenzene	22	158	23478-pentachlorofuran
1,2,3-trichlorobenzene	28	168	123478-hexachlorofuran
hexachlorobutadiene (HCBD)	33	170	123678-hexachlorofuran
2,4,5-trichlorotoluene	44	171	123789-hexachlorofuran
2,3,6-trichlorotoluene	49	177	234678-hexachlorofuran
1,2,3,5-tetrachlorobenzene	52	178	1234678-heptachlorofuran
1,2,4,5-tetrachlorobenzene	54	180	1234789-heptachlorofuran
1,2,3,4-tetrachlorobenzene (1,2,3,4-TetraCB)	70	183	Octachlorofuran
pentachlorobenzene (PentaCB)	74	187	2378-tetrachlorodioxin
hexachlorobenzene (HCB)	87	188	12378-pentachlorodioxin
heptachlor	95	191	123478-hexachlorodioxin
Aldrin	99	194	123678-hexachlorodioxin
p,p'-DDE	101	199	123789-hexachlorodioxin
α-BHC	104	201	1234678-heptachlorodioxin
β-ΒΗΟ	110	202	Octachlorodioxin
γ-BHC (lindane)	119	205	PCB081
α-chlordane	128	206	PCB077
γ-chlordane	138	208	PCB123
oxychlordane	149	209	PCB118
cis chlordane	151		PCB114
trans chlordane			PCB105
o,p'-DDT			PCB126
p,p'-DDD			PCB167
p,p'-DDT			PCB156
Mirex			PCB157
Photo-Mirex			PCB169
PCB (total)			PCB189
Toxaphene			
octachlorostyrene			
•			

A minimum of five clean mussels (and/or up to 28 mussels, depending on analytical requirements) were placed in clean, galvanized wire cages (about 30 cm x 36 cm x 10cm; 1 cage per station). These were anchored to the bottom using spikes or rope attached to a concrete block in water of at least 1 m depth. Three randomly selected mussels were retrieved after three weeks (21 days) and analysed individually for percent lipid and total PCBs (polychlorinated biphenyls), organochlorine pesticides, chlorinated benzenes and industrial chlorinated compounds at all stations (Table 1). At 16 stations, three replicates of 6 mussels each were composited and also submitted for congener-specific PCBs. Additionally, at 9 stations mussels (one composite of four mussels) were submitted for dioxins and furans. Balsam Lake control mussels were submitted for all parameters.

Upon retrieval, mussels were immediately shucked, excess water drained and the soft tissues weighed (Appendix C). Mussels were either wrapped individually in hexanerinsed aluminum foil or packaged as composites, placed in plastic bags, and frozen until analysis. Mussels submitted for PCB congener-specific analysis were freeze-dried prior to analysis. In all cases, the mussels were not depurated prior to analysis.

Sediment

At 6 sites associated with Bloody Run Creek, the Pettit Flume and Fishermans Park, surficial sediment (top 3 cm) grab samples were collected with a hexane rinsed stainless steel spoon for PCDD/Fs analysis. All sediment samples were also analysed for total organic carbon and particle size.

Water Chemistry

Water temperature, DO and conductivity measurements were collected *in situ* during deployment and retrieval of mussels at all stations using a YSI sonde (Appendix Table B).

SPMD Deployment

SPMDs were obtained from Environmental Sampling Technologies (EST) who is the manufacturer of the SPMD equipment, media preparation and dialysis services. Analysis of the SPMDs for contaminants of interest was performed by AXYS Analytical Services Ltd. SPMDs were deployed along-side caged mussels at 18 stations to measure contaminant uptake from the dissolved water phase. Additionally, SPMDs were deployed in Balsam Lake for three weeks to compare uptake with the Balsam Lake Control mussels. Briefly, 91.4 cm x 2.5 cm low density polyethylene lay-flat tubing was filled with 1 mL of high purity triolein then heat-sealed and stored frozen in aluminum canisters for transportation to the Niagara River. EST also spiked the SPMDs with Performance Reference Compounds (PRC). These compounds are used to measure rates of loss, which allow adjustment of the SPMD data to reflect field sampling conditions. Each SPMD was spiked with 60 ng/SPMD of PCB 14, PCB 29 and PCB 50. At each site, three SPMDs were placed on a "spider carrier" within a

galvanized metal shroud and deployed by placing them in the current on the sediment using site rocks or steel pegs to hold them in place. Four field blanks were opened and exposed to the air for the duration of the deployment and retrieval to assess the impact of atmospheric contamination on the SPMDs. Two sites were on the Canadian side and two sites were on the US side.

SPMDs were retrieved simultaneously with the caged mussels, placed in metal containers, and stored on ice until return to the laboratory where they were stored frozen until analysis by AXYS.

Analytical Methods

The mussel samples were analyzed for total-PCB and OC pesticides using the OMOE method E3136 (OMOE, 2008a; summarized in Richman and Somers, 2010). PCB congeners were analysed in biota using OMOE method E3411 (OMOE, 2008b) and the seventeen 2,3,7,8-substituted toxic PCDD/Fs and homologue totals were analysed in mussels and sediment using the OMOE method DFPCB-E3418 (OMOE, 2008c; Richman and Somers, 2005). Particle size and TOC in sediment were analyzed by OMOE methods E3328A and E3142A (OMOE, 2008d-e; described in Richman and Milani, 2010).

All mussel data are reported on a wet weight basis with the exception of the data for congener-specific PCBs. These mussels were freeze dried prior to analysis so concentrations are reported as dry weight. The total PCB concentration (sum of the 55 congeners) for these samples were also converted to wet weight by determining the ratio of wet to dry weight for each individual sample to facilitate a comparison with historical PCB data. The water content of the mussel tissue ranged from 84-91%. All sediment data are reported on a dry wt. basis.

SPMDs were analysed for PCBs, OC pesticides, chlorinated benzenes and dioxins and furans by AXYS with a combined gas chromatography/low resolution mass spectrometry (GC/LRMS) analysis (based on EPA Method 8270 OC/D, EPA Method 625, EPA Method 1613B respectively). Prior to the analysis, all parameters were co-extracted (AXYS in house method MLA-013 (fractionation only). Detailed descriptions of analytical methods can be provided upon request. All SPMD data are reported as ng/SPMD (equivalent to ng/mL triolein) unless otherwise noted.

The remaining PRC PCBs (14, 29 and 50) measured following retrieval were subtracted from the total PCB data and for the description of homologue patterns.

Data Analysis

For the caged mussel data, "W" represents the smallest amount of an analyte that can be reliably detected by the procedure used. Concentrations described as "trace" are flagged with a "<T". Trace values ranged from greater than "W" to 10 times "W" for organic parameters. Data flagged as trace indicate that the presence of the analyte is

confirmed but the actual concentrations reported should be interpreted with caution. Basically, "T" indicates the limit of quantification. Both "W" and "T" are based on the precision of the method which is in turn based on replicate measurements for the same analyte. "W" is set at 2/3 of the standard deviation of the replicate measurements of low-level spiked blank matrix samples. Each sample run (generally 12 to 25 samples) is compared against a prepared standard and includes the determination of low level detection limits, method blanks and recovery checks using spikes. An independent control standard is used to monitor accuracy and stability, duplicate samples are used to test within run precision, and calibration standards are used for a drift check. Details on QA/QC expectations are provided in the method manuals listed above.

In the case of PCDD/Fs and dioxin-like PCBs, a run usually consisted of 10 samples. An analyte was considered to be above the detection limit when the result met standard peak definition (usually 3-5 times signal:noise ratio) or was greater than five times a corresponding positive result determined to be present in the method blank used within that specific sample set. "W" and "T" values do not apply to these analytical procedures. Data that do not meet peak definition and/or are less than five times the method blank are flagged as "<".

Toxicity Equivalency Factors (TEFs) have been used to express the toxicity of different dioxins and furans and dioxin-like PCBs (DL-PCBs) on a common basis. The World Health Organization (WHO) TEFs for the protection of fish were used for the calculations for both sediment and mussels (van den Berg et al., 2006). Concentrations of individual isomers were converted to toxicity equivalents of 2,3,7,8-TCDD and then summed to yield a total toxic equivalent (TEQ). TEQs were calculated to facilitate comparisons of mussel tissue and sediment dioxin/furan concentrations among stations and through time.

Statistical analysis on the congener-specific PCB mussel data was performed using SigmaStatTM. To compare total PCB concentrations (sum of 55 congeners) between stations, a one-way analysis of variance (ANOVA) was used on log₁₀ transformed data. Transformation of the data resulted in assumptions for normality and equal variance being met. If significant differences were found, the Holm-Sidak test for multiple comparisons was used to determine which stations differed.

Results

A summary of the contaminants present/absent in mussels deployed at each station in the 2012 survey is provided in Table 2. All caged mussel and sediment data are provided in Appendix D and E. SPMD data are provided in Appendix F.

TABLE 2. Mussel sampling locations for the 2012 survey and presence ($\sqrt{1}$) of contaminants in mussel tissue. NR - mussels deployed along the Niagara River shoreline; U/S and D/S refers to upstream and downstream.

 HCH (α, β, and/or γ - lindane); chlordane (α and/or γ); HCBD: hexachlorobutadiene; HCB: hexachlorobenzene; CB: chlorobenzenes; TCT: trichlorotoluenes;

 total PCBs = sum of the congener specific PCB analysis

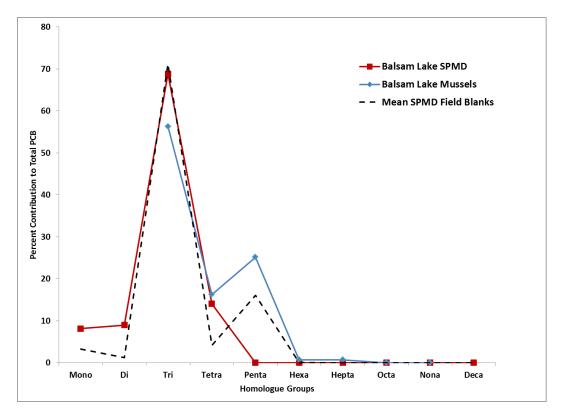
 NA: not analysed

 (T): Trace concentrations

Sampling Station	pp'-DDE	total PCBs	HCH	chlordanes	mirex	OCS	HCBD	triCB	tetraCB	pentaCB	HCB	тст	Dioxin/Fura
Balsam Lake Control Mussels	√ (T)	√ (T)									√ (T)		NA
Canadian Sites													NA
NR-Fort Erie @ Robertson St.		√ (T)									√ (T)		NA
Chippawa Channel	√ (T)	√ (T)									√ (T)		NA
Miller Creek	√ (T)	NA									√ (T)		NA
Baker Creek	Mussels	did not survive)										NA
Boyer's Creek	√ (T)	NA									√ (T)		NA
NR-Niagara-on-the-Lake (NOTL)		√ (T)									√ (T)		NA
American Sites													
Two Mile Creek (mouth)		$\sqrt{}$									√ (T)		NA
Rattlesnake Creek	Deployme	nt cancelled du	e to dry	creekbed									
Pettit Flume (U/S)	√ (T)	NA											NA
Pettit Flume (site B)		NA						√ (T)	√ (T)	√ (T)	$\sqrt{\sqrt{1}}$		$\sqrt{\sqrt{1}}$
Pettit Flume (D/S)	√ (T)	NA									√ (T)		$\sqrt{\sqrt{1}}$
Fisherman's Park (U/S inlet)	√ (T)	√ (T)									√ (T)		$\sqrt{\sqrt{1}}$
Fisherman's Park (D/S inlet)		√ (T)									√ (T)		$\sqrt{\sqrt{1}}$
Gratwick Riverside Park (U/S within park)		NA									()		NA
Gratwick Riverside Park (D/S within park)		√ (T)									√ (T)		NA
NR-102nd Street (U/S)	√ (T)	$\sqrt{\sqrt{1}}$									√ (T)		NA
Little Niagara River (D/S 102nd St)		√ (T)									√ (T)		NA
Cayuga Creek (in the Ck)	√ (T)	$\sqrt{\sqrt{1}}$						√ (T)		√ (T)	√ (T)		NA
Little Niagara River (D/S Cayuga Ck)	√ (T)	$\sqrt{\sqrt{1}}$											NA
NR-U/S Occidental Chemical Corp.	• (•)	√ (T)									√ (T)		NA
NR-Occidental 003	√ (T)	1	√ (T)		√ (T)	$\sqrt{}$	√ (T)	√ (T)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	1	$\sqrt{}$	NA
NR-350 m U/S Gill Creek Mouth	• (•)	√ (T)	• (•)		• (•)		• (•)	• (•)			√ (T)		NA
Gill Creek Mouth		$\sqrt{\sqrt{1}}$	√ (T)				$\sqrt{\sqrt{1}}$				√(T)		NA
Gill Creek (U/S in the creek)	√ (T)	√ (T)	√(T)								√(T)		NA
NR-Bloody Run Creek (U/S)	Cages va		, (1)								, (1)		NA
NR-Bloody Run Creek (3 deployment locations)		NA					√ (T)	√ (T)	√ (T)	$\sqrt{\sqrt{1}}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$
NR-Bloody Run Creek (D/S)	, (,)	NA					• (•)	, (,)	, (1)	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	1

Balsam Lake

Trace concentrations of congener specific PCBs (4 to 6 ng/g wet wt; (54-55 ng/g dry wt.) were present in the Balsam Lake control mussels consistent with 2006 and 2009 surveys where concentrations ranged from 0.6 to 3.4 ng/g wet. The corresponding PCB concentration in sediment collected in 2006 from the same area where the mussels were collected was 4 ng/g dry wt. (Richman *et al.* 2011) which suggested low contamination. The low tissue concentrations and high percentage (56%) of trichlorobiphenyls present in the Balsam Lake mussel samples relative to the other homologue groups suggested atmospheric deposition as the likely PCB source to the lake (Johnson *et al.*, 2005; MacDonald and Metcalfe 1991) (Figure 2).

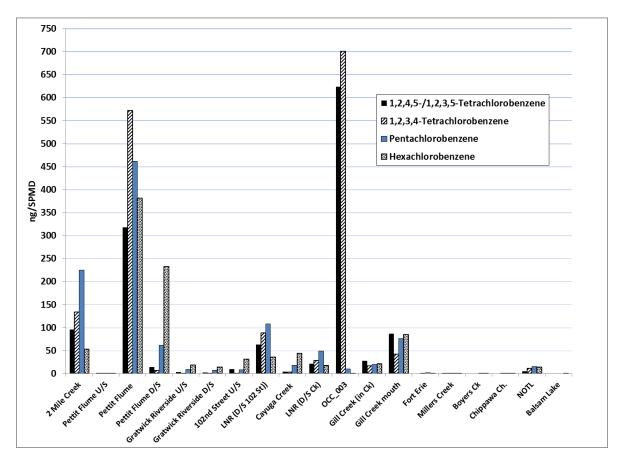

Organochlorine pesticides and chlorinated compounds were all below the detection limit with the exception of trace concentrations of p,p'-DDE (3 ng/g) in one mussel and trace concentrations of HCB (3-4 ng/g) in the three mussels (Appendix D1).

The SPMD data were consistent with the caged mussels, e.g., the detection of 4,4'-DDE and HCB at low concentrations (mean ≤ 2 ng/SPMD) (Appendix F). Additionally, 4,4'-DDD, hexachlorobutadiene (HCBD), trans-nonachlor (a component of the pesticide chlordane), endosulphan sulphate (all means < 1.5 ng/SPMD), and dieldrin (mean 2.3 ng/SPMD), were also detected suggesting their presence in the lake at low concentrations (Figures 3-5). The mean total PCB concentration in the SPMDs was 4.6 ng/SPMD (standard deviation (SD) 1.2 ng/SPMD). The homologue pattern was consistent with the profile for the caged mussels also suggesting atmospheric deposition as the sources, however, the percent contribution of the homologues vary since the SPMD analysis included mono and dichloro biphenyls whereas mussel analysis does not include these homologues (Figure 2).

Field Blanks

SPMD field blanks were exposed to the air at four stations for the duration of sample deployment and retrieval (Chippawa Channel, Millers Creek, Pettit Flume, Little Niagara River (LNR) (near 102nd St). The detection of contaminants represents the potential for the SPMDs to adsorb contaminants from the atmosphere. The field blanks had detectable, but low concentrations (< 1ng/SPMD) of some chlorinated benzenes, alpha-and gamma-chlordane and alpha-endosulphan and PCBs. Three blanks had total PCB concentrations ranging from 5.4 to 6.5 ng/SPMD while the blank opened at the Pettit Flume had a total PCB concentration of 59 ng/SPMD. This was due to relatively higher concentrations of trichlorobiphenyl (PCB congener 30 was 50 ng/SPMD). The reason for this discrepancy is unclear. The only compounds that were consistently elevated in the field blanks were 1,4 dichlorobenzene (mean 12.6 ng/SPMD; SD 6.1 ng/SPMD) and oxy-chlordane (mean 35.2 ng/SPMD; SD 2.6 ng/SPMD) (Appendix F).

The PCB homologue pattern in the blanks was similar to the Balsam Lake SPMD pattern (Figure 2). All four field blanks and Balsam Lake had the trichlorobiphenyls as the dominant homologue. Since the concentration of total PCBs in the SPMD field blanks was similar to the Balsam Lake SPMDs, it is possible the Balsam Lake samples represented exposure to the atmosphere during deployment/retrieval rather than available PCBs in the water. However, the source of PCBs to the water is likely atmospheric as well.


Figure 2: PCB homologue distribution patterns in caged mussels and SPMDs deployed in Balsam Lake, and SPMD field blanks exposed to the air during deployment and retrieval, 2012. NOTE: Mussels were not analysed for Mono or Di-chlorinated biphenyls.

Caged Mussel and SPMD Data: Canadian Sites

The results from the 2012 survey were consistent with historical data (Richman *et al.* 2011; Richman 2013). Trace concentrations of PCBs (4.9 - 7.6 ng/g wet wt.), HCB (2-4 ng/g) and p,p'- DDE (2-4 ng/g) were present in mussels deployed at Canadian sites. The presence of HCB could have been attributed to the initial concentrations in the Balsam Lake control mussels, however, the SPMDs also identified HCB as being present at all stations at low concentrations (means < 2.5 ng/SPMD). The exception was NOTL, where concentrations of HCB were relatively higher at 14 ng/SPMD (SD of 0.72 ng/SPMD). Additionally, SPMDs at NOTL also detected the presence of 1,2,3,4-tetrachlorobenzene (mean: 12 ng/SPMD; SD 2 ng/SPMD), and pentachlorobenzene

(mean 15 ng/SPMD; SD 1.3 ng/SPMD) (Figure 3). This is not surprising given that contaminants detected only on the US side of the upper river will be mixed with the relatively cleaner water from the Canadian side as the water passes over the falls and then detected on the Canadian side at the mouth of the river. This is also consistent with the Environment Canada (EC) Upstream/Downstream Niagara River Monitoring Program water quality data where contaminants with sources within the Niagara River such as HCB and mirex, were detected only at the NOTL site and not at the upstream (Fort Erie) site (Hill and Klawunn 2009).

There were several OC pesticides not detected in mussels but present in SPMDs at similar concentrations to those detected on the US side of the river particularly in tributaries (e.g., 4,4'-DDE, 4,4' DDD, alpha-endosulphan, beta-endosulphan, endosulphan sulphate, and dieldrin), suggesting widespread historical use of these compounds in the Niagara watershed (Figures 4 & 5). Lake Erie has also been identified as a source of dieldrin and metabolites of DDT to the Niagara River in addition to sources within the Niagara River tributaries (Hill and Klawunn 2009).

Figure 3: Chlorinated Benzenes in SPMDs (ng/SPMD) for the Niagara River, 2012 **NOTE**: on all figures stations are listed from upstream to downstream. Canadian sites begin at Fort Erie and extend to the end of the X axis.

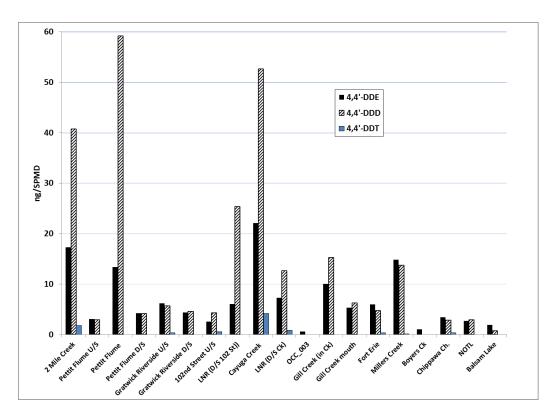
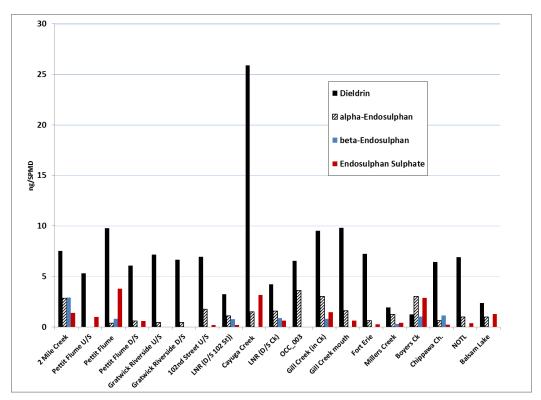
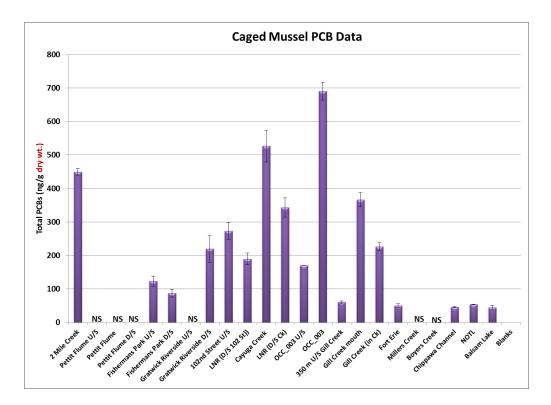
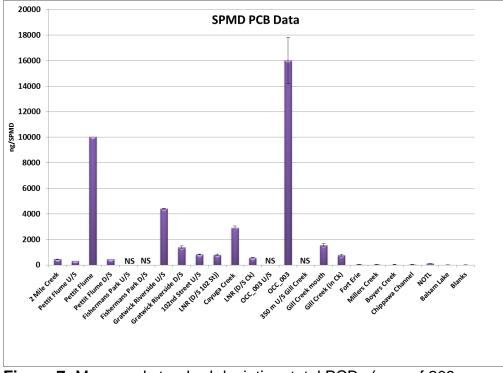



Figure 4: DDT metabolites in SPMDs (ng/SPMD) for the Niagara River, 2012

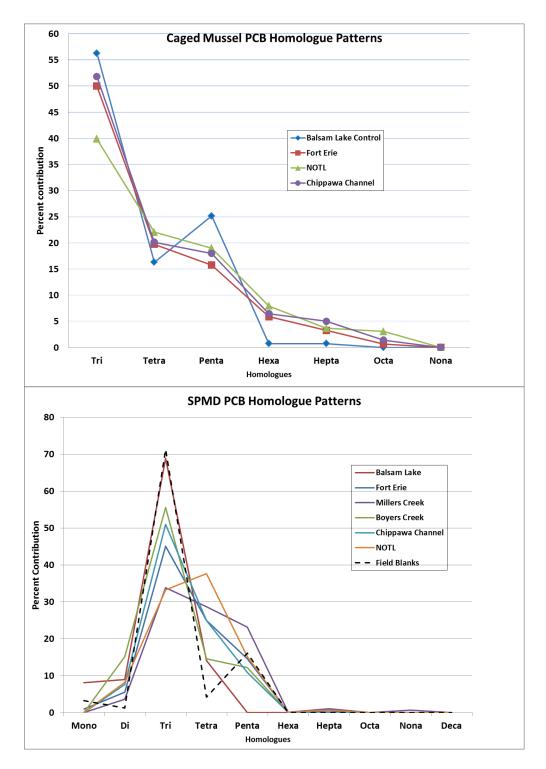
Polychlorinated Biphenyls (PCBs) at Canadian Sites


A summary of the 2012 congener specific PCB data in caged mussels, and for comparison, historical data (2006-2009) in mussels and sediment, is provided in Table 3. An ANOVA on all 2012 caged mussel data showed that there were significantly different concentrations of total PCBs among the stations (F=290; p<0.001) which involved comparisons among the US sites. The Holm-Sidak test for multiple comparisons showed that mussels deployed at all Canadian sites had total PCB (sum of 55 congeners) concentrations that were not significantly different from the Balsam Lake control mussels and that concentrations among the Canadian sites were also not significantly different (Figure 6). SPMD data provided results that were consistent with the caged mussel data whereby PCB concentrations were similar among all Canadian stations (Figure 7; Appendix F).

The homologue patterns in both mussels and SPMDs were relatively consistent among these two media. Patterns for all Canadian sites (with the exception of NOTL) were similar to the Balsam Lake control mussels and Balsam Lake SPMDs, with a high percent contribution from the lighter homologues suggesting atmospheric contributions as opposed to a direct discharge (Figure 8). Concentrations of total PCBs in caged mussels and SPMDs for these sites were low, ranging from 4.9 -7.6 ng/g (wet wt.) and 10-50 ng/SPMD respectively which was not suggestive of a PCB source, or significant contamination when compared to sites on the U.S. side with known PCB sources.


The higher PCB concentrations and different homologue pattern at NOTL was likely due to the contributions of PCBs from the US side as discussed earlier for HCB, tetra and pentachlorobenzene (Figure 9).

Error (SE). Each replicate from th					data	a from 2006 a	ana 2009 w	vere proviaea:	com	osites consiste	a of 12 l	nusseis	
Data for mussels reported as dry	wt. and wet wt. S	ediment data (n	=1) is reported	d as dry wt.									
	Mussels (2012)	Mussels (2012)	Mussels (2009)	Mussels (2006		Mussels	0/ 1	Sediment (2003)	тос	Sediment (2006)	тос	Sediment (2009)	т
	Total PCB <u>+</u> SE ng/g wet wt.	Total PCB <u>+</u> SE ng/g dry wt.	Total PCB <u>+</u> SE ng/g dry wt.	Total PCB <u>+</u> SI ng/g dry wt.	-	Total PCB <u>+</u> SE ng/g wet wt.	% Lipid	Total PCB ng/g dry wt.	mg/g dry wt.	Total PCB ng/g dry wt.	mg/g dry wi	Total PCB ng/g . dry wt.	m
	n=3	n=3	n=3	n=3		2006 & 2009	2006 & 2009	n=1	-	n=1		n=1	
Canadian sites													
Balsam Lake (control)	5.3 <u>+</u> 0.6	45 <u>+</u> 4.1	ND	17 <u>+</u> 8.1	<t< td=""><td>2 <u>+</u> 1</td><td>3.7<u>+</u>0.4</td><td></td><td></td><td>4</td><td>3 <t< td=""><td></td><td></td></t<></td></t<>	2 <u>+</u> 1	3.7 <u>+</u> 0.4			4	3 <t< td=""><td></td><td></td></t<>		
Fort Erie @ Robertson Street	6.2 <u>+</u> 0.8	51 <u>+</u> 2.9		27 <u>+</u> 5.1*	<t< td=""><td>3 <u>+</u> 1</td><td>1<u>+</u>0.1</td><td></td><td></td><td>5 <</td><td>=W 11</td><td></td><td></td></t<>	3 <u>+</u> 1	1 <u>+</u> 0.1			5 <	=W 11		
Chippawa Channel	5.7 <u>+</u> 0.1	46 <u>+</u> 1.5		33 <u>+</u> 9.3	<t< td=""><td></td><td>1.1<u>+</u>0</td><td>19</td><td>7</td><td>190</td><td>6</td><td></td><td></td></t<>		1.1 <u>+</u> 0	19	7	190	6		
Niagara-on-the-Lake	6.2 <u>+</u> 0.2	54 <u>+0</u> .3		32 <u>+</u> 3.8	<t< td=""><td>4 <u>+</u> 1</td><td>5.2<u>+</u>1</td><td>38</td><td>7</td><td>14 .</td><td>:T 9</td><td></td><td></td></t<>	4 <u>+</u> 1	5.2 <u>+</u> 1	38	7	14 .	:T 9		
Millers Creek			54 <u>+</u> 4			7 <u>+</u> 0.4	7 <u>+</u> 0.5					5	<=W
Bakers Creek			45 <u>+</u> 4			6 <u>+</u> 0.2	6.7 <u>+</u> 0.2					5	<=W
Boyers Creek			45 <u>+</u> 5			6 <u>+</u> 0.3	7.2 <u>+</u> 0.6					5	<=W
_yons Creek			243 <u>+</u> 18			28 <u>+</u> 3	5.8 <u>+</u> 0.7	87	28				
Velland R at Confluence with Lyons Creek			45 <u>+</u> 0.6			5 <u>+</u> 0.4	6.8 <u>+</u> 0.3					10	<t .<="" td=""></t>
yons Creek U/S of Welland River			48 <u>+</u> 3			5 <u>+</u> 0.2	8.3 <u>+</u> 0.7					16	<t< td=""></t<>
Nelland River @ Welland canal			50 <u>+</u> 3		_	6 <u>+</u> 0.2	7.7 <u>+</u> 0.2						
American sites					-								
Fonawanda Channel - U/S Two Mile Creek				129 <u>+</u> 18	<t< td=""><td></td><td>6<u>+</u>0.6</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		6 <u>+</u> 0.6						
Scajaquada Creek			257 <u>+</u> 13			27 <u>+</u> 3	5.2 <u>+</u> 0.4					73	
Rattlesnake Creek			697 <u>+</u> 13			82 <u>+</u> 3	5.0 <u>+</u> 0.5					390	
Fonawanda Channel - U/S Two Mile Creek			110 <u>+</u> 6			12 <u>+</u> 1	6 <u>+</u> 0.5						
Two Mile Creek - Mouth	47 <u>+</u> 2.7	450 <u>+</u> 5.8		580 <u>+</u> 17	<t< td=""><td></td><td>6.5<u>+</u>0.3</td><td>690</td><td>65</td><td>1200</td><td>34</td><td></td><td></td></t<>		6.5 <u>+</u> 0.3	690	65	1200	34		
Two Mile Creek - U/S in Creek				103 <u>+</u> 9.1	<t< td=""><td>10<u>+</u>1</td><td>6.3<u>+</u>0.2</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10 <u>+</u> 1	6.3 <u>+</u> 0.2						
Fisherman's Park (U/S inlet)	15 <u>+</u> 1.5	123 <u>+</u> 8.8											
Fisherman's Park (D/S inlet)	9.9 <u>+</u> 0.3	88 <u>+</u> 6.5											└──┼ ─
Gratwick Riverside Park (D/S end of park)	27+2.9	220 <u>+</u> 23.1											$ \longrightarrow $
102 nd Street (U/S)	35 <u>+</u> 1.1	273 <u>+</u> 14.6	0.40 4.6							-		110	\vdash
Little Niagara River	24 <u>+</u> 1.2	190 <u>+</u> 10	243 <u>+</u> 13			26 <u>+</u> 2	5.5 <u>+</u> 0.3					140	
Cayuga Creek - in Creek	82 <u>+</u> 4.8	527+27.3	213 ± 3		_	22 <u>+</u> 0.5	4.5 <u>+</u> 0.0					570	
Little Niagara River - D/S Cayuga Creek	44 <u>+</u> 2.6	343 <u>+</u> 16.7	190 <u>+</u> 15			21 <u>+</u> 3	6.5 <u>+</u> 1	0000		-		190	-
Niagara River @ Occidental Sewer 003	23+0.1	170+0.0			_			8800	8				
Occidental 003 (U/S)			407 - 40		_	40.4	57.00						\vdash
Occidental 003	81 <u>+</u> 6.5	690 <u>+</u> 15.3	187 <u>+</u> 12	40.04	-	18 <u>+</u> 1	5.7 <u>+</u> 0.2						
Niagara River - U/S Gill Creek Gill Creek - Mouth	7.8 <u>+</u> 0.3	61 <u>+</u> 2.3		43 <u>+</u> 21 227+15	<t <t< td=""><td></td><td>1<u>+</u>0.1</td><td>0.400</td><td></td><td>-</td><td></td><td></td><td></td></t<></t 		1 <u>+</u> 0.1	0.400		-			
Gill Creek - Mouth Gill Creek - U/S in Creek	47 <u>+</u> 2	367 <u>+</u> 12					1.2 <u>+</u> 0.1	3400 150	7	120	-		
	28 <u>+</u> 1.8	227 <u>+</u> 6.7		230 <u>+</u> 12	<t <t< td=""><td></td><td>6.1<u>+</u>0.2</td><td>150</td><td>17</td><td>120 220</td><td>8</td><td></td><td>\vdash</td></t<></t 		6.1 <u>+</u> 0.2	150	17	120 220	8		\vdash
Niagara River - U/S Bloody Run Creek Niagara River - Bloody Run Creek				57 <u>+</u> 11 83 <u>+</u> 8.1	<1 <t< td=""><td></td><td><u>6+0.1</u> 5.6<u>+</u>0.2</td><td>7900</td><td>22</td><td>440</td><td>12</td><td></td><td></td></t<>		<u>6+0.1</u> 5.6 <u>+</u> 0.2	7900	22	440	12		
u				1								1	


<T measurable trace amount

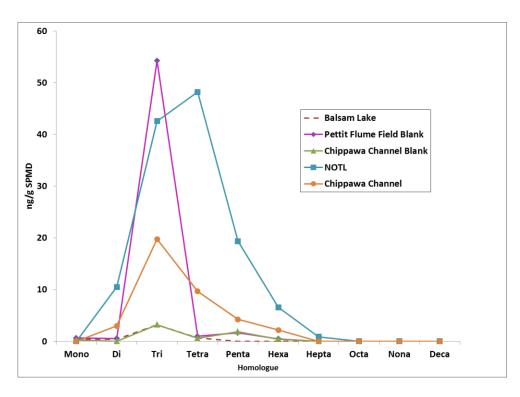

Figure 6: Mean (bars) and standard deviation (whiskers) of total PCB concentrations (sum of 55 congeners) (ng/g dry wt.) in caged mussels deployed at sites along the Niagara River in 2012. **NS** represents stations where samples were not analysed for congener specific PCBs.

Figure 7: Mean and standard deviation, total PCBs (sum of 209 congeners) for SPMDs deployed in the Niagara River, 2012. **NS** represents stations where SPMDs were not deployed.

Figure 8: PCB homologue distribution patterns in SPMDs, and caged mussels deployed at various Canadian locations in the Niagara River, 2012. **Note** that the x axis for the SPMDs includes mono, di and deca-chlorinated homologues.

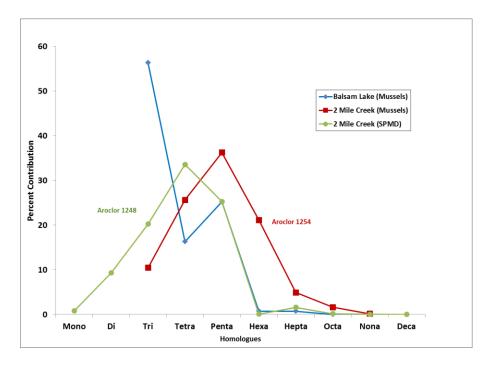
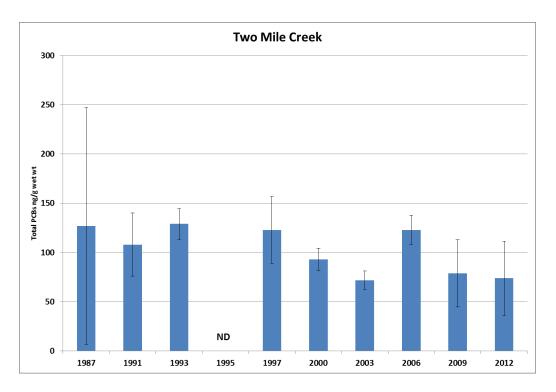
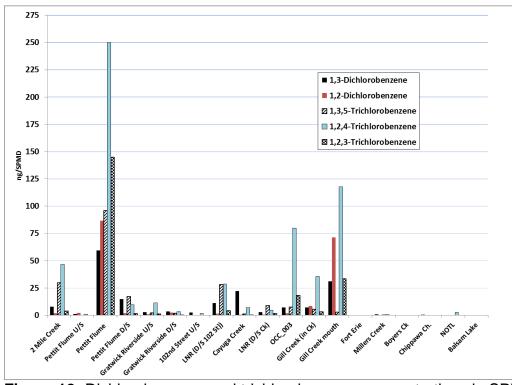


Figure 9: Comparison of homologue concentrations (ng/SPMD) in SPMD field blanks with SPMDs deployed at selected Canadian sites.

Caged Mussel and SPMD Data: American Sites

Two Mile Creek


The 2012 mussel tissue contaminant data for Two Mile Creek was consistent with earlier surveys; OC pesticides, chlorinated benzenes and industrial compounds were not detected in caged mussels. Two Mile Creek has been identified by NYSDEC as a PCB contaminated site due to historic and ongoing active sources (e.g., runoff from landfills, inactive hazardous waste sites, storm sewers, industries such as Spaulding Composites and the Bisonite Company located upstream) (Niagara River Secretariat 2002). PCB contaminated sediment and soil was removed in 2008 from an area associated with General Electric, however, PCB contaminated sediment at the mouth of the creek in the area where the mussels were deployed has not been remediated to date (J. Lehnen, personal communication, NYSDEC 2012). Caged mussel total PCB concentrations (sum of 55 congeners) ranged from 41 to 50 ng/g (wet wt.), and were similar to mean concentrations reported in 2009 (66 + 4 ng/g) (Table 3) (Richman 2013). PCB concentrations were significantly higher than concentrations detected at all stations in the survey with the exception of mussels deployed at the Occidental sewer outfall which had the highest concentrations in the survey, and Gill Creek and Cayuga Creek which had concentrations that were not significantly different than Two Mile Creek (Figure 6). Homologue patterns in mussels in 2012 resembled Aroclor 1254 and were consistent with patterns reported in earlier studies (Figure 10). Appendix G provides examples of Aroclor patterns for comparison.


Figure 10: PCB homologue distribution patterns in caged mussels and SPMDs deployed at the mouth of Two Mile Creek, 2012 and in Balsam Lake mussels.

Concentrations of total PCB (Aroclor method) in mussels deployed in Two Mile Creek have been variable since 1987, and at times, variability among deployed mussels within a survey has been high (e.g. 1987; Figure 11). There has been no change through time in mussel tissue concentrations which is not unexpected since there has not been any remediation at the mouth of the creek.

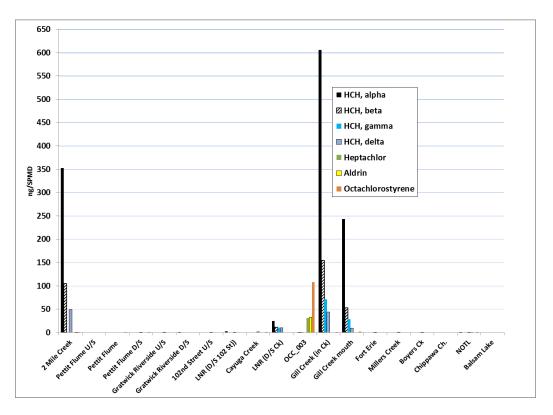

The SPMD data identified several chlorinated benzene compounds, and OC pesticides in Two Mile Creek (Figures 3-5 and Figures 12 & 13) which had not been detected in mussels. Some of the compounds, namely 1,3,5- and 1,2,4 trichlorobenzene, 1,2,3,4 tetrachlorobenzene, pentachlorobenzene, 4,4' DDD, α and β HCH (by-products of the pesticide lindane), and methoxychlor were present at high concentrations relative to other stations in the survey, suggesting that this creek was a source of these compounds to the Niagara River compared with other sites. SPMD PCB data showed a shift in homologue distribution from resembling Aroclor 1254 to Aroclor 1248 (Figure 10). Additionally, SPMD PCB concentrations in Two-Mile Creek were significantly less than concentrations in Cayuga Creek and Gill Creek as well other stations in the survey, which was inconsistent with the caged mussel data (Figures 6 & 7). The caged mussel tissue PCB concentrations likely reflected PCB contamination in both the sediment and water column due to their feeding behaviour while the SPMDs would only be reflecting PCBs in the dissolved-phase in water and hence the shift to the lower chlorinated homologues. In addition, since the mussels were not depurated prior to analysis, contaminated sediment particles would likely also be contributing to the total PCB concentration.

Figure 11: Mean (bars) and standard deviation (whiskers) of total PCB concentrations (Aroclor analytical method (ng/g wet wt.) in caged mussels deployed at the mouth of Two Mile Creek through time (1987-2012).

Figure 12: Dichlorobenzene and trichlorobenzene concentrations in SPMDs for the Niagara River, 2012.

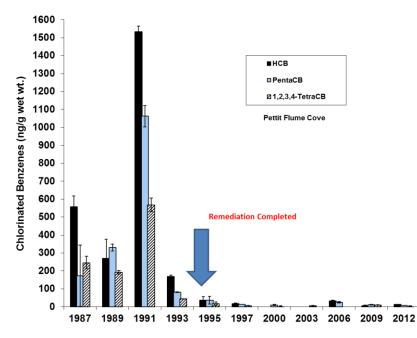


Figure 13: OC pesticide concentrations in SPMDs (ng/SPMD) for the Niagara River, 2012.

Pettit Flume

The Pettit Flume is a storm sewer in North Tonawanda that received waste water from the Occidental Chemical Corporation's Durez Division and surrounding hazardous waste sites (Geologic Testing Consultants Ltd., 1984). Remediation of the site from 1990 to 1995 included on-site containment of contaminants, removal of contaminated sediment from sewer lines, and sediment removal from the cove. The sediments were contaminated with inorganic and organic wastes including chlorinated phenols, chlorotoluene, dioxins and furans and phenol tar containing chlorinated benzenes (Interagency Task Force on Hazardous Waste, 1979; US EPA and NYSDEC, 2004).

Organochlorine pesticides and PCBs have only been detected at trace concentrations in mussels in past surveys and were never considered contaminants of concern for this site. Prior to the remediation of the cove however, tetrachlorobenzene, pentachlorobenzene and HCB were detected at high concentrations in mussels. Results from 2012 showed trace concentrations of 1,2,4 trichlorobenzene (3 ng/g), 1,2,3,4 tetrachlorobenzene (4-5 ng/g), pentachlorobenzene (7-8 ng/g) and HCB (13-14 ng/g) in mussel tissue consistent with previous years post sediment remediation (Appendix D1) (Figure 14).

Figure 14: Mean (+/- SE) concentrations of organic compounds in caged mussels deployed at the Pettit Flume Cove through time (1987-2012).

Notwithstanding the decrease in chlorinated benzene concentrations in mussel tissue through time, the SPMDs still identified the Pettit Flume as a source of these compounds. The Pettit Flume had the highest concentrations of di-, tri-, tetra-, pentachlorobenzene and hexachlorobenzene compared with all the other stations in the study with the exception of tetrachlorobenzene at the Occidental 003 outfall (Figures 3 & 12). Concentrations of chlorinated benzenes were orders of magnitude higher at the Pettit Flume and its downstream site compared with other sites in the survey. In contrast to the mussel data, the SPMD data also suggested relatively high concentrations of 4,4' DDD and PCBs compared with the other sites (Figure 4 & 7). The PCB data are of particular interest since the homologue pattern was dominated by mono and dichlorobiphenyl (Appendix F). This pattern may reflect the presence of Aroclor 1221 or the dechlorination of historically deposited higher chlorinated PCBs. These homologues were not analysed in the caged mussels by the MOECC laboratory and so the high concentrations of PCBs were not measured in previous surveys. This assessment using SPMDs will be repeated in 2015 to confirm these findings.

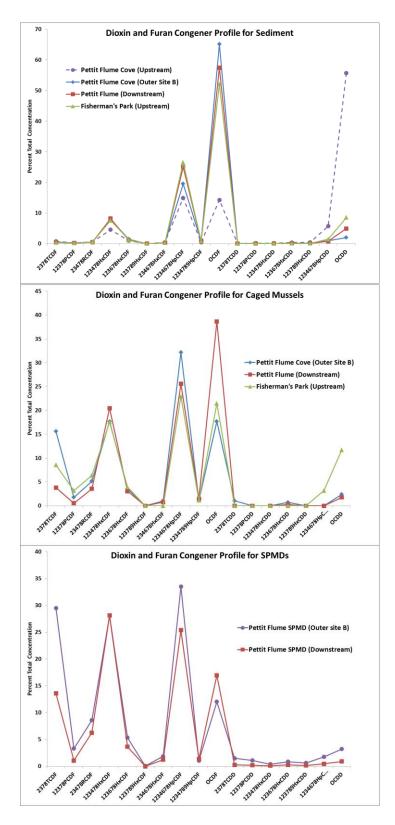
In contrast to the reductions in chlorinated benzenes in mussels, high concentrations of dioxins and furans have been measured in sediment and mussels deployed in the cove consistently since 1993 suggesting the presence of a source that had eluded the remediation in the early 1990's and additional sediment remedial efforts in 2000 (Appendix E) (US EPA and NYSDEC 2002). The sediment collected in 2012 from the cove was highly contaminated with dioxins and furans with a TEQ of 25,494 pg/g (Appendix D3). This concentration was higher than in 2009 which was 3800 pg/g, and similar to concentrations reported in 1997 and 2000. Sediment collected in previous

surveys (1993-2006) had total TEQ concentrations that ranged from 11,000 to 48,000 pg/g (Richman *et al.* 2011). The dioxin and furan isomer patterns in sediments from the cove were unique to the cove when compared to other sites in the Niagara River (i.e., concentration of octachlorodioxin was low relative to other isomers) (Figure 15). Additionally, sediment collected from a site immediately upstream of the cove in past surveys (1993-2009) had low dioxin/furan contamination (total TEQ ranged from 13 to 37 pg/g) and isomer patterns in the upstream sediment samples did not match the unique Pettit Flume profile, but was similar to patterns detected in sediment collected at other sites in the Niagara River representative of non-point sources (Richman 2013).

The continued presence of contaminants in the cove was likely due, in part, to residual contamination in the sewer system. Camera inspections (authorized by Occidental) of the sewer line in 2008 and 2009 identified sediment deposits throughout the sewer. Chemical analysis of the sediment detected contaminants associated with the waste deposited in the cove. A decision to manually vacuum the sediment deposits and line portions of the sewer with resin coated liner tubes to prevent further infiltration of contaminated water and sediment was announced by NYSDEC in October 2013 (NYSDEC Fact Sheet 2013). Some of this work was completed in 2014. Further remediation of the dioxin contaminated cove sediment has not been announced to date.

In contrast to the high sediment TEQ, the TEQ for caged mussels deployed in the cove in 2012 was low at 4.4 pg TEQ/g compared to concentrations observed for the site in past surveys (ranged from 42 -195 pg TEQ/g) since 1993. Mussels deployed immediately upstream of the cove had a TEQ of 0.1 pg/g. The higher dioxin/furan concentrations in mussels deployed in the cove suggested that these compounds were bioavailable and coming from the cove. However, it is unclear why the bioavailability of the dioxins and furans was lower in 2012 than in previous surveys, particularly given the high sediment concentrations. Isomer patterns were consistent with previous surveys, and TOC concentrations in sediment, which may influence bioavailability, were also similar to previous years. Mussel physiological factors may have influenced uptake rates although this is only speculation.

High concentrations of dioxins and furans and isomer patterns consistent with those observed in cove sediments were found in mussels (8.3 pg/g) and sediment collected from a station downstream of the cove (total TEQ 379 pg/g) (Figure 15). This indicated that contaminated sediment had migrated out of the cove into the Niagara River. This TEQ is lower than reported in 2009 (7200 pg/g), but a review of the data since 2000 showed considerable variability through time (Appendix E). These results suggested that the sediment in this area is either heterogeneous and/or transitory (i.e. subject to the variable movement and re-suspension of sediment from the cove and then resuspension and transport further downstream). The SPMD chlorinated benzene data from this downstream site also had higher concentrations relative to the Pettit Flume upstream station which also provides evidence of migration of contaminants from the cove (Appendix F). Additional sediment transport studies from the cove would be required to confirm this theory. However, evidence of movement of contaminated sediment from the Pettit Flume Cove even further downstream is observed at

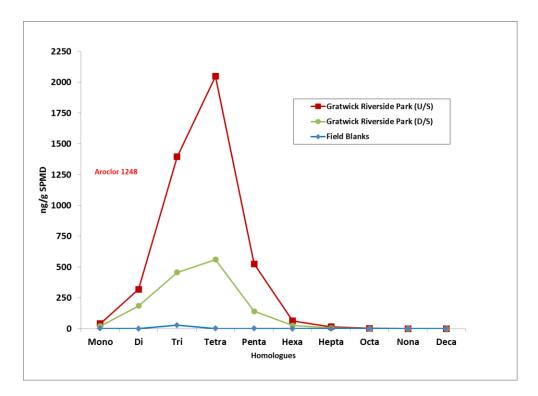

Fisherman's Park located about 0.5 km downstream.

SPMDs deployed at the Pettit Flume Cove analysed for dioxins/furans showed the same congener patterns as the caged mussels (Figure 15), and also higher accumulation downstream from the cove compared with inside the cove (upstream: mean TEQ 0.57 pg/SPMD; SD 0.02 pg/SPMD; cove: mean TEQ 121 pg/SPMD; SD 16 pg/SPMD; downstream: mean 160 pg/SPMD; SD 66 pg/SPMD). The higher concentrations of dioxins/furans in the dissolved phase measured by the SPMDs at the downstream site compared to the site in the cove may suggest greater bioavailability at the downstream site and provide an explanation as to why the caged mussels accumulated higher concentrations of dioxins/furans of dioxins/furans at this site compared to the mussels deployed in the cove.

Fisherman's Park

The Raymond J. Klimek Fishermen's Park was created in the 1970's along the shore of the River on a former dumpsite due to decades of operation of Tonawanda Iron Works (also known as Tonawanda Iron and Steel). The company was founded in 1873 and operated for 99 years until 1972 after having changed ownership on several occasions (City of North Tonawanda 1997). Fisherman's Park is bounded on both sides by inlets which appear to receive Niagara River water. Two monitoring sites were established within the inlets: upstream and downstream of the park. The total TEQ for mussel tissue was 2.5 pg TEQ/g and 0.4 pg TEQ/g at the upstream and downstream site respectively which indicated bioavailability of PCDD/Fs. The total TEQ for dioxins and furans in sediment (333 pg TEQ/g and 210 pg TEQ/g upstream and downstream sites respectively) were high and isomer patterns matched the Pettit Flume signature (Figure 15). Concentrations at Fisherman's Park were 10 to 15 times greater than the the Canadian Sediment Quality Guidelines (CSQG) probable effect level (PEL) of 21.5 pg TEQ/g (CCME 2001). This data suggested that dioxin and furan contamination of the site was likely influenced by the downstream movement of contaminated sediment from the Pettit Flume, however historically there was a storm sewer that discharged to the upstream inlet which is no longer operational but could have been the source of the dioxins as well.

With the exception of low concentrations of PCBs, organic contaminants (OC pesticides and chlorinated benzenes) were not detected in caged mussels deployed at either of the two Fisherman's Park sites (Appendix D1). Congener specific PCB concentrations (sum of 55 congeners) ranged from 14-18 ng/g wet wt. (110 to 140 ng/g dry wt.) at the upstream site and from 9 -10 ng/g wet wt. (78 to 100 ng/g dry wt.) at the downstream site (Table 3; Appendix D2). Concentrations at the downstream site were not significantly different than the Balsam Lake Control mussels and homologue patterns at both sites suggested atmospheric sources of PCBs.


Figure 15: Dioxin and furan congener patterns in sediment and mussels collected from the Pettit Flume and Fisherman's Park, 2012 and from SPMDs deployed at Pettit Flume. The Pettit Flume upstream sediment data is from 2009.

Gratwick Riverside Park (GRP)

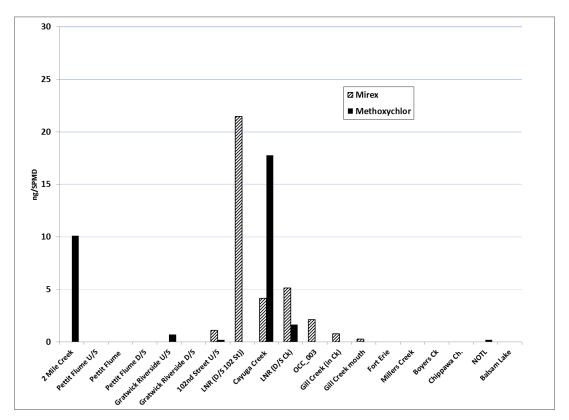
The park is located along the shore of the Niagara River in the city of North Tonawanda. It is 53 acres and was used, prior to the 1970's, as a landfill that accepted municipal and industrial waste as well as metallurgical slag, and phenolic waste from the Occidental Durez site. It was identified as a State Superfund site and remedial actions began in 1999. The goal of the remediation was to provide shoreline protection, install a slurry wall between the site and the river to act as a hydraulic barrier and prevent the movement of contaminants to the river, cap the site so that it can be used as a park and collect and treat contaminated groundwater. Remediation of the site was completed by 2003 (USEPA and NYDEC 2003). This site has not been monitored using caged mussels since the 2003 post remediation monitoring because concentrations of most contaminants were below the detection limit in the mussels.

Since the former waste site is about 1.5 km in length two stations were established along the shoreline of GRP in an attempt to identify movement of contaminant from the site: one at the upstream end and one at the downstream end. Between 1987 and 2003 tetra, penta and hexachlorobenzene, and total PCBs were present in mussel tissue on occasion and concentrations were variable between years. A review of the 2012 SPMD results identified PCBs at the upper end of the Park as being significantly higher than most other sites in the river with the exception of the Pettit Flume and the Occidental outfall suggesting two possibilities: 1) PCBs were still leaching into the river from the former waste site; 2) there are additional sources of PCBs upstream of GRP (Figures 7 and 16). The homologue pattern suggested Aroclor 1248 as the PCB source.

The SPMDs did detect OC pesticides and chlorinated compounds at Gratwick Riverside Park stations, but the concentrations were typical of other Niagara River stations and likely reflected Niagara River nearshore concentrations. The caged mussel data did not provide any additional information with almost all parameters in 2012 below detection. Total PCB using the Aroclor method supported the SPMD data with higher concentrations at the upstream station compared with the downstream station (Appendix D1). The SPMD PCB results will be reassessed in 2015 with the inclusion of sites located further upstream of GRP to act as upstream reference sites when compared with GRP.

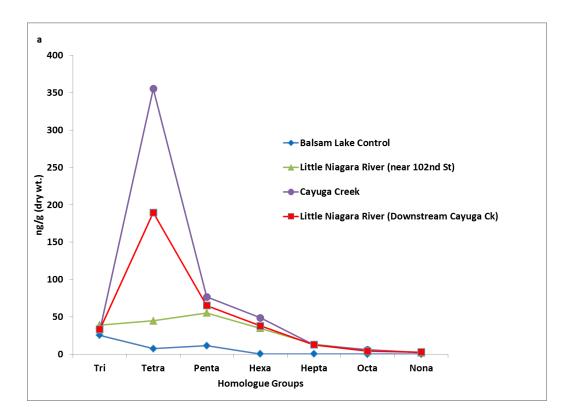
Figure 16: Mean PCB homologue concentrations (ng/SPMD) in SPMDs deployed at the upstream and downstream end of Gratwick Riverside Park and the mean field blank concentration.

102nd Street Hazardous Waste Site, Little Niagara River (LNR), and Cayuga Creek


The 102nd Street hazardous waste site located in the city of Niagara Falls on the bank of the Niagara River was used by Occidental and Olin Chemical Corporation between the early 1940s and 1971 for the disposal of an estimated 150,000 tons of hazardous waste (NRTC 1984; USEPA and NYSDEC, 2002). Remedial actions including the onsite containment of contaminants, implementing a program for the long-term pump and treatment of contaminated groundwater, and the removal of contaminated sediments from the Niagara River were completed in 1999. Details about the site and long-term mussel contaminant trends are provided in Richman *et al.* 2011. Post remediation mussel monitoring surveys showed a decrease in trichlorobenzenes, tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene as well as dioxins and furans at the 102nd site following removal of highly contaminated sediment.

The LNR branches off from the Niagara River about 240 m downstream of the 102nd Street waste site. It travels a short distance around an island and downstream of the mouth of Cayuga Creek, and then rejoins the main river further downstream (Station location map: Appendix H).

In 2006 and 2009, the signature compounds reflective of the 102nd Street waste site (chlorinated benzenes and dioxins and furans) were present in caged mussels deployed in the LNR which suggested that contaminated sediment had migrated downstream


prior to the remediation. In 2012, these organic compounds were not detected in mussels deployed in the same area. However, a comparison of the SPMD data upstream and downstream of the 102nd Street waste site did show higher concentrations of compounds representative of the chemicals from the hazardous waste site at the downstream location confirming the 2006 and 2009 mussels data (Figures 3-5 and Figure 12). The reason for the inconsistency between mussels and SPMDs in 2012 is unclear but may be related to lower detection limits in the SPMDS. These same compounds were present in SPMDs located further downstream in the LNR at albeit lower concentrations, but still reflective of contaminated sediment likely transported from the waste site.

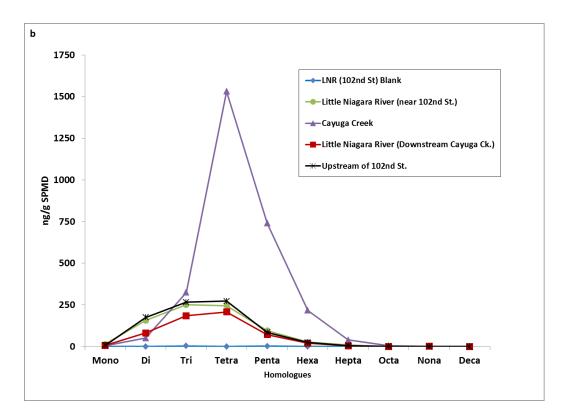

The highest concentrations of mirex in SPMDs for the 2012 survey were present at the LNR site (range: 20 to 24 ng/SPMD) downstream of 102nd St. (Figure 17). The presence of mirex at this site was not surprising given that the 102nd Street waste site was used by Occidental and they were the sole producer of mirex until 1976 when its use was restricted by both Canadian and U.S. legislation (Apeti and Lauenstein, 2006; Interagency Task Force on Hazardous Waste, 1979). Mirex has been detected by MOE and NYSDEC in 2006 and 2009 respectively in juvenile fish collected from the LNR (MOE unpublished data: Biomonitoring Section, Environmental Monitoring and Reporting Branch; Preddice et al. 2011).

Figure 17: Mirex and methoxychlor concentrations in SPMDs (ng/SPMD) for the Niagara River, 2012

Sampling stations were also located within Cayuga Creek which discharges to the LNR. Based on caged mussel data from earlier surveys and from 2012, the creek is a source of PCBs to the LNR. Total PCBs (based on congener-specific analysis) were significantly higher (p<0.001) in caged mussels deployed in the creek than at all other stations in the 2012 survey with the exception of the Occidental outfall (Figure 6). High PCB concentrations were also present in mussels deployed at the LNR station downstream of Cayuga Creek. The PCBs in these mussels had similar homologue patterns (representative of Aroclor 1248), and were significantly higher (t=9.0; p<0.001) than mussels deployed at the LNR upstream station suggesting that Cayuga Creek was the source (Figure 6 and Figure 18a and Appendix H for site map). The SPMD PCB data supported the caged mussel data with SPMDs deployed in Cayuga Creek having higher concentrations compared with the remaining sites, with the exception of Occidental and the Gratwick Riverside Park upstream station (Figure 7; Figure 18 b). Total PCB concentrations in sediment collected from the three stations in 2009 ranged from140 ng/g to 570 ng/g, with the highest concentration in Cayuga Creek (Table 3).

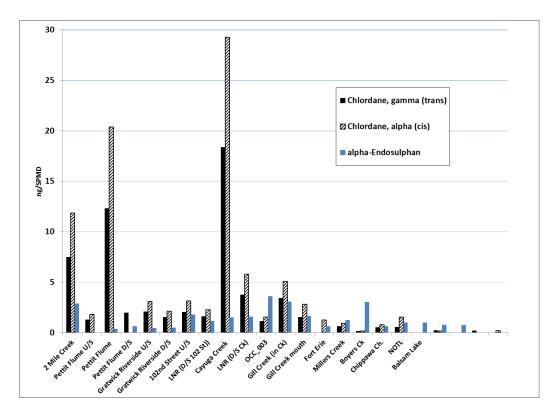


Figure 18: Total PCB concentrations in a) caged mussels (ng/g dry wt.) and b) SPMDs (ng/SPMD) deployed in the LNR and Cayuga Creek, 2012.

Only trace concentrations of p'p-DDE and pentachlorobenzene were present in mussels deployed in Cayuga Creek. However, the SPMDs provided additional information on the water quality including the presence of chlorinated benzenes, and historical use of legacy pesticides. This included high concentrations of 4,4'-DDD (Figure 4), dieldrin (Figure 5), methoxychlor (Figure 17), and α and γ chlordane relative to the other sites (Figure 19). Several sources of contaminants to Cayuga Creek were identified by NYSDEC and included Love Canal, 102^{nd} Street waste site, Charles Gibson landfill and LNR backflow.

Gill Creek

Gill Creek discharges into the Niagara River just above Niagara Falls on the U.S. side. The creek received contaminants from the Olin Chemical Corporation (Buffalo Avenue Plant) and the E. I. Dupont Company upstream of the mouth. These two plants had three and six hazardous waste sites on their properties, respectively. Additionally, NYSDEC identified over 100 sources of contaminants within the watershed. Briefly, Gill creek was a major contributor of PCBs to the Niagara River; estimated to have contributed as much as 20% of the total PCB load (USEPA and NYSDEC, 1994). Remediation of PCB contaminated sediment in Gill Creek upstream of the mouth was completed in 1992. Additional sediment remediation was completed further upstream in 1998.

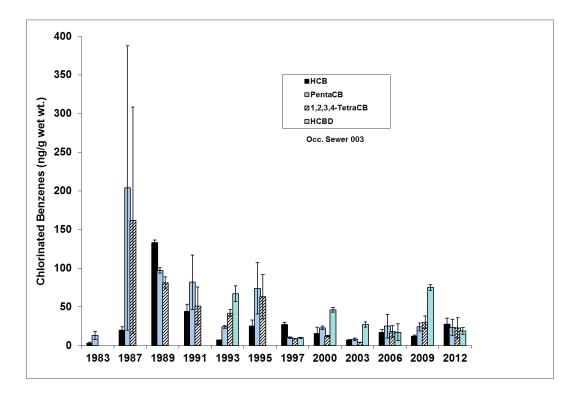
Figure 19: Chlordane and alpha-endosulphan in SPMDs (ng/SPMD) for the Niagara River, 2012.

Concentrations of total PCBs in caged mussels deployed at these two sites have decreased post remediation; however, some PCB contamination remains. Total PCB concentrations in mussels deployed in Gill Creek near the mouth (mean 47 ng/g +/- SE 2 ng/g wet wt.) and upstream within the creek (mean 28 ng/g +/- SE 1.8 ng/g wet wt.) were significantly higher than Balsam Lake control mussels (t= 19 and 11 respectively: p<0.001) and mussels deployed in the Niagara River upstream of the creek (t= 18 and 10 respectively; p<0.001) identifying the creek as a source of PCBs to the Niagara River.

Despite the remediation of PCB-contaminated creek sediments, other contaminants continue to be detected in caged mussels and SPMDs deployed at these sites. Compounds such as α -HCH and β -HCH (metabolites of the pesticide lindane), hexachlorobutadiene (HCBD), and chlorinated benzenes have been routinely detected in mussels, as well as in sediment and juvenile fish by NYSDEC (Preddice *et al.* 2011). HCBD, for example, was stored in waste sites which were known to be leaching contaminants into the Creek. With the exception of low concentrations measured in SPMDs at the Occidental outfall, Gill Creek was the only site in the 2012 survey where HCBD was present (mean: 1627 ng/SPMD; SD 188 ng/SPMD) identifying Gill Creek as a source. The SPMDs also detected the highest concentrations of α -HCH (mean 605 ng/SPMD; SD 18 ng/SPMD) in the survey and 1,2,4 trichlorobenzene and second highest concentration of 1,2 dichlorobenzene (Figures 12 and 13).

Occidental Chemical Corporation (OCC), Buffalo Avenue Plant, Niagara Falls, New York

OCC's Buffalo Avenue Plant is located adjacent to the Niagara River upstream of the Niagara River's confluence with Gill Creek. Persistent, bioaccumulative contaminants have entered the Niagara River along the waterfront via sewers and contaminated groundwater (NRTC, 1984).


The facility has manufactured over 250 chemical products with direct discharges to the river. Additionally, there are at least 10 hazardous waste sites located on the property which have leached contaminants into the groundwater. Throughout the 1990s, there have been extensive remediation efforts at various locations on the property which may explain, in part, the decreases in concentrations of 1,2,3,4-tetrachlorobenzene, pentachlorobenzene and HCB observed in caged mussels deployed near the sewer outfalls along the OCC property between 1987 and 1997 (Figure 20). However, Sewer 003 is an active outfall servicing the Occidental facility and is clearly an ongoing source of contaminants based on continued high contaminant concentrations in caged mussels and SPMDs.

In 2012, total PCB concentrations measured in caged mussels and SPMDs were of particular note: both monitors identified Sewer 003 as having the highest concentration of PCBs (Figures 6 and 7). The homologue pattern in both datasets resembled Aroclor 1248 (see Appendix G). These data suggested that this outfall is a source of concern due to highly elevated concentrations of bioavailable PCBs.

Likewise, Sewer 003 had the highest concentrations of tetrachlorobenzes (> 600 ng/SPMD) and was the only site with detectable octachlorostyrene (Figures 3 and 13). In addition to Bloody Run Creek, Sewer 003 was also the only site where 2,3,6- and 2,4,5-trichlorotoluene were present in caged mussels which was consistent with previous years of data. Trichlorotoluene is a manmade chemical with several different isomers which are generally released in the manufacture of other chemicals. For example, 2,3,6-trichlorotoluene is a herbicide intermediate but also has uses as a solvent and dielectric fluid.

Bloody Run Creek

Hyde Park, a 6.1 hectare hazardous waste disposal site, was operated by the Hooker Chemical Co. (now Occidental Chemical Co.; OCC) from 1953 to 1975 (NRTC, 1984). Approximately 55,000 tons of halogenated wastes including chlorinated benzenes, toluenes and phenols were buried at this site (Interagency Task Force on Hazardous Waste, 1979). The 2,4,5-trichlorophenol wastes contained significant amounts of 2,3,7,8-TCDD. Bloody Run Creek (BRC), which runs adjacent to the waste site, drains storm water run-off and overburden leachate overflow from the site and discharges it into the lower Niagara River. Despite the remediation at the Hyde Park site and the upper section of the Creek, the lower section continues to be a source of contaminants to the Niagara River.

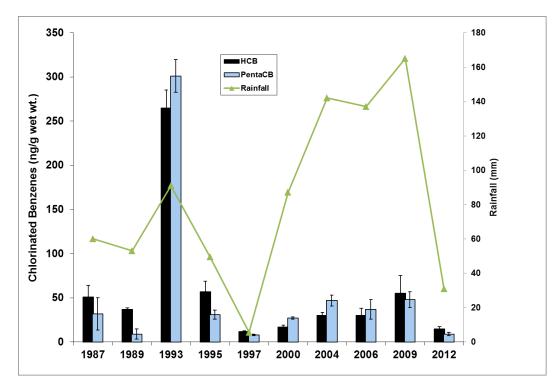
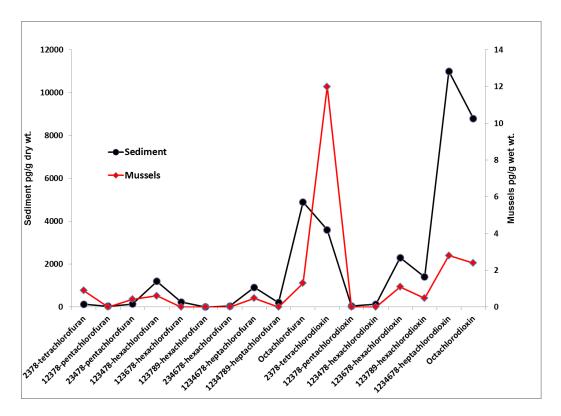


Figure 20: Concentrations of chlorinated organic compounds in caged mussels deployed at the Occidental Chemical Corp. Sewer 003 through time (1983-2012).

Contamination to the Niagara River was substantiated with relatively high concentrations of 1,2,3,4-tetrachlorobenzene, pentachlorobenzene and HCB in mussels collected from the BRC site since 1987 (Figure 21). There has been some variation in contaminant concentrations measured in mussels through time although the compounds present at this site have remained consistent. Variations in bioavailability could be linked to rainfall events experienced during the deployment. Particularly low rainfall could result in decreased surface run-off from the contaminated lower gorge which, in turn, would have decreased the off-site migration of contaminants. This could explain the relatively lower concentrations of contaminants present in 1997 and 2012. The cause of the significantly higher tissue concentrations in mussels in 1993 is unknown and cannot be completely explained by the increased rainfall that summer since greater accumulation of rain from 2004-2009 did not generate similarly elevated mussel tissue contaminant concentrations observed in 1993. The increase in concentrations measured in 1993 could be related to remedial activities at the Hyde Park waste site. Throughout the early 1990's there was continuous construction at the waste site in order to implement remedial actions which included installation of extraction wells, purge wells and monitoring wells. It is possible that work at the site increase the movement of offsite contaminants in the short term until remedial actions to contain offsite migration were up and running (USEPA and NYSDEC 2002).


Sediment collected from the shoreline of the Niagara River in the vicinity of Bloody Run

Creek between 1993 and 2012 had consistently high concentrations of dioxins and furans although concentrations have increased and decreased in what appears to be a random fashion (Appendix E). This data suggested heterogeneous contamination with dioxins and furan along the shoreline and nearshore bed sediment. Given the original source of contamination and a massive rock slide in the lower gorge in 1994, this is not surprising. The dioxins and isomer patterns found in Bloody Run Creek sediments were distinct from those seen at other sites in the Niagara River with lower concentrations of octachlorodioxin relative to the 1,2,3,4,6,7,8-heptachlorodioxin. Furthermore, all the tetra dioxin was in the form of 2,3,7,8-TCDD, the most toxic form of dioxin (Figure 22). Earlier studies have shown that the contribution of DL-PCBs to the total TEQ was negligible. The unique congener pattern present in the sediment was also present in the caged mussels demonstrating bioavailability of the contamination.

Sediment collected from a shoreline station about 70 m upstream of the Creek had relatively low concentrations of dioxins and furans (346 pg/g) compared to the BRC site, but the 2012 concentration was greater than in past years (Appendix E), and the congener pattern was consistent with the BRC pattern and not the typical "upstream pattern" characteristic of this station. These data suggested that our sampling location was not consistent with previous surveys. Additional sampling in the 2015 survey, from multiple upstream locations will be required to confirm this theory.

Figure 22: Dioxin and furan isomer patterns in sediment and caged mussels deployed at the mouth of Bloody Run Creek, 2012.

Using SPMDs to Estimate Water Concentrations

SPMD sampling rates are independent of water concentrations (Huckins *et al.* 1996). The amount of accumulated chemical in the SPMDs is proportional to the ambient concentrations of the dissolved phase of the chemical. However, temperature, biofouling and water current velocity have been shown to affect uptake rates (Huckins *et al.* 1996; Petty *et al.* 2000; Vrana and Schuurmann 2002; Booij *et al.* 2006; Wang *et al.* 2009). Huckins *et al.* (1996) showed that sampling rates increased with ambient temperature and hydrophobicity (up to about a log Kow of 6). However, studies have also shown sampling rates to decrease for compounds that have a log Kow of greater than 6 (Petty et al. 2000), and that temperature may not have a significant impact on uptake rates (Booij *et al.* 2003).

In the Niagara River survey, temperature was similar at all sites with the average temperature ranging from 21.8 to 27.3 °C (Appendix B) and there was minimal biofouling of the SPMDs at all sites. Although not measured, visual observations of the water currents at each station suggested that velocity likely did vary. Even if water current rates were available, the SPMDs were, at times, covered by large rocks as camouflage, which would alter the flow in the immediate vicinity of the SPMD. Differences in uptake rates due to these site by site variations in water current can affect the accurate estimates of water concentrations of the compounds of interest

among the sites. However, large differences in contaminant concentrations among sites that would identify sources should not be affected by these site to site variations.

One method to account for these differences is to use Performance Reference Compounds (PRCs) which are standardized compounds added to the triolein (Huckins *et al.* 2002). The effects of environmental variables (e.g., temperature, water current) on the uptake rates of the compounds of interest can be approximated by the effects of these variables on the loss rates of the PRCs. PRCs for PCB congeners 14, 29 and 50 were added to the SPMDs and their concentrations were measured after deployment. This information was entered into the USGS SPMD Water Concentration Estimator.

Water concentrations estimated in this way were compared to NYSDEC or MOECC water quality criteria (which ever was most conservative) to determine if the presence of these compounds could be potentially problematic to biota (Table 4). Criteria for total PCBs, dieldrin, mirex, DDT metabolites and HCB were most frequently exceeded for the parameters analyzed. Concentrations for most parameters were typically higher on the US side compared to the Canadian side but overall, organochlorinated pesticides, and industrial organic compounds, were present at low concentrations throughout the Niagara River. The SPMD data allowed for the identification of source areas for these compounds, particularly highlighting the American tributaries (Two Mile Creek, Cayuga Creek, and LNR), but even in those cases the estimated water concentrations suggested that most parameters (with the exception of those that exceed the criteria) do not appear to be problematic to biota. However, many of the contaminants are hydrophobic and are likely bound to sediment, accordingly, impacts on the benthic community and food chain effects cannot be assessed from this monitoring tool. Additionally, Water Quality Criteria tend to be based on whole water concentrations which include both the dissolved phase and particulate phase concentrations, and so if the comparisons with the criteria use only the dissolved phase, actual contamination may be underestimated particularly for hydrophobic compounds like PCBs. Since the SPMDs are integrating exposure overtime and are therefore providing a mean concentration, episodic events likely have greater concentrations.

Water concentration estimates of PCBs were particularly interesting as they highlight the Occidental outfall as a problematic source of PCBs (237 ng/L), the area near Gratwick Riverside Park hazardous waste site (52 ng/L), and the 102nd Street Hazardous waste site and Cayuga Creek (19 ng/L and 54ng/L respectively). Additional monitoring of these sites, and the Pettit Flume cove (PCB: 151 ng/L) is recommended for 2015.

Environment Canada's Upstream/Downstream Water Monitoring Program was designed to collect 24 hr. time integrated dissolved and particulate samples every two weeks from FE and NOTL. Mean contaminant concentrations for the dissolved fraction of the samples encompassing the period of SPMD deployment were compared with the SPMD data from the two locations (Table 4). Note that the EC data is currently provisional since a report has not been produced (Great Lakes Water Quality Monitoring and Surveillance, Brad Hill: personal communication). Agreement between the two datasets was good for several parameters measured at NOTL (e.g., HCB, HCBD, pentachlorobenzene, α -HCH, metabolites of DDT, chlordane, dieldrin and PCBs), and PCBs and dieldrin at FE. Sampling location differences (nearshore for the SPMDs and off-shore for the EC samples) may contribute to some of the variability between datasets.

Concentrations were compar Values that exceed the criter																	
				ann, <i>D</i> / C = C													
	Agency	Water Quality	2 Mile Creek		Exceedence	Pettit Flume ^a upstream		Pettit Flume ^a outer		Pettit Flume ^a Downstream		Gratwick Riverside Park upstream			Gratwick Riverside Park downstream		
	Agency	Criteria			Factor (EF)	upstream	EF	outer	EF	Downstream	EF	upstream		EF	downstream		EF
		C intoina	Mean	SD								Mean	SD		Mean	SD	
		ng/L	ng/L	ng/L		ng/L		ng/L		ng/L		ng/L	ng/L		ng/L	ng/L	
1,3-Dichlorobenzene	MECP	2500	3.2	0.35		0.42		24		6.1		1.11	0.12		1.5	0.21	
1,4-Dichlorobenzene	MECP	4000	9.3	0.61		3.7		72		12		5.2	0.49		10	2.0	
1,2-Dichlorobenzene	NYSDEC	3000	0.69	0.11		0.88		36		0.69		0.53	0.005		1.01	0.13	_
1,3,5-Trichlorobenzene	MECP	650	0.42	0.03				1.5		0.36		0.03	0.003		0.02	0.003	
1,2,4-Trichlorobenzene	MECP	500	1.1	0.10		0.04		6.4		0.32		0.26	0.03		0.07	0.01	
1,2,3-Trichlorobenzene	MECP	900	0.08	0.01				3.2		0.05		0.03	0.004		0.02	0.004	
1,2,4,5-/1,2,3,5-Tetrachlorobenzen	e		1.3	0.15		0.01		4.5		0.27		0.04	0.002		0.03	0.002	
1,2,3,4-Tetrachlorobenzene	MECP	100	1.8	0.20		0.01		8.2		0.14		0.02	0.004		0.02	0.003	
Hexachlorobutadiene	NYSDEC	10	0.03	0.003				0.03		0.06					0.00	0.001	
Pentachlorobenzene	MECP	30	2.5	0.32		0.02		5.5		1.05		0.08	0.01		0.07	0.01	
Hexachlorobenzene	NYSDEC	0.03	0.57	0.08	19	0.05	2	4.5	151	4.0	133	0.18	0.02	6	0.12	0.02	4
HCH, gamma (Lindane)	NYSDEC	8	1.0	0.05								0.12	0.11		0.07	0.07	
HCH, alpha	NYSDEC	2	38	0.39	19										0.08	0.14	
HCH, beta			12	1.6													
HCH, delta			1.0	0.26						0.01		0.003	0.01				
Aldrin	NYSDEC	2		0.01													_
Octachlorostyrene	NYSDEC	0.006	0.01	0.002	2			0.03	4.6	0.04	7.5						
2,4'-DDE			0.03	0.001		0.02		0.02		0.02		0.02	0.002		0.01	0.01	
4,4'-DDE	NYSDEC	0.007	0.21	0.02	30	0.08	11	0.18	26	0.08	12	0.07	0.01	10	0.04	0.01	6
2,4'-DDD			0.10	0.02				0.22				0.00	0.01		0.01	0.01	_
4,4'-DDD	NYSDEC	0.08	0.44	0.05	6	0.07		0.71	9	0.07		0.05	0.01		0.04	0.01	_
2,4'-DDT			0.05	0.01		0.03		0.02		0.03		0.04	0.00		0.01	0.01	
4,4'-DDT	NYSDEC	0.01	0.02	0.01	2							0.003	0.01				
Mirex	NYSDEC	0.001	0.11	0.02	105			0.06	63								
Chlordane, alpha (cis)	NYSDEC		0.12	0.01		0.04		0.23		0.04		0.03	0.001		0.02	0.005	_
Chlordane, gamma (trans)	NYSDEC		0.08	0.01		0.03		0.14		0.03		0.02	0.001		0.01	0.002	
Nonachlor, cis-			0.02	0.004				0.03		0.01		0.01	0.002		0.004	0.001	
Nonachlor, trans-			0.07	0.01		0.03		0.12		0.03		0.02	0.001		0.02	0.003	
Heptachlor	NYSDEC	0.2															
Heptachlor Epoxide	NYSDEC	0.3	0.03	0.003		0.03		0.05		0.02		0.02	0.003		0.02	0.002	
alpha-Endosulphan	MECP (proposed)	3	0.32	0.01				0.04		0.07		0.05	0.05		0.05	0.05	
beta-Endosulphan			0.68	0.05			-	0.19									
Endosulphan Sulphate			0.22	0.20		0.16		0.61		0.09							
Dieldrin	NYSDEC	0.0006	0.10	0.01	165	0.13	218	0.14	233	0.12	200	0.08	0.01	141	0.07	0.01	121
Endrin	NYSDEC	2															
Methoxychlor	NYSDEC	30	0.13	0.01								0.01	0.02				
Total PCB ^c	NYSDEC	0.001	6.2	0.74	6152	8.8	8827	151	150582	10	10004	52	4.5	52233	15	3.4	1495
^a n=1																	
^b n=2					_												-
SPMD data were blank subtracted	d prior to estimating a wa	ter concentratio	n														
¹ Env. Canada upstream/downstrea																	
	m water quality monitorin incentrations of 4 samplin				1												

Concentrations were compare	ed with Water Quality	/ Criteria: Exc	eedence Fa	tcors (EF)	represe	ent the ratio of the	e water con	centration estim	ate to the c	iteria.												
Values that exceed the criteria	a were highlighted in	red font. L	J/S = upstrea	am; D/S =	downst	tream																
			102nd Street			Little Niagara River		Cayuga C	eek		Little Niagara Riv			Occidental Sewer ^b			Gill Creek upstream		(Gill Creek mouth		_
	Agency	Water Quality	Upstream		EF	(near 102nd St)		EF		E	(downstream Cayug	a ck)	EF			EF	(in creek)		EF			EF
		Criteria	Mean	SD	EF	Mean	SD	Mear	SD		Mean	SD	EF	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF
		ng/L	ng/L	ng/L		ng/L	ng/L	ng/L	ng/l		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	
1,3-Dichlorobenzene	MECP	2500	1.1	0.12		4.6	0.68	9.1	7.9		1.2	0.18		3.0	0.50		3.0	0.46		13	1.6	
1,4-Dichlorobenzene	MECP	4000	2.8	0.11		15	0.84	86	16		9.7	0.72		4.4	0.75		24	7.7		42	1.7	
1,2-Dichlorobenzene	NYSDEC	3000	3.5	1.1		0.64	0.05	0.13	0.22		0.08	0.14		0.78	0.24		3.5	1.2		29	1.7	
1,3,5-Trichlorobenzene	MECP	650	0.003	0.01		0.65	0.04	0.03	0.00	1	0.12	0.01		0.12	0.11		0.14	0.08		0.03	0.01	
1,2,4-Trichlorobenzene	MECP	500	0.03	0.002		1.0	0.06	0.20	0.01		0.11	0.02		2.1	1.8		1.3	0.68		2.2	0.73	
1,2,3-Trichlorobenzene	MECP	900	0.005	0.01		0.13	0.01	0.04	0.03		0.03	0.01		0.41	0.33		0.11	0.04		0.51	0.17	
1,2,4,5-/1,2,3,5-Tetrachlorobenzene			0.09	0.01		1.4	0.24	0.06	0.01		0.28	0.01		8.8	1.5		0.62	0.30		0.74	0.13	
1,2,3,4-Tetrachlorobenzene	MECP	100	0.03	0.004		1.9	0.23	0.06	0.01		0.37	0.02		11	15		0.37	0.15		0.36	0.07	
Hexachlorobutadiene	NYSDEC	10	0.01	0.001		0.01	0.01	0.001	0.00	2				0.20	0.07		0.02	0.02		11	2.8	1.1
Pentachlorobenzene	MECP	30	0.06	0.001		2.0	0.20	0.27	0.04		0.53	0.05		0.14	0.14		0.38	0.15		0.49	0.11	
Hexachlorobenzene	NYSDEC	0.03	0.24	0.004	8	0.69	0.10	23 0.65	0.11	23	2 0.19	0.02	6	0.02	0.01		0.42	0.18	14	0.52	0.13	17
HCH, gamma (Lindane)	NYSDEC	8	0.03	0.06							0.52	0.23		0.11	0.01		3.9	0.73		1.0	0.23	
HCH, alpha	NYSDEC	2				0.42	0.04				2.7	0.22	1.3	0.21	0.29		68	5.1	34	26	1.4	13
HCH, beta											1.3	0.24		0.12	0.16		18	0.64		6.0	0.65	
HCH, delta			0.01	0.004		0.03	0.00	0.04	0.02		0.21	0.05					1.3	0.34		0.14	0.01	
Aldrin	NYSDEC	2												0.67	0.65		0.02	0.02				
Octachlorostyrene	NYSDEC	0.006						0.01	0.01	1.	3			2.8	3.92	467	0.02	0.03	3	0.02	0.01	4
2,4'-DDE			0.01	0.002		0.01	0.01	0.06	0.01		0.02	0.001		0.04	0.01		0.02	0.01			0.003	
4,4'-DDE	NYSDEC	0.007	0.03	0.001	5	0.13	0.02	19 0.36	0.04	52	2 0.09	0.02	13	0.03	0.02	4	0.22	0.08	31	0.04	0.01	5
2,4'-DDD			0.01			0.13	0.02	0.21	0.05		0.04	0.01					0.06	0.02		0.01	0.002	
4,4'-DDD	NYSDEC	0.08	0.03	0.002		0.49	0.05	6 0.78	0.17	' 10	0.14	0.02	2				0.30	0.13	4	0.04	0.01	
2,4'-DDT			0.01	0.002		0.04	0.004	0.10	0.02		0.03	0.01					0.04	0.01		0.01	0.002	
4,4'-DDT	NYSDEC	0.01	0.004	0.004				0.06	0.01	5	0.01	0.01										
Mirex	NYSDEC	0.001	0.01	0.01	14	0.70	0.12	699 0.27	0.05	27	4 0.09	0.03	93	0.04	0.05	37	0.08	0.04	75	0.01	0.01	6
Chlordane, alpha (cis)	NYSDEC		0.02	0.002		0.04	0.004	0.41	0.06		0.06	0.01		0.02	0.02		0.09	0.04		0.02	0.004	
Chlordane, gamma (trans)	NYSDEC		0.02	0.002		0.03	0.01	0.26	0.04		0.04	0.01		0.35	0.46		0.06	0.03		0.01	0.003	
Nonachlor, cis-			0.01	0.001		0.01	0.01	0.05	0.01		0.01	0.003		0.03	0.05		0.02	0.01		0.002	0.002	
Nonachlor, trans-			0.02	0.001		0.03	0.01	0.22	0.04		0.05	0.01		0.04	0.05		0.05	0.03		0.01	0.003	
Heptachlor	NYSDEC	0.2												0.32	0.41	1.6						
Heptachlor Epoxide	NYSDEC	0.3	0.01	0.002		0.01	0.002	0.15	0.02		0.01	0.01		0.03	0.004		0.01	0.01		0.01	0.002	
alpha-Endosulphan	MECP (proposed)	3	0.20	0.04		0.13	0.01	0.17	0.15		0.18	0.05		0.41	0.16		0.36	0.10		0.18	0.01	
beta-Endosulphan						0.19	0.01				0.21	0.25					0.19	0.08				
Endosulphan Sulphate			0.03	0.05		0.03	0.06	0.51	0.20		0.10	0.10					0.24	0.003		0.10	0.01	
Dieldrin	NYSDEC	0.0006	0.07	0.01	115	0.07	0.01	118 0.44	0.08	73	6 0.05	0.004	91	0.09	0.02	154	0.20	0.07	341	0.08	0.01	138
Endrin	NYSDEC	2											_									
Methoxychlor	NYSDEC	30	0.002	0.003				0.30	0.05		0.02	0.04										
Total PCB ^c	NYSDEC	0.001	7.9	0.04	7917	19	2.6	19480 54	11	536	66 7.7	1.0	7721	237	61.4	236909	19	8.0	18621	12	3.3	1187
^a n=1																						
^b n=2																						
SPMD data were blank subtracted																						_
^d Env. Canada upstream/downstream	n water quality monitoring	g program																				

Concentrations were compa							of the wate	er conce	entration es	stimate to th	he cri	eria.								
Values that exceed the criter	ia were highlighted ir	red font. L	I/S = upstrea	m; D/S = do	ownst	ream														
														Fort Erie ^d			NOTL ^d			
			Millers Creek			Boyers Ck			Chippawa			Fort Erie ^b		Env. Can.	NOTL		Env. Can.	Balsam Lake		
	Agency	Water Quality			EF			EF	Channel		EF			upstream/downstream EF Dissolved Phase			EF Dissolved Phase	m		EF
		Criteria	Mean	SD	EF	Mean	SD	EF	Mean	SD	EF	Mean	SD	F Dissolved Phase Mean	Mean	SD	EF Dissolved Phase Mean	Mean	SD	Er
		ng/L	ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	_
1,3-Dichlorobenzene	MECP	2500	0.37	0.06		0.15	0.14		0.37	0.34		5		0.069	0.40	0.35	1.18			
1,4-Dichlorobenzene	MECP	4000	2.4	0.42		2.1	0.06		3.0	1.6		2.3	0.15	Q07 ^e	1.9	0.29	1.88	1.3	0.14	
1,2-Dichlorobenzene	NYSDEC	3000				0.09	0.15		1.5	2.7		2.2	1.6	0.088	3.0	0.27	0.39			
1.3.5-Trichlorobenzene	MECP	650	0.005	0.001										0.005			0.15			
1,2,4-Trichlorobenzene	MECP	500	0.01	0.001		0.004	0.01							0.010	0.05	0.01	0.40			
1.2.3-Trichlorobenzene	MECP	900				0.01	0.01		0.005	0.01				0.004	0.02	0.002	0.10			
1,2,4,5-/1,2,3,5-Tetrachlorobenzer	e		0.01	0.001		0.00	0.004		0.001	0.002		0.002	0.003		0.04	0.01				
1,2,3,4-Tetrachlorobenzene	MECP	100	0.003			0.002	0.003		0.005	0.004		0.01	0.01	0.004	0.10	0.02	0.17			
Hexachlorobutadiene	NYSDEC	10				0.004	0.01		0.005	0.004		0.01		Q07	0.03	0.01	0.03	0.01	0.02	
Pentachlorobenzene	MECP	30	0.01	0.002		0.01	0.004		0.02	0.01		0.01	0.002	0.004	0.10	0.02	0.09			
Hexachlorobenzene	NYSDEC	0.03	0.01	0.002		0.01	0.01		0.04	0.02	1.3	0.02	0.001	0.011	0.09	0.01	3 0.04	0.03	0.02	0.8
HCH, gamma (Lindane)	NYSDEC	8				0.37	0.40		0.14	0.14		0.17	0.17	0.016	0.09	0.03	0.02			
HCH, alpha	NYSDEC	2												0.020	0.03	0.06	0.04			_
HCH, beta																				
HCH, delta			0.001	0.001		0.01	0.01					0.01	0.001		0.01	0.01				
Aldrin	NYSDEC	2												0.007			0.01			
Octachlorostyrene	NYSDEC	0.006												0.005	0.01	0.001	2 0.001			
2,4'-DDE									0.01	0.01					0.005	0.001				
4.4'-DDE	NYSDEC	0.007	0.19	0.04	27	0.03	0.01	5	0.12	0.09	17	0.04	0.001	6 0.009 (particulate)	0.03	0.003	4 0.013 (particulat	e) 0.05	0.03	7.6
2.4'-DDD			0.03	0.01					0.01	0.02		0.01	0.001		0.00	0.003				
4,4'-DDD	NYSDEC	0.08	0.15	0.02	2				0.07	0.08		0.03	0.004	0.023	0.02	0.004	0.02	0.02	0.01	
2,4'-DDT									0.05	0.09		0.002	0.003	0.030	0.01	0.001	0.03			
4,4'-DDT	NYSDEC	0.01		0.004					0.01	0.02		0.002	0.003	0.024	0.01	0.01	0.02			
Mirex	NYSDEC	0.001												0.018			0.005			
Chlordane, alpha (cis)	NYSDEC		0.01	0.003		0.01	0.01		0.02	0.02		0.01		0.004	0.01	0.001	0.01			_
Chlordane, gamma (trans)	NYSDEC		0.01	0.001		0.01	0.01		0.01	0.01		0.003	0.004	0.006	0.01		0.01			
Nonachlor, cis-			0.00	0.001					0.01	0.01		0.003		0.019			0.02			
Nonachlor, trans-			0.01	0.002		0.01	0.01		0.02	0.01		0.01	0.001	0.005	0.01	0.001	0.01	0.01	0.01	
Heptachlor	NYSDEC	0.2													0.003	0.01				
Heptachlor Epoxide	NYSDEC	0.3	0.003	0.003					0.03	0.03		0.01			0.01	0.001				
alpha-Endosulphan	MECP (proposed)	3	0.14	0.00		0.38	0.02		0.08	0.07		0.07	0.02	0.004	0.11	0.02	0.01	0.12	0.03	
beta-Endosulphan	,		0.07	0.06		0.25	0.01		0.27	0.28				0.011			0.01			
Endosulphan Sulphate			0.07	0.06		0.50	0.06		0.04	0.07		0.04	0.06		0.06	0.05		0.22	0.05	
Dieldrin	NYSDEC	0.0006	0.03	0.01	44	0.04	0.01	63	0.13	0.10	218	0.06	0.01	05 0.039	0.06	0.003	98 0.04	0.06	0.04	105.
Endrin	NYSDEC	2												Q07			Q13			
Methoxychlor	NYSDEC	30												0.069	0.002	0.003	0.07			
Total PCB ^c	NYSDEC	0.001	0.47	0.13	474	0.70	0.30	696	0.79	0.53	789	0.27	0.02	67 0.357	0.99	0.19	993 0.41	0.13	0.05	127.
A																				_
* n=1											+									
n=2	La desta seguina de										+									
SPMD data were blank subtracte	· ·										+									
Env. Canada upstream/downstrea	am water quality monitorin oncentrations of 4 samplin																			

SPMDs vs Caged Mussels

Regardless of whether contaminant data were generated by the deployment of caged mussels or SPMDs, with few exceptions (e.g., absence of HCB and pentachlorobenzene at OCC 003 in the SPMDs), the contaminant patterns among sites for the various compounds detected in both monitors were consistent. However, SPMDs had a greater sensitivity as a monitor by identifying more sites with low level contamination than the mussels: particularly for the organochlorine pesticides.

Important examples of consistency between the datasets and further enhancement by the SPMDs included HCBD and lindane. HCBD was not detected at any sites in the survey with the exception of Gill Creek and OCC 003 in both mussels and SPMDs, however, the SPMDs identified Gill Creek as having substantially higher concentrations than OCC, while the mussels showed similar concentrations between the two sites. For lindane, a chemical which was only detected at Gill Creek in the caged mussels, was identified at both Gill Creek and Two Mile Creek in the SPMDs, and the concentrations in Gill Creek were substantially higher than Two Mile Creek providing a clearer understanding of spatial trends where contaminant concentrations are near the limit of detection in the caged mussels. Likewise 1,2,3,4-tetrachlorobenzene was only detected at OCC in caged mussels, while the SPMDs detected this compound at several stations, but highlighted OCC with the highest concentrations.

For PCBs, patterns between sampling sites for the two media were consistent but SPMDs underestimated the concentrations in Two Mile Creek and the LNR downstream of Cayuga Creek relative to other stations when compared to the mussel data (Figures 6 and 7). This may be due to PCB contaminated sediment in the mussels contributing to the total PCB tissue concentration, and that mussel bioaccumulation of PCBs would be representative of both the dissolved and particulate phase which would not be measured in the SPMDs.

The SPMD and caged mussel datasets can also be compared by converting the mussel PCB data from ng/g (dry wt.) to ng/g lipid, and converting the SPMD data from ng/SPMD to ng/g triolein (Figure 23 and 24). With few exceptions the patterns of contamination among the stations were consistent with the non-converted data but there were a few interesting points to note. With the exception of the OCC 003 site, the mussels on a lipid-normalized basis have a greater potential for PCB accumulation than the SPMDs. This could be due to the addition of the contaminated sediment in their gut as mentioned above but could also reflect the possibility that the SPMDs were not in equilibrium upon retrieval and were still in the linear uptake phase. The SPMDs at OCC 003 had higher PCB concentrations on a lipid-normalized basis than the mussels possibly highlighting that this exposure was a direct effluent discharge of PCBs from an outfall rather than historically contaminated sediment as a primary source. Likewise, if the SPMDs were still in the linear phase of uptake, concentrations in the SPMDs at the OCC 003 site could have been even higher if the deployment was longer. A comparison of lipidnormalized SPMD and mussel data for other parameters showed that, with few exceptions (e.g., pentachlorobenzene at the Pettit Flume), the mussels had higher concentrations than the SPMDs (Figure 24).

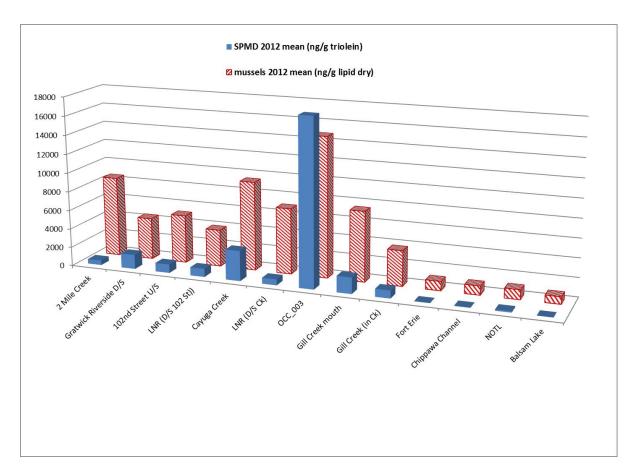
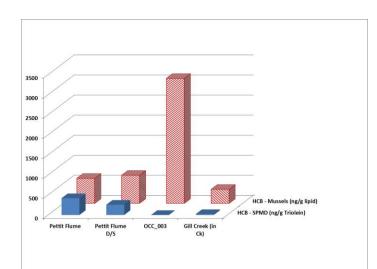
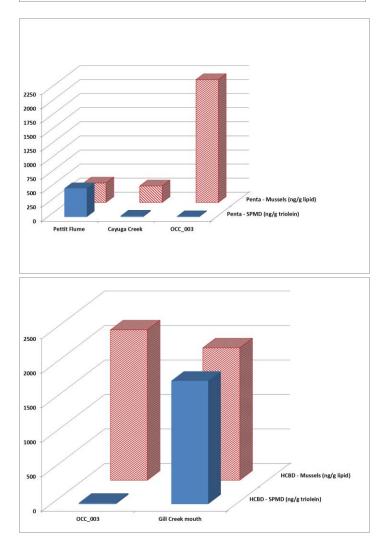




Figure 23: PCB concentrations in SPMDs (ng/g triolein) and Caged Mussels (ng/g lipid dry wt.) deployed in the Niagara River, 2013.

Figure 24: Contaminant concentrations in SPMDs (ng/g triolein) and Caged Mussels (ng/g lipid wet wt.) deployed in the Niagara River, 2012

Conclusions & Recommendations

- Contaminant data from the deployment of caged mussels and SPMDs have not identified sources of organic contaminants on the Canadian side of the Niagara River that require follow-up investigation.
- The 2012 mussel and SPMD contaminant data was consistent with previous surveys and has identified several sources of organic compounds to the Niagara River on the US side. These included:
 - Tributaries Two Mile Creek (PCBs, lindane), Cayuga Creek (PCBs) and Gill Creek (PCBs, HCBD, lindane),
 - The Pettit Flume cove (1,2,3,4 tetrachlorobenzene, pentachlorobenzene, HCB, and dioxins and furans) and
 - Bloody Run Creek (pentachlorobenzene, HCB, and dioxins and furans).
 - The Little Niagara River downstream of the 102nd St Hazardous Waste Site (PCBs, chlorinated benzene compounds).
 - Organochlorinated pesticides, in general were present throughout the study area on both sides of the river with the exception mirex which was present in SPMDs at sites associated with Occidental Chemical Corp.
- Overall, water concentration estimates for most compounds on both side of the river with a few exceptions (PCBs, dieldrin, metabolites of DDT, HCB, mirex) were below Water Quality Criteria. However, many of the contaminants are hydrophobic and are likely bound to sediment. Accordingly, impacts on the benthic community and food chain effects cannot be assessed from this monitoring tool, which, since it monitors only dissolved phase contaminants may underestimate contamination.
- High concentrations of PCBs in SPMDs at the OCC Sewer 003 (estimated at 237 ng/L) suggested that this outfall may be an important source of PCBs to the river. NYSDEC was notified, and it is recommended that the discharge history of this outfall be reviewed to investigate whether the SPMD data collected in 2012 reflect an intermittent, random occurrence, rather than ongoing, long-term PCB concentrations at the site.
- High PCB concentrations were present in SPMDs deployed at the upstream end of the Gratwick Riverside Park Hazardous Waste Site suggesting that there may be leakage from that site to the river, or there may be a source of PCBs located further upstream impacting the downstream water quality. Follow up sampling at Gratwick Riverside Park in 2015 is recommended with additional stations further upstream and downstream in the Niagara River to attempt to bracket the source area.
- Dioxin contaminated sediment samples collected from Fisherman's Park suggested movement and transport of contaminated sediment from the Pettit Flume cove.
- SPMD deployment in the Niagara River at Bloody Run Creek is recommended in 2015 to better assess contamination from that site and multiple sediment samples should be

collected to assess the variability in dioxin contamination, particularly upstream of the creek mouth.

References

Apeti, D. A., Lauenstein, G.G., 2006. An assessment of mirex concentrations along the southern shorelines of the Great Lakes, USA. *Amer. J. Environ. Sci.* 2(3):95-103.

Booij, K., Hofmans, H.E., Fischer, C.V., and Van Weerlee, E.M. 2003. Temperaturedependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci, Technol. 37:361-366.

Booij, K., Smedes, F., Van Weerlee, E.M., and Honkoop, P. 2006. Environmental monitoring of hydrophobic organic contaminans: The case of mussels versus semipermeable membrane devices. Environ. Sci. Technol. 40:3893-3900.

CCME (Canadian Council of Ministers of the Environment). 2001. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (PCDD/Fs).

City of North Tonawanda Centennial Celebration book. 1997. http://www.nthistorymuseum.org/Collections/tonironsteel.html

Degger, N., Wepener, V., Richardson, B.J., and Wu, R.S.S. 2011. Brown mussels (*Perna perna*) and semi-permeable membrane devices (SPMDs) as indicators of organic pollutants in the South African marine environment. Marine Pollut. Bull. 63:91-97.

Ecology and Environment, Inc. 2011. Interim Niagara River Area of Concern (AOC) strategic plan for beneficial use impairment (BUI) delisting. Prepared for the United States Army Corps of Engineers. Buffalo District. Buffalo, New York. March 2011.

Geologic Testing Consultants Ltd., 1984. *Hydrogeologic evaluation of the Durez plant site.* Report to the Niagara River Steering Committee, Ontario Ministry of the Environment.

Herve, S., Prest, H.F., Heinonen, P., Hyotylainen, T., Koistinen, J., and Paasivirta, J.1995. Lipid-filled semipermeable membrane devices and mussels as samplers of organochlorine compounds in lake water. Environ. Sci. Pollut. Res. Int. 2:24-30.

Hill, B., Klawunn, P., 2009. Niagara River upstream/downstream monitoring program report: 2001-2002 to 2004-2005. Environment Canada (EC).

Huckins, J.N., Petty, J.D., Lebo, Orazio, C.E., Prest, H.F., Tillitt, D.E., Ellis, G.S., Johnson, B.T., and Manuweera, G.K. 1996. Semipermeable membrane devices

(SPMDs) for the concentration and assessment of bioavailable organic contaminants in aquatic environments. In Ostrander, G.K. (ed.) Techniques in aquatic toxicology. CRC Lewis Publishers. Chapter 34.

Huckins, J.N., Petty, J.D., Lebo, J.A., Almeida, F.A., Booij, K., Alverez, D., Cranor, W.L., Clark, R.C., Mogensen, B.B. 2002. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. *Environ. Sci. Technol.* 36:85-91.

Interagency Task Force on Hazardous Waste, 1979. Draft report on hazardous waste disposal in Erie and Niagara counties, New York.

Johnson, G.W., Quensen III, J. F., Chiarenzelli, J.R., Hamilton, C., 2005. Polychlorinated biphenyls. In *Environmental forensics*. *eds.* R. Morrison and B. Murphy, pp-187-221. Academic Press.

Kauss, P.B. and Hamdy, Y.S.1991. Polycyclic aromatic hydrocarbons in surficial sediments and caged mussels of the St. Marys River, 1985. *Hydrobiologia*. 219:37-62.

Lobel, P.B., Bajdik, C.D., Belkhhode, S.P., Jackson, S.E., Longerich, H.P., 1991. Improved protocol for collecting Mussel Watch specimens taking into account sex, size, condition, shell shape and chronological age. *Arch. Environ. Contam. Toxicol.* 21(3):409-414.

Macdonald, C.R., Metcalfe, C.D., 1991. Concentration and distribution of PCB congeners in isolated Ontario lakes contaminated by atmospheric deposition. *Can. Fish. Aquat. Sci.* 48:371-381.

Metcalfe, J.L., Charlton, M.N., 1990. Freshwater mussels as biomonitors for organic industrial contaminants and pesticides in the St. Lawrence River. *Science of the Total Environment*. 97/98:595-615.

Muncaster, B.W., Innes, D.J., Hebert, P.D.N., Haffner, D., 1989. Patterns of organic contaminant accumulation by freshwater mussels in the St. Clair River, Ontario. *J. Great Lakes Res.* 15(4):645-653.

NYSDEC Fact Sheet: State Superfund Program, Durez Update: Pettit Creek Flume (PCF) - Sewer Cleaning Activities October 2013.

Niagara River Secretariat, 2002?. *Niagara River Toxic Management Plan (NRTMP). Progress Report and Workplan.* October 2007.

NRTC, 1984. *Report of the Niagara River Toxics Committee.* Environment Canada, USEPA II, Ontario Ministry of the Environment and New York State Department of Environmental Conservation, October.

Ontario Ministry of the Environment_2008a. *The determination of polychlorinated biphenyls (PCB), organochlorines (OC) and chlorobenzenes (CB) in fish clams and mussels by gas liquid chromatography-electron capture detection* (GLC-ECD). PFAOC-E3136. Laboratory Services Branch, Etobicoke, Ontario.

_____2008b. The determination of polychlorinated biphenyl congeners (PCBs) in fish clams and mussels by gas liquid chromatography-electron capture detection (GLC-ECD). PCBC-E3411. Laboratory Services Branch, Etobicoke, Ontario.

_____2008c. The Determination of Polychlorinated Dibenzo-P-Dioxins, Polychlorinated Dibenzofurans and Dioxin-Like Polychlorinated Biphenyls (DLPCBS) In Environmental Matrices by Gas Chromatography-High Resolution Mass Spectrometry (GC-MS). (DFPCB-E3418) Laboratory Services Branch, Etobicoke, Ontario.

2008d. The Determination of Particle Size Distribution on Sediments Particulate Matter and Liquids by Coulter Model LS230 Particle Size Analyzer, LLPART-E3328A. Laboratory Services Branch, Quality Management Office. Etobicoke, Ontario.

2008e. The determination of total carbon in soil and sediments by the thermal oxidation and infrared detection. CARBONTC-E3142A. Laboratory Services Branch, Etobicoke, Ontario.

Pennak, R.W., 1978. *Fresh-water Invertebrates of the United States.* 2nd Edition. John Wiley & Sons, Inc., Toronto, Ontario.

Petty, J.D., Orazio, C.E., Huckins, J.N., Gale, R.W., Lebo, J.A., Meadows, J.C., Echols, K.R., and Cranor, W.L. 2000. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J of Chromatography A. 879:83-95.

Peven, C.S., Uhler, A.D., and Querzoli, F.J. 1996. Caged mussels and semipermeable membrane devices as indicators of organic contaminant uptake in Dorchester and Duxbury Bays, Massachusetts. Environ. Toxicol. and Chem. 15:144-149.

Preddice, T.L., Skinner, L.C. and Gudlewski, A.J. 2011. PCBs and organochlorine pesticide residues in young-of-year fish from new and traditional near-shore sampling areas in the western portion of New York State's Great Lakes Basin, 2009. Division of Fish, Wildlife and Marine Resources. New York State Department of Environmental Conservation Albany, NY.

Prest, H.F., Jarman, W.M., Burns, S.A., Weismuller, T., Martin, M., and Huckins, J.N. 1992. Passive water sampling via semipermeable membrane devices (SPMDs) in concert with bivalves in the Sacramento/San Joaquin River Delta. Chemosphere 25:1811-1823.

Prest, H.F., Richardson, B.J., Jacobson, L.A., Vedder, J., and Martin, M. 1995. Monitoring organochlorines with semi-permeable membrane devices (SPMDs) and mussels (*Mytilus edulis*) in Corio Bay, Victoria, Australia. Marine Pollut. Bull. 30:543-554.

Richardson, B.J., Zhengm G.J., Tse, S.C., and Lam, P.K.S. 2001. A comparison of mussels (*Perna viridis*) and semi-permeable membrane devices (SPMDs) for monitoring chlorinated trace organic contaminants in Hong Kong coastal waters. Chemosphere 45:1201-1208.

Richman, L., Somers, K., 2005. Can we use zebra and quagga mussels for monitoring contaminants in the Niagara River? *Wat. Air and Soil Pollut*.167:155-178.

_____,Somers, K., 2010. Monitoring metal and organic contaminant trends through time using quagga mussels (*dreissena bugensis*) collected from the Niagara River. *J of Great Lake Res.* 36:28-36.

_____, Milani, D. 2010. Temporal trends in near-shore sediment contaminant concentrations in the St. Clair River and potential long-term implications for fish tissue concentrations. *J. Great Lakes Res.* 36:722-735.

_____, Hobson, G., Williams, D.J., and Reiner, E. 2011. The Niagara River mussel biomonitoring program (*elliptio complanata*): 1983-2009. Journal of Great Lakes Research 37:213-225.

Richman, L.A. 2013. Niagara River Biomonitoring Study 2006/2009 Caged Mussels (*Elliptio complanata*) and Semi Permeable Membrane Devices (SPMDs). Ontario Ministry of Environment, Water Monitoring Section, Environmental Monitoring and Reporting Branch, January 2013. PIBS 9416

US EPA/NYSDEC, 1994. *Reduction of Toxic Loadings to the Niagara River from Hazardous Waste Sites in the United States: A Progress Report.* United States Environmental Protection Agency and the New York State Department of Environmental Conservation.

USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2002. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: A progress report.

USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2003. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: June 2003.

USEPA/NYSDEC (United States Environmental Protection Agency and the New York State Department of Environmental Conservation). 2004. Reduction of toxic loadings to the Niagara River from hazardous waste sites in the United States: June 2004. van den Berg, M., Bimbaum, L., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson., R., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241.

Vrana, B., and Schuurmann, G. 2002. Calibrating the uptake kinetics of semipermeable membrane devices in water:Impact of hydrodynamics. 2002. Environ. Sci. Technol. 36:290-296.

Wang, J., Yonghong, B., Phister, G., Henkelmann, B., Zhu, K., and Schramm, K. 2009. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 75:1119-1127.

http://www.wunderground.com/history/airport/KIAG/2012/8/5/DailyHistory.html

Appendices

Appendix A: Station Location			
Station Location	Station #	Northing	Easting
Canadian sites			
Balsam Lake (Control)	18 01 0001	4938157	674831
Fort Erie	05 02 203	4754908	670305
Millers Creek at Niagara Parks Department	05 15 41	4757774	665065
Bakers Creek at Schweigler Rd.	05 15 27	4759344	662860
Boyers Creek at Sherk Rd.	05 15 28	4762397	659697
Chippawa Channel	05 02 51	4768226	661232
NOTL	05 11 09	4790824	657471
American Sites			
Two Mile Creek	05 02 197	4764036	670595
Rattlesnake Creek	05 15 38	670555	4763739
Pettit Flume - U/S	05 02 185	4766739	672260
Pettit Flume - Site B	05 02 186	4766806	672236
Pettit Flume - D/S	05 02 187	4766795	672170
Fisherman's Park - U/S	05 02 01	4767294	671992
Fishermans's Park - D/S	05 02 02	4767371	671979
Gratwick Riverside Park - U/S	05 02 31	4768285	671655
Gratwick Riverside Park - D/S	05 02 199	4769277	670593
102nd Street Upstream site	05 02 93	4770760	667252
LNR (D/S 102nd St. waste site)	05 02 095	4771208	666639
Cayuga Creek	05 15 31	4771997	665978
LNR (D/S Cayuga Creek)	05 02 96	4771057	665523
U/S of Occidental Chem. Co.	05 02 97	4770936	662808
Occidental 003	05 02 42	4771074	662219
Niagara River - U/S Gill Creek	05 02 98	4771388	661048
Gill Creek - Mouth	05 02 37	4771395	660686
Gill Creek - U/S in Creek	05 15 22	4772103	660855
Bloody Run Creek - U/S	11 02 0018	4777914	659122
Bloody Run Creek	11 02 0017	4777974	659171
Bloody Run Creek	11 02 0131	4777962	659155
Bloody Run Creek	11 02 0132	4777965	659160
Bloody Run Creek - D/S	11 02 0025	4778024	659199

Field Water Qual							
Sonde = YSI 600 QS							
Dissolved oxygen sen	sor calibrated	l before everv	measurement				
Conductivity values ar							
,		, · · · ·	, ,				
Station Name	Station #	Depth (m)	Date	Cond. (µs/cm)	Temp. (°C)	DO (%)	DO (mg/L)
Fishermen's Dark LI/S	05 02 0001	0.4	17 JUL 12	295	26.5	119	9.5
Fisherman's Park U/S	05 02 000 1	0.4	07 AUG 12	303	24.7	131	10.9
Fisherman's Park D/S	05 02 0002	0.9	17 JUL 12	297	25.9	108	8.8
FISHEIMANS PAIR D/S	05 02 0002	0.9	07 AUG 12	302	24.5	94	7.9
2 Mile Creek	05 02 0197	0.6	17 JUL 12	1015	27.2	62	4.5
2 Mille Creek	05 02 0197	0.0	07 AUG 12	Not measured			
Pettit Flume D/S	05 02 0187	1.0	18 JUL 12	293	25.9	96	7.8
Pellit Flume D/S	05 02 0187	1.0	08 AUG 12	295	24.5	100	8.3
Pettit Flume (Outer	05 02 0186	0.9	18 JUL 12	379	23.6	80	6.7
Site B)	00 02 0100	0.9	08 AUG 12	394	21.8	21	1.8
Pettit Flume U/S	05 02 0185	0.9	18 JUL 12	294	26.6	96	7.7
	00 02 0100	0.9	08 AUG 12	296	25.1	104	8.6
U/S Gratwick	05 02 0031	0.5	18 JUL 12	297	26.5	102	18.2
Riverside Park	05 02 005 1	0.5	08 AUG 12	294	25.2	111	9.1
Gratwick Riverside	05 02 0199	0.8	18 JUL 12	290	26.3	123	9.9
Park	05 02 0199	0.0	08 AUG 12	302	25.3	100	8.2
102nd Street	05 02 0093	0.6	18 JUL 12	293	26.8	129	10.3
(Upstream)	05 02 0095	0.0	08 AUG 12	296	26.2	94	7.6
Little Niagara River	05 02 0005	0.5	18 JUL 12	292	26.6	30	2.4
(near 102nd St)	05 02 0095	0.5	08 AUG 12	279	26.4	102	8.2
Cayuga Creek (within	05 15 0031	0.5	18 JUL 12	759	27.0	102	8.1
the creek)	05 15 0031	0.5	08 AUG 12	623	26.4	83	6.7
Little Niagara River	05 02 0096	0.6	18 JUL 12	297	27.3	123	9.7
(D/S Cayuga Creek)	05 02 0096	0.0	08 AUG 12	257	26.1	113	9.2
Bloody Run Creek	11 02 0018		19 JUL 12	Not measured. Se	e station 11 02	2 0017.	
U/S	11 02 0016		09 AUG 12	Site vandalized. E	mpty cage fou	nd dry, up o	on rocks.
Bloody Bup Crook	11 02 0017	0.5	19 JUL 12	290	24.7	112	9.5
Bloody Run Creek	11 02 0017	0.5	09 AUG 12	290	24.5	120	10.0
Pleady Pup Creak	11 02 0121	0.6	19 JUL 12	Not measured. Se	e station 11 02	2 0017.	
Bloody Run Creek	11 02 0131	0.6	09 AUG 12	290	24.4	119	9.9
Bloody Burn Crook	11 02 01 22	0.0	19 JUL 12	Not measured. Se	e station 11 02	2 0017.	
Bloody Run Creek	11 02 0132	0.8	09 AUG 12	283	23.8	105	8.9
Bloody Run Creek	11 02 0025	0.7	19 JUL 12	293	23.8	121	10.1
D/S	11 02 0025	0.7	09 AUG 12	290	24.3	115	9.7
Upstream of	05.00.0007	0.4	19 JUL 12	295	25.4	91	7.5
Occidental Facility	05 02 0097	0.4	09 AUG 12	306	24.9	92	7.6
Occidental Sewer	05 02 0042	0.5	19 JUL 12	470	25.1	95	7.8
003	00 02 0042	0.5	09 AUG 12	390	24.7	96	7.9
350m U/S Gill Ck (in	05.02.0000	0.0	19 JUL 12	289	25.0	104	8.3
Niagara R)	05 02 0098	0.8	09 AUG 12	289	24.4	96	8.0
	05 00 0007	1.0	19 JUL 12	314	25.3	96	7.9
Gill Creek Mouth	05 02 0037	1.0	09 AUG 12	296	24.5	92	7.7
Upstream Gill Ck (in	05 45 0000	0.5	19 JUL 12	297	26.0	104	8.5
creek)	05 15 0022	0.5	09 AUG 12	287	24.0	78	6.6

Field Water Qual	ity Measu	rements					
Sonde = YSI 600 QS							
Dissolved oxygen sen	sor calibrated	l before every	measurement				
Conductivity values ar	re temperature	e compensate	ed, except where	e noted			
Otation Name	Otestiens #	Danith (m)	Dete		T		DO (
Station Name	Station #	Depth (m)	Date	Cond. (µs/cm)	Temp. (°C)	DO (%)	DO (mg/L)
Fort Erie at	05 02 0203	0.7	20 JUL 12	291	23.3	79	6.8
Robertson St	00 02 0200	0	10 AUG 12	298	22.4	81	7.0
Millers Creek @	05 15 0041	0.4	20 JUL 12	303	20.9	57	4.9
Niagara Parks Dept.	05 15 0041	0.4	10 AUG 12	292	23.2	75	6.4
Bakers Creek	05 15 0027		20 JUL 12	384	19.0	25	2.3
Dakers Creek	05 15 0027		10 AUG 12	Not measured. All	mussels foun	d dead.	
Boyers Creek @	05 15 0028	0.3	20 JUL 12	619	19.4	65	6.0
Sherk Rd	05 15 0026	0.3	10 AUG 12	462	21.6	75	6.6
Chippewa Channel,	05 02 0051	0.5	20 JUL 12	289	22.9	121	10.5
Niagara River	05 02 005 1	0.5	10 AUG 12	289	24.2	113	9.5
Niegere On The Late	11.02.0000	1.0	20 JUL 12	289	24.1	107	9.4
Niagara On The Lake	11 02 0009		10 AUG 12	289	24.5	100	8.3
Balsam Lake (control mussels)			16 JUL 12	153*	27.1	100	
				* cond. value not te		ام ما	

Mussel Weigh	ts & Lab S	Submissio	n Summar	·v		<u>q</u>				
nusser freigh		2001113310	in ournman	<u>y</u>						
Station Name	Station #	Deployed	Retrieved	Depth (m)	GL12xxxx	# Mussels	Wet Weight (g, tared)	Dry Weight (g, tared)	Submit	Test Codes
					3100	1	6.11		wet	PCBT3136, OC3136, CB3136, LIPID313
					3101	1	7.53		wet	PCBT3136, OC3136, CB3136, LIPID313
					3102	1	7.33		wet	PCBT3136, OC3136, CB3136, LIPID313
					3103	4	23.87		wet	DIOX3418, LIPID3136
Fisherman's Park		17 JUL 12	07 AUG 12		3104	6	40.33	5.27	dry	PCBC3411, LIPID3136
U/S	05 02 0001	@ 1258h	@ 1215h	0.4	3105	6	37.48 42.50	4.70 4.94	dry	PCBC3411, LIPID3136
					3106 3107 A	1	5.63	4.94	dry not	PCBC3411, LIPID3136 Archive
					3107 A	1	6.67		not	Archive
					3107 C	1	8.11		not	Archive
					3107 D	1	5.82		not	Archive
					3108	1	8.10		wet	PCBT3136, OC3136, CB3136, LIPID313
					3109	1	7.12		wet	PCBT3136, OC3136, CB3136, LIPID313
					3110	1	6.40		wet	PCBT3136, OC3136, CB3136, LIPID313
					3111	4	28.25		wet	DIOX3418, LIPID3136
Fisherman's Park	05 02 0002	17 JUL 12		0.9	3112	6	35.27	4.22	dry	PCBC3411, LIPID3136
D/S	03 02 0002	@ 1323h	@ 1327h	0.9	3113	6	41.59	4.91	dry	PCBC3411, LIPID3136
					3114	6	37.17	3.81	dry	PCBC3411, LIPID3136
					3115 A	1	6.87		not	Archive
					3115 B	1	4.16		not	Archive
					3115 C	1	5.10		not	Archive
					3116	1	5.80		wet	PCBT3136, OC3136, CB3136, LIPID313
					3117	1	6.11		wet	PCBT3136, OC3136, CB3136, LIPID313
					3118	1	7.12	2.40	wet	PCBT3136, OC3136, CB3136, LIPID313
2 Mile Creek	05 00 0407	17 JUL 12	07 AUG 12	0.6	3119	6	36.14	3.40	dry	PCBC3411, LIPID3136
2 Mile Creek	05 02 0197	@ 1545h	@ 1550h	0.6	3120 3121	6	38.11	4.17	dry	PCBC3411, LIPID3136
					3121 3122 A	1	34.80 5.95	3.77	dry not	PCBC3411, LIPID3136 Archive
					3122 A 3122 B	1	5.20		not	Archive
					3122 C	1	3.90		not	Archive
					3123	1	5.94		wet	PCBT3136, OC3136, CB3136, LIPID313
					3124	1	7.00		wet	PCBT3136, OC3136, CB3136, LIPID313
		18 JUL 12	08 AUG 12		3125	1	5.47		wet	PCBT3136, OC3136, CB3136, LIPID313
Pettit Flume D/S	05 02 0187	@ 0850h	@ 0809h	1.0	3126	4	27.97		wet	DIOX3418, LIPID3136
					3127 A	1	6.86		not	Archive
					3127 B	1	5.83		not	Archive
					3128	1	7.69		wet	PCBT3136, OC3136, CB3136, LIPID313
Pettit Flume	05 02 0186	18 JUL 12		0.9	3129	1	7.11		wet	PCBT3136, OC3136, CB3136, LIPID313
(Outer Site B)	05 02 0100	@ 0929h	@ 0840h	0.5	3130	1	6.26		wet	PCBT3136, OC3136, CB3136, LIPID313
					3131	4	24.85		wet	DIOX3418, LIPID3136
					3132	1	6.93		wet	PCBT3136, OC3136, CB3136, LIPID313
					3133	1	5.52		wet	PCBT3136, OC3136, CB3136, LIPID313
Pettit Flume U/S	05 02 0185		08 AUG 12	0.9	3134	1	5.67		wet	PCBT3136, OC3136, CB3136, LIPID313
		@ 1002h	@ 0916h		3135	4	22.25		wet	DIOX3418, LIPID3136
					3136 A	1	7.43		not	Archive
					3136 B 3137	1	5.52 7.72		not	Archive PCBT3136, OC3136, CB3136, LIPID313
						1			wet	PCBT3136, OC3136, CB3136, LIPID31, PCBT3136, OC3136, CB3136, LIPID31,
U/S Gratwick	05 02 0031	18 JUL 12	08 AUG 12	0.5	3138 3139	1	8.15 7.23		wet wet	PCBT3136, OC3136, CB3136, LIPID31, PCBT3136, OC3136, CB3136, LIPID31,
Riverside Park	05 02 0051	@ 1050h	@ 1100h	0.5	3140 A	1	6.70		not	Archive
					3140 A	1	6.27		not	Archive
					3141	1	4.91		wet	PCBT3136, OC3136, CB3136, LIPID313
					3142	1	6.50		wet	PCBT3136, OC3136, CB3136, LIPID313
					3143	1	6.79		wet	PCBT3136, OC3136, CB3136, LIPID313
					3144	6	38.13	4.60	dry	PCBC3411, LIPID3136
Gratwick	05 00 0 00	18 JUL 12	08 AUG 12		3145	6	35.77	4.27	dry	PCBC3411, LIPID3136
Riverside Park	05 02 0199	@ 1145h	@ 1134h	0.8	3146	6	43.54	5.28	dry	PCBC3411, LIPID3136
					3147 A	1	8.01		not	Archive
					3147 B	1	5.95		not	Archive
					3147 C	1	5.85		not	Archive
					3147 D	1	6.76		not	Archive

Mussel Weigh	ts & Lab S	Submissio				omonitori				
-										
Station Name	Station #	Deployed	Retrieved	Depth (m)	GL12xxxx	# Mussels	Wet Weight (g, tared)	Dry Weight (g)		Test Codes
					3148 3149	1	7.83 7.37		wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
					3149	1	8.77		wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
					3150	6	41.00	5.03	dry	PCBC3411, LIPID3136
102nd Street		18 JUL 12	08 AUG 12		3152	6	47.74	5.86	dry	PCBC3411, LIPID3136
(Upstream)	05 02 0093	@ 1315h	@ 1325h	0.6	3153	6	39.67	5.36	dry	PCBC3411, LIPID3136
(, ,					3154 A	1	6.21	0.00	not	Archive
					3154 B	1	6.77		not	Archive
					3154 C	1	5.80		not	Archive
					3154 D	1	8.08		not	Archive
					3155	1	8.15		wet	PCBT3136, OC3136, CB3136, LIPID313
					3156	1	7.55		wet	PCBT3136, OC3136, CB3136, LIPID313
					3157	1	6.03		wet	PCBT3136, OC3136, CB3136, LIPID313
					3158	6	38.94	5.02	dry	PCBC3411, LIPID3136
Little Niagara River (near 102nd	05 02 0095	18 JUL 12	08 AUG 12	0.5	3159	6	39.28	4.94	dry	PCBC3411, LIPID3136
St)	05 02 0055	@ 1407h	@ 1419h	0.0	3160	6	36.77	4.64	dry	PCBC3411, LIPID3136
					3161 A	1	5.45		not	Archive
					3161 B	1	7.86		not	Archive
					3161 C	1	5.32		not	Archive
					3161 D	1	5.92		not	Archive
					3162	1	9.20		wet	PCBT3136, OC3136, CB3136, LIPID313
					3163	1	8.12		wet	PCBT3136, OC3136, CB3136, LIPID313
					3164	1	8.77		wet	PCBT3136, OC3136, CB3136, LIPID313
					3165	6	54.88	8.64	dry	PCBC3411, LIPID3136
Cayuga Creek	05 15 0031	18 JUL 12 @ 1445h	08 AUG 12 @ 1511h	0.5	3166	6	49.19	7.35	dry	PCBC3411, LIPID3136
(within the creek)		@ 14450	@ ISIIN		3167	6	51.25	8.12	dry	PCBC3411, LIPID3136
					3168 A	1	7.30		not	Archive
					3168 B	1	8.61		not	Archive
					3168 C	1	8.19		not	Archive
					3168 D	1	7.89		not	Archive
					3169 3170	1	6.36 6.46		wet wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
					3170	1	6.96		wet	PCBT3136, OC3136, CB3136, LIPID313
					3172	6	40.64	5.24	dry	PCBC3411, LIPID3136
Little Niagara		18 JUL 12	08 AUG 12		3173	6	43.43	5.54	dry	PCBC3411, LIPID3136
River (D/S	05 02 0096	@ 1532h	@ 1554h	0.6	3174	6	42.05	5.22	dry	PCBC3411, LIPID3136
Cayuga Creek)					3175 A	1	6.19		not	Archive
					3175 B	1	6.86		not	Archive
					3175 C	1	6.28		not	Archive
					3175 D	1	7.11		not	Archive
Bloody Run Creek	11 02 0018	19 JUL 12	N/A		•		Site vandalized. Em	npty cage found dry, up o	n rocks.	• •
U/S		@ 0830h			0470	4				
					3176	1	5.19		wet	PCBT3136, OC3136, CB3136, LIPID313
Bloody Run Creek	11 02 0017	19 JUL 12 @ 0825h	09 AUG 12 @ 0741h	0.5	3177 3178	1	5.60 6.07		wet	PCBT3136, OC3136, CB3136, LIPID313
		@ 002511	@ 074111		3178	4	26.21		wet wet	PCBT3136, OC3136, CB3136, LIPID313 DIOX3418, LIPID3136
					3179	4	5.88		wet	PCBT3136, OC3136, CB3136, LIPID313
					3181	1	5.86		wet	PCBT3136, OC3136, CB3136, LIPID313
		10 12	09 AUG 12		3182	1	6.29		wet	PCBT3136, OC3136, CB3136, LIPID313
Bloody Run Creek	11 02 0131	@ 0825h	@ 0740h	0.6	3183	4	27.90		wet	DIOX3418, LIPID3136
					3184 A	1	7.41		not	Archive
					3184 B	1	5.36		not	Archive
					3185	1	5.77		wet	PCBT3136, OC3136, CB3136, LIPID313
					3186	1	6.32		wet	PCBT3136, OC3136, CB3136, LIPID313
Bloody Run Creek	11 02 0132	19 JUL 12		0.8	3187	1	5.29		wet	PCBT3136, OC3136, CB3136, LIPID31
,		@ 0825h	@ 0802h	0.0	3188	4	25.18		wet	DIOX3418, LIPID3136
					3189 A	1	4.18		not	Archive
					3190	1	4.92		wet	PCBT3136, OC3136, CB3136, LIPID313
		19 JUL 12	09 AUG 12	_	3191	1	5.47		wet	PCBT3136, OC3136, CB3136, LIPID313
Bloody Run Creek	11 02 0025	@ 0839h	@ 0754h	0.7	3192	1	6.20		wet	PCBT3136, OC3136, CB3136, LIPID313
					3193	3	18.40		wet	DIOX3418, LIPID3136

		Submissio		-						
Station Name	Station #	Deployed	Retrieved	Depth (m)	GL12xxxx	# Mussels	Wet Weight (g, tared)	Dry Weight (g)	Submit	Test Codes
					3194	1	6.05		wet	PCBT3136, OC3136, CB3136, LIPID313
					3195 3196	1	8.22 5.04		wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
Upstream of	05 02 0097	19 JUL 12	09 AUG 12	0.4	3197	6	42.09	5.70	dry	PCBC3411, LIPID3136
Occidental Facility	05 02 0097	@ 1012h	@ 1038h	0.4	3198	6	37.90	5.19	dry	PCBC3411, LIPID3136
					3199 2200 A	6	34.18	4.62	dry	PCBC3411, LIPID3136
					3200 A 3200 B	1	6.95 7.12		not	Archive
					3201	1	7.20		wet	PCBT3136, OC3136, CB3136, LIPID313
					3202	1	6.39		wet	PCBT3136, OC3136, CB3136, LIPID313
Occidental Sewer		19 JUL 12	09 AUG 12		3203 3204	1	5.83 37.44	3.87	dry	PCBT3136, OC3136, CB3136, LIPID313 PCBC3411, LIPID3136
003	05 02 0042	@ 1045h	@ 1120h	0.5	3204	6	37.93	4.73	dry	PCBC3411, LIPID3136
					3206	6	34.20	4.24	dry	PCBC3411, LIPID3136
					3207 A	1	6.20		not	Archive
					3207 B 3208	1	5.36 5.01		not wet	Archive PCBT3136, OC3136, CB3136, LIPID313
					3208	1	8.64		wet	PCBT3136, OC3136, CB3136, LIPID313
					3210	1	5.37		wet	PCBT3136, OC3136, CB3136, LIPID313
350m U/S Gill Ck		19 JUL 12	09 AUG 12		3211	6	35.60	4.65	dry	PCBC3411, LIPID3136
(in Niagara R)	05 02 0098	@ 1135h	@ 1205h	0.8	3212 3213	6	36.00 32.62	4.50	dry dry	PCBC3411, LIPID3136 PCBC3411, LIPID3136
					3213 3214 A	1	5.75	4.10	not	Archive
					3214 B	1	6.50		not	Archive
		ļ			3214 C	1	4.36		not	Archive
					3215 3216	1	7.12 7.83		wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
					3216	1	5.95		wet	PCBT3136, OC3136, CB3136, LIPID313 PCBT3136, OC3136, CB3136, LIPID313
					3218	6	41.94	5.17	dry	PCBC3411, LIPID3136
Gill Creek Mouth	05 02 0037	19 JUL 12 @ 1236h	09 AUG 12 @ 1239h	1.0	3219	6	43.24	5.27	dry	PCBC3411, LIPID3136
					3220 3221 A	6	41.30 8.02	5.66	dry not	PCBC3411, LIPID3136
					3221 A 3221 B	1	6.60		not	Archive
					3221 C	1	6.33		not	Archive
					3222	1	6.58		wet	PCBT3136, OC3136, CB3136, LIPID313
					3223	1	8.01		wet	PCBT3136, OC3136, CB3136, LIPID313
					3224 3225	1 6	9.26 47.81	5.72	dry	PCBT3136, OC3136, CB3136, LIPID313 PCBC3411, LIPID3136
Upstream Gill Ck	05 45 0000	19 JUL 12	09 AUG 12	0.5	3226	6	39.20	5.21	dry	PCBC3411, LIPID3136
(in creek)	05 15 0022	@ 1321h	@ 1335h	0.5	3227	6	45.40	5.52	dry	PCBC3411, LIPID3136
					3228 A	1	6.49		not	Archive
					3228 B 3228 C	1	5.45 5.54		not	Archive
					3228 D	1	6.84		not	Archive
					3229	1	8.23		wet	PCBT3136, OC3136, CB3136, LIPID313
					3230 3231	1	5.75 6.79		wet	PCBT3136, OC3136, CB3136, LIPID313
					3231	6	42.84	4.53	dry	PCBT3136, OC3136, CB3136, LIPID313 PCBC3411, LIPID3136
Fort Erie at Robertson St	05 02 0203	20 JUL 12 @ 0846h	10 AUG 12 @ 0818h	0.7	3233	6	42.53	5.24	dry	PCBC3411, LIPID3136
Robertson or		6 004011	@ 001011		3234	6	39.69	5.36	dry	PCBC3411, LIPID3136
					3235 A 3235 B	1	8.22 6.78		not	Archive
					3235 B 3235 C	1	5.85		not	Archive
Millers Creek @					3236	1	7.57		wet	PCBT3136, OC3136, CB3136, LIPID313
Niagara Parks	05 15 0041	20 JUL 12 @ 0939h	10 AUG 12 @ 0919h	0.4	3237	1	4.80		wet	PCBT3136, OC3136, CB3136, LIPID313
Dept.					3238	1	4.99		wet	PCBT3136, OC3136, CB3136, LIPID313
Bakers Creek	05 15 0027	20 JUL 12 @ 1003h	N/A				All mu	ussels found dead.		
					3239	1	6.98		wet	PCBT3136, OC3136, CB3136, LIPID313
Boyers Creek @		20 JUL 12	10 AUG 12		3240	1	7.57		wet	PCBT3136, OC3136, CB3136, LIPID313
Sherk Rd	05 15 0028	@ 1033h	@ 1008h	0.3	3241	1	6.24		wet	PCBT3136, OC3136, CB3136, LIPID313
					3242 A 3242 B	1	5.91 5.69		not	Archive
					3243	1	7.94		wet	PCBT3136, OC3136, CB3136, LIPID313
					3244	1	6.62		wet	PCBT3136, OC3136, CB3136, LIPID313
					3245	1	6.50	4.70	wet	PCBT3136, OC3136, CB3136, LIPID313 PCBC3411, LIPID3136
Chippewa		20 JUL 12	10 AUG 12		3246 3247	6	38.27 40.84	4.73	dry dry	PCBC3411, LIPID3136 PCBC3411, LIPID3136
Channel, Niagara River	05 02 0051	@ 1108h	@ 1038h	0.5	3248	6	37.50	4.59	dry	PCBC3411, LIPID3136
TUVE!					3249 A	1	7.02		not	Archive
					3249 B	1	5.67		not	Archive
					3249 C 3249 D	1	5.49 6.08		not	Archive
					3249 D 3250	1	6.20		wet	PCBT3136, OC3136, CB3136, LIPID313
					3251	1	7.04		wet	PCBT3136, OC3136, CB3136, LIPID313
					3252	1	6.00		wet	PCBT3136, OC3136, CB3136, LIPID313
Niagara on the		20 JUL 12	10 AUG 12		3253 3254	6	36.25 36.81	4.25 4.45	dry dry	PCBC3411, LIPID3136 PCBC3411, LIPID3136
Niagara on the Lake	11 02 0009	20 JUL 12 @ 1242h	10 AUG 12 @ 1202h	1.0	3254	6	38.95	4.45	dry	PCBC3411, LIPID3136
					3256 A	1	7.27		not	Archive
					3256 B	1	6.52		not	Archive
					3256 C	1	5.65		not	Archive
					3256 D 3257	1	4.92 11.20		not wet	Archive PCBT3136, OC3136, CB3136, LIPID313
					3257	1	8.00		wet	PCBT3136, OC3136, CB3136, LIPID313
					3259	1	8.30		wet	PCBT3136, OC3136, CB3136, LIPID313
Balsam Lake	18 01 0001	N/A	16 JUL 12	2.0	3260	1	8.40		wet	PCBT3136, OC3136, CB3136, LIPID313
(control mussels)			@ 1145h		3261	1	9.50	5.00	wet	PCBT3136, OC3136, CB3136, LIPID313
					3262 3263	6	47.10 51.20	5.63 6.21	dry dry	PCBC3411, LIPID3136 PCBC3411, LIPID3136

Appendix D1: 2012 Caged Mussel Tissue Contaminant Data.

Test Code	Description	Test Code	Description	Test Cod	e Description	Test Code	Description
LIPID	LIPIDS	P4D378	2378-T4-CDD	PCB018	2,2',5-TRICHLOROBIPHENYL	PCB170	22'33'44'5-HEPTA(CL)BIPHENYL
P1ALDR	ALDRIN	P4F378	2378-T4-CDF	PCB019	2,2',6-TRI(CL)BIPHENYL	PCB171	22'33'44'6-HEPTA(CL)BIPHENYL
P1BHCA	HEXACLOROCYCLOHEX,ALPHA-BHC	P5D378	12378-P5-CDD	PCB022	2,3,4'-TRICHLOROBIPHENYL	PCB177	22'33'4'56-HEPTA(CL)BIPHENYL
P1BHCB	HEXACLOROCYCLOHEX,BETA-BHC	P5F378	12378-P5-CDF	PCB028	2,4,4'-TRICHLOROBIPHENYL	PCB178	22'33'55'6-HEPTA(CL)BIPHENYL
P1BHCG	HEXACLOROCYCLOHEX,GAMMA-BHC	P5F478	23478-P5-CDF	PCB033	2',3,4-TRICHLOROBIPHENYL	PCB180	22'344'55'-HEPTACHLOROBIPHENY
P1CHLA	CHLORDANE,ALPHA	P6D478	123478-H6-CDD	PCB037	3,4,4'-TRICHLOROBIPHENYL	PCB183	22'344'5'6-HEPTA(CL)BIPHENYL
P1CHLG	CHLORDANE,GAMMA	P6D678	123678-H6-CDD	PCB044	2,2',3,5'-TETRACHLOROBIPHENYL	PCB187	22'34'55'6-HEPTA(CL)BIPHENYL
CISCHL	CIS-NONACHLOR	P6D789	123789-H6-CDD	PCB049	2,2',4,5'-TETRACHLOROBIPHENYL	PCB188	22'34'566'-HEPTA(CL)BIPHENYL
P1HEPT	HEPTACHLOR	P6F234	234678-H6-CDF	PCB052	2,2',5,5'-TETRACHLOROBIPHENYL	PCB189	233'44'55'-HEPTA(CL)BIPHENYL
P1MIRX	MIREX	P6F478	123478-H6-CDF	PCB054	2,2',6,6'-TETRA(CL)BIPHENYL	PCB191	233'44'5'6-HEPTACHLOROBIPHENY
P10CHL	OXYCHLORDANE	P6F678	123678-H6-CDF	PCB070	2,3',4',5-TETRACHLOROBIPHENYL	PCB194	22'33'44'55'-OCTACHLOBIPHENYL
DDTMET	DDT & METABOLITES	P6F789	123789-H6-CDF	PCB074	2,4,4',5-TETRACHLOROBIPHENYL	PCB199	22'33'455'6'-OCTA(CL)BIPHENYL
P10PDT	OP-DDT	P7D678	1234678-H7-CDD	PCB077	3,3',4,4'-TETRACHLOROBIPHENYL	PCB201	22'33'45'66'-OCTA(CL)BIPHENYL
P1PCBT	PCB TOTAL	P7F678	1234678-H7-CDF	PCB081	3,4,4',5-TETRACHLOROBIPHENYL	PCB202	22'33'55'66'-OCTA(CL)BIPHENYL
P1PMIR	PHOTO MIREX	P7F789	1234789-H7-CDF	PCB087	2,2'3,4,5'-PENTACHLOROBIPHENY	PCB205	233'44'55'6-OCTACHLOBIPHENYL
P1PPDD	PP-DDD	P98CDD	OCTCHLORODIBENZPIOXIN	PCB095	2,2'3,5',6-PENTACHLOROBIPHENY	PCB206	22'33'44'55'6-OCTACHLOBIPHENY
P1PPDE	PP-DDE	P98CDF	OCTCHLORODIBENZO FURAN	PCB099	2,2'4,4',5-PENTACHLOROBIPHENY	PCB208	22'33'455'66'NONA(CL)BIPHENYL
P1PPDT	PP-DDT			PCB101	2,2'4,5,5'-PENTACHLOROBIPHENY	PCBTOT	PCB CONGENER TOTAL
P1TOX	TOXAPHENE	Test Code	Description	PCB104	2,2'4,6,6'-PENTA(CL)BIPHENYL		
TOTTEC	TOTAL TECHNICAL CHLORDANE	PNACNE	ACENAPHTHENE	PCB105	2,3,3'4,4'-PENTACHLOROBIPHENY	<t -="" mea<="" td=""><td>surable trace amount</td></t>	surable trace amount
TRACHL	TRANS-NONACHLOR	PNACNY	ACENAPHTHYLENE	PCB110	2,3,3'4',6-PENTACHLOROBIPHENY	<w -="" no="" r<="" td=""><td>neasurable response</td></w>	neasurable response
X1HCBD	HEXACHLOROBUTADIENE	PNANTH	ANTHRACENE	PCB114	2,2'3,4,5'-PENTACHLOROBIPHENY	MPC - Max	c possible concentration due to
X2123	TRICHLOROBENZENE 1,2,3	PNBAA	BENZO(A)ANTHRACENE	PCB118	2,3'4,4',5-PENTACHLOROBIPHENY	chromatog	raphic overlap
X21234	TETRACHLOROBENZENE 1,2,3,4	PNBAP	BENZO(A)PYRENE	PCB119	2,3'4,4',6-PENTACHLOROBIPHENY		
X21235	TETRACHLOROBENZENE 1,2,3,5	PNBBFA	BENZO (B) FLUORANTHENE	PCB123	2'3,4,4',5-PENTA(CL)BIPHENYL		
X2124	TRICHLOROBENZENE 1,2,4	PNBKF	BENZO (K) FLUORANTHENE	PCB126	3,3'4,4',5-PENTACHLOROBIPHENY		
X21245	TETRACHLOROBENZENE 1,2,4,5	PNCHRY	CHRYSENE	PCB128	22',33',44'-HEXA(CL)BIPHENYL		
X2135	TRICHLOROBENZENE 1,3,5	PNDAHA	DIBENZO(AH)ANTHRACENE	PCB138	2,2'3,44'5'-HEXACHLOROBIPHENY		
X2HCB	HEXACHLOROBENZENE	PNFLAN	FLUORANTHENE	PCB149	2,2'3,3'46'-HEXACHLOROBIPHENY		
X2HCE	HEXACHLOROETHANE	PNFLUO	FLUORENE	PCB151	2,2'3,5,5'6-HEXA(CL)BIPHENYL		
X2OCST	OCTACHLOROSTYRENE	PNGHIP	BENZO(G,H,I) PERYLENE	PCB153	22',44',55'-HEXACHLOROBIPHENY		
X2PNCB	PENTACHLOROBENZENE	PNINP	INDENO(1,2,3-CD) PYRENE	PCB155	22',44',66'-HEXA(CL)BIPHENYL		
X2T236	TRICHLOROTOLUENE 2,3,6	PNNAPH	NAPHTHALENE	PCB156	2,3,3'4,4'5-HEXACHLOROBIPHENY		
X2T245	TRICHLOROTOLUENE 2,4,5	PNPHEN	PHENANTHRENE	PCB157	2,3,3'44'5'-HEXACHLOROBIPHENY		
X2T26A	TRICHLOROTOLUENE 2,6,A	PNPYR	PYRENE	PCB158	2,3,3'4,4'6-HEXACHLOROBIPHENY		
		D10PHE	D10-PHENANTHRENE	PCB167	23',44',55'-HEXA(CL)BIPHENYL		
		D12CHR	D12-CHRYSENE	PCB168	23',44',5'6-HEXA(CL)BIPHENYL		
		D8NAPH	D8-NAPHTHALENE	PCB169	3,3'4,4'55'-HEXACHLOROBIPHENY		

Appendix D1: Tissue concentrations (ng/g wet	wt.) of orga	nic compounds	in caged muss	els, Niaga	ra Riv	/er, 201	12. <v< th=""><th>V= no m</th><th>neasur</th><th>able res</th><th>ponse</th><th>e; <t= n<="" th=""><th>neasu</th><th>rable trac</th><th>e amo</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=></th></v<>	V= no m	neasur	able res	ponse	e; <t= n<="" th=""><th>neasu</th><th>rable trac</th><th>e amo</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=>	neasu	rable trac	e amo	ount									
Station Description	Station No	Collect Date	Field Sample	Water	LIPID	CISCHL	VQF	P1ALDR	VQF	P1BHCA	VQF	P1BHCB	VQF	P1BHCG	VQF	P1CHLA	VQF	P1CHLG	VQF	P1HEPT	VQF	P1MIRX	VQF	P10CH	IL VQF
		and Time		Depth(m)	%	NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G	
Balsam Lake	1800010001	07/16/2012 11:45	GL123257	2	0.88	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Balsam Lake	1800010001	07/16/2012 11:45	GL123258	2	0.52	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Balsam Lake	1800010001	07/16/2012 11:45	GL123259	2	0.53	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Balsam Lake	1800010001	07/16/2012 11:45	GL123260	2	0.59	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Balsam Lake	1800010001	07/16/2012 11:45	GL123261	2	0.55	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
American Sites																									
Two Mile Creek	500020197	08/07/2012 15:50	GL123116	0.6	0.64	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Two Mile Creek	500020197	08/07/2012 15:50	GL123117	0.6	0.49	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Two Mile Creek	500020197	08/07/2012 15:50	GL123118	0.6	0.81	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Pettit Flume (Downstream)	500020187	08/08/2012 8:09	GL123123	1	0.64	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Pettit Flume (Downstream)	500020187	08/08/2012 8:09	GL123124	1	0.59	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Pettit Flume (Downstream)	500020187	08/08/2012 8:09	GL123125	1	0.49	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Pettit Flume (Outer Site B)	500020186	08/08/2012 8:40	GL123128	0.9	1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Pettit Flume (Outer Site B)	500020186	08/08/2012 8:40	GL123129	0.9	1.1	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Pettit Flume (Outer Site B)	500020186	08/08/2012 8:40	GL123130	0.9	4.3	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Pettit Flume (Upstream)	500020185	08/08/2012 9:16	GL123132	0.9	0.86	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Pettit Flume (Upstream)	500020185	08/08/2012 9:16	GL123133	0.9	0.68		<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Pettit Flume (Upstream)	500020185	08/08/2012 9:16	GL123134	0.9	0.6	2	<=W	1	<=W	1	<=W	-	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W		<=W
Fisherman's Park (Upstream)		08/07/2012 12:15	GL123104	0.4	0.76		<=W	1	<=W	1	<=W	1	<=W	-	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Fisherman's Park (Upstream)		08/07/2012 12:15	GL123100	0.4	0.93	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Fisherman's Park (Upstream)		08/07/2012 12:15	GL123101 GL123102	0.4	0.93	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Fisherman's Park (Downstream)		08/07/2012 13:27	GL123102	0.9	0.99	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
Fisherman's Park (Downstream)		08/07/2012 13:27	GL123108 GL123109	0.9	0.82	2	<=W	1	<=W	1	<=W	1	<=W	_	<=W	2	<=W	2	<=W	_	<=W	5	<=W	-	<=W
Fisherman's Park (Downstream)		08/07/2012 13:27	GL123109 GL123110	0.9	1.1	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W		<=W
Gratwick Riverside Park (Upstream)		08/08/2012 13:27	GL123110 GL123137	0.9	0.86	_	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Gratwick Riverside Park (Upstream)		08/08/2012 11:00	GL123137 GL123138	0.5	1.1	2	<=W	1	<=W	1	<=W	1	<=W	-	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Gratwick Riverside Park (Upstream)		08/08/2012 11:00	GL123138 GL123139	0.5	0.5	2	<=vv <=W	1	<=vv <=W	1	<=W	1	<=vv <=W		<=vv <=W	2	<=vv	2	<=vv <=W	1	<=\v	5	<=W	2	<=vv <=W
				0.5	0.5	2	-	1	1	1	1	1	1			2	<=vv	2	<=w	-		•	-	2	
Gratwick Riverside Park (Downstream)		08/08/2012 11:34	GL123141				<=W		<=W	-	<=W	-	<=W		<=W						<=W	5	<=W		<=W
Gratwick Riverside Park (Downstream)		08/08/2012 11:34	GL123142	0.8	0.79		<=W	1	<=W	1	<=W	1	<=W	_	<=W	2	<=W	2	<=W	-	<=W <=W	5	<=W		<=W
Gratwick Riverside Park (Downstream)		08/08/2012 11:34	GL123143	0.8		2	<=W	-	<=W	-	<=W		<=W	_	<=W			2				-	<=W		<=W
102nd Street (Upstream)		08/08/2012 13:25	GL123148	0.6	0.88		<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
102nd Street (Upstream)		08/08/2012 13:25	GL123149	0.6	0.54	2	<=W	1	<=W	1	<=W	1	<=W	-	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
102nd Street (Upstream)		08/08/2012 13:25	GL123150	0.6	0.38		<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Little Niagara River (near 102nd St)		08/08/2012 14:19	GL123155	0.5	0.12	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Little Niagara River (near 102nd St)		08/08/2012 14:19	GL123156	0.5	0.63	2	<=W	1	<=W	1	<=W	1	<=W	_	<=W	2	<=W	2	<=W		<=W	5	<=W	-	<=W
Little Niagara River (near 102nd St)		08/08/2012 14:19	GL123157	0.5	0.6	2	<=W	1	<=W	1	<=W	1	<=W	_	<=W	2	<=W	2	<=W	_	<=W	5	<=W	2	<=W
Cayuga Creek		08/08/2012 15:11	GL123162	0.5	1	2	<=W	1	<=W	1	<=W	1	<=W		<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Cayuga Creek		08/08/2012 15:11	GL123163	0.5	1.5	2	<=W	1	<=W	1	<=W	1	<=W	-	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Cayuga Creek	500150031	08/08/2012 15:11	GL123164	0.5	0.92	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Little Niagara River (Downstream Cayuga Ck)	500020096	08/08/2012 15:54	GL123169	0.6	0.82	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Little Niagara River (Downstream Cayuga Ck)	500020096	08/08/2012 15:54	GL123170	0.6	0.84	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Little Niagara River (Downstream Cayuga Ck)	500020096	08/08/2012 15:54	GL123171	0.6	0.65	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W

Appendix D1: Tissue concentrations (ng/g wet	wt.) of orga	nic compounds	in caged muss	els, Niaga	ra Riv	er, 201	2. <\	V= no m	neasur	able res	ponse	e; <t= n<="" th=""><th>neasura</th><th>able trac</th><th>e am</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=>	neasura	able trac	e am	ount									
Station Description	Station No	Collect Date	Field Sample	Water	LIPID	CISCHL	VQF	P1ALDR	VQF	P1BHCA	VQF	P1BHCB	VQF	P1BHCG	VQF	P1CHLA	VQF	P1CHLG	i VQF	P1HEPT	VQF	P1MIRX	VQF	P10CH	L VQF
		and Time		Depth(m)	%	NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G	
Upstream of Occidental	500020097	08/09/2012 10:38	GL123194	0.4	1.3	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Upstream of Occidental	500020097	08/09/2012 10:38	GL123195	0.4	0.98	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Upstream of Occidental	500020097	08/09/2012 10:38	GL123196	0.4	1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Occidental 003	500020042	08/09/2012 11:20	GL123201	0.5	1.1	2	<=W	1	<=W	1	<=W	2	<t< td=""><td>1</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td><td>16</td><td><t< td=""><td>2</td><td><=W</td></t<></td></t<>	1	<=W	2	<=W	2	<=W	1	<=W	16	<t< td=""><td>2</td><td><=W</td></t<>	2	<=W
Occidental 003	500020042	08/09/2012 11:20	GL123202	0.5	1.1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	10	<t< td=""><td>2</td><td><=W</td></t<>	2	<=W
Occidental 003		08/09/2012 11:20	GL123203	0.5	0.46	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	16	<t< td=""><td>2</td><td><=W</td></t<>	2	<=W
350 m U/S Gill Creek (in NR)		08/09/2012 12:05	GL123208	0.8	0.44	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
350 m U/S Gill Creek (in NR)		08/09/2012 12:05	GL123209	0.8	0.7	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
350 m U/S Gill Creek (in NR)	-	08/09/2012 12:05	GL123210	0.8	0.26	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Gill Creek (Mouth)		08/09/2012 12:39	GL123215	1	1.5	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Gill Creek (Mouth)		08/09/2012 12:39	GL123216	1	1.3	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Gill Creek (Mouth)		08/09/2012 12:39	GL123217	1	0.9	2	<=W	1	<=W	1	<=W	2	<t< td=""><td>1</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td></td><td><=W</td><td>5</td><td><=W</td><td>2</td><td><=W</td></t<>	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
U/S Gill Creek (in creek)		08/09/2012 13:35	GL123222	0.5	0.98	2	<=W	1	<=W	1	<=W	3	<t< td=""><td>1</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>-</td><td><=W</td><td>5</td><td><=W</td><td>2</td><td><=W</td></t<>	1	<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
U/S Gill Creek (in creek)		08/09/2012 13:35	GL123223	0.5	1.1	2	<=W	1	<=W	1	<=W	7	<ा <ा	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
U/S Gill Creek (in creek) Bloody Run Creek	500150022 1100020017	08/09/2012 13:35 08/09/2012 7:41	GL123224 GL123176	0.5	1.3 1.2	2	<=W	1	<=W	1	<=W	3 1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Bloody Run Creek	1100020017	08/09/2012 7:41	GL123176 GL123177	0.5	1.2	2	<=vv	1	<=vv <=W	1	<=W	1	<=W	1	<=vv <=W	2	<=vv	2	<=vv		<=vv	5	<=w	2	<=vv
Bloody Run Creek	1100020017	08/09/2012 7:41	GL123177 GL123178	0.5	0.96	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 7th and 8th post)	1100020017	08/09/2012 7:41	GL123178 GL123180	0.6	0.30	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 7th and 8th post)	1100020131	08/09/2012 7:40	GL123180 GL123181	0.6	0.78	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 7th and 8th post)	1100020131	08/09/2012 7:40	GL123182	0.6	0.98	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 4th and 5th post)	1100020132	08/09/2012 8:02	GL123185	0.8	1.2	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 4th and 5th post)	1100020132	08/09/2012 8:02	GL123186	0.8	0.99	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Bloody Run Creek (btwn 4th and 5th post)	1100020132	08/09/2012 8:02	GL123187	0.8	1.8	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Bloody Run Creek (Downstream)	1100020025	08/09/2012 7:54	GL123190	0.7	1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Bloody Run Creek (Downstream)	1100020025	08/09/2012 7:54	GL123191	0.7	0.83	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Bloody Run Creek (Downstream)	1100020025	08/09/2012 7:54	GL123192	0.7	0.86	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Canadian Sites																									
Fort Erie @ Robertson St.	500020203	08/10/2012 8:18	GL123229	0.7	1.1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Fort Erie @ Robertson St.	500020203	08/10/2012 8:18	GL123230	0.7	1.1	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Fort Erie @ Robertson St.	500020203	08/10/2012 8:18	GL123231	0.7	0.51	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W
Miller Creek	500150041	08/10/2012 9:19	GL123236	0.4	0.75	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Miller Creek	500150041	08/10/2012 9:19	GL123237	0.4	0.48	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Miller Creek	500150041	08/10/2012 9:19	GL123238	0.4	0.38	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Boyers Creek @ Sherk Rd.		08/10/2012 10:08	GL123239	0.3	0.45	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Boyers Creek @ Sherk Rd.		08/10/2012 10:08	GL123240	0.3	0.2	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Boyers Creek @ Sherk Rd.		08/10/2012 10:08	GL123241	0.3	0.41	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
Chippawa Channel, NR		08/10/2012 10:38	GL123243	0.5	0.58	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
Chippawa Channel, NR		08/10/2012 10:38	GL123244	0.5	0.23	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	-	<=W	5	<=W	2	<=W
Chippawa Channel, NR	-	08/10/2012 10:38	GL123245	0.5	0.55	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
NOTL		08/10/2012 12:02	GL123250	1	0.3	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
NOTL		08/10/2012 12:02	GL123251	1	0.6	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W		<=W	5	<=W	2	<=W
NOTL	1100020009	08/10/2012 12:02	GL123252	1	0.74	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	2	<=W	2	<=W	1	<=W	5	<=W	2	<=W

Appendix D1: Tissue concentrations (ng/g wet	wt.) of o	rganic	compou	unds i	in caged	muss	els, Niaç	gara F	River, 20	12. <	<w= no<="" th=""><th>meas</th><th>urable</th><th>respo</th><th>nse; <t< th=""><th>= mea</th><th>surable</th><th>trace</th><th>amount</th><th>;</th></t<></th></w=>	meas	urable	respo	nse; <t< th=""><th>= mea</th><th>surable</th><th>trace</th><th>amount</th><th>;</th></t<>	= mea	surable	trace	amount	;
Station Description	P1OPDT NG/G	VQF	P1PCBT NG/G	VQF	P1PMIR NG/G	VQF	P1PPDD	VQF	P1PPDE	VQF	P1PPDT NG/G	VQF	P1TOX NG/G	VQF	TOTTEC NG/G	VQF	TRACHL NG/G	VQF	X1HCBE NG/G	D VQF
Balsam Lake	5	<=W	31	P40	4	<=W	NG/G 5	<=W	NG/G	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Balsam Lake	5	<=W	35	P40	4	<=W	5	<=W	3	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Balsam Lake	5	<=W	44	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Balsam Lake	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Balsam Lake	5	<=W	40	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
American Sites	5	<-vv	40	F40	4	<-vv	5	<-vv	1	<-vv	5	<-vv	30	<-vv	2	<-vv	2	<-vv	1	<-vv
Two Mile Creek	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Two Mile Creek	5	<=W	110	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Two Mile Creek	5	<=W	77	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Downstream)	5		95	P40		<=W	5	<=w	1	<=vv <=W	5		50	<=vv	2	<=W	2	<=vv		
Pettit Flume (Downstream)	5	<=W	28	P40 P40	4	<=vv	5	<=vv <=W	3	<=vv <t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=vv</td><td>2</td><td><=vv <=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=vv	2	<=vv <=W	1	<=W
	-	-	-	-	4		-	-	3 4		5			-		-				
Pettit Flume (Downstream)	5	<=W	37	P40	4	<=W	5	<=W		<t< td=""><td>-</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	-	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Outer Site B)	5	<=W	38	P40		<=W	-	<=W	1	<=W	5	<=W	50	<=W		<=W	2	<=W	1	<=W
Pettit Flume (Outer Site B)	5	<=W	43	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Outer Site B)	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Upstream)	5	<=W	29	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Upstream)	5	<=W	43	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Pettit Flume (Upstream)	5	<=W	34	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Upstream)	5	<=W	42	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Upstream)	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Upstream)	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Downstream)	5	<=W	20	<=W	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Downstream)	5	<=W	29	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Fisherman's Park (Downstream)	5	<=W	37	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Upstream)	5	<=W	110	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Upstream)	5	<=W	110	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Upstream)	5	<=W	87	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Downstream)	5	<=W	81	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Downstream)	5	<=W	75	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Gratwick Riverside Park (Downstream)	5	<=W	52	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
102nd Street (Upstream)	5	<=W	53	P40	4	<=W	5	<=W	2	<t< b=""></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
102nd Street (Upstream)	5	<=W	46	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
102nd Street (Upstream)	5	<=W	35	P40	4	<=W	5	<=W	7	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (near 102nd St)	5	<=W	57	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (near 102nd St)	5	<=W	70	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (near 102nd St)	5	<=W	63	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Cayuga Creek	5	<=W	73	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Cayuga Creek	5	<=W	73	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Cayuga Creek	5	<=W	75	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	5	<=W	63	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	5	<=W	73	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=W</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	5	<=W	78	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=W

Station Description	P10PDT	VQF	P1PCBT	VQF	P1PMIR	VQF	P1PPDD	VQF	P1PPDE	VQF	P1PPDT	VQF	P1TOX	VQF	TOTTEC	VQF	TRACHL	VQF	X1HCBI	o vo
	NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G	
Upstream of Occidental	5	<=W	61	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Upstream of Occidental	5	<=W	52	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Upstream of Occidental	5	<=W	58	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Occidental 003	5	<=W	320	PS1	4	<=W	5	<=W	6	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>28</td><td></td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	28	
Occidental 003	5	<=W	200	PS1	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>15</td><td></td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	15	
Occidental 003	5	<=W	250	PS1	4	<=W	5	<=W	5	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>15</td><td></td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	15	
350 m U/S Gill Creek (in NR)	5	<=W	34	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
350 m U/S Gill Creek (in NR)	5	<=W	21	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
350 m U/S Gill Creek (in NR)	5	<=W	25	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Gill Creek (Mouth)	5	<=W	82	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	22	
Gill Creek (Mouth)	5	<=W	110	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	29	+
Gill Creek (Mouth)	5	<=W	76	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	20	+
U/S Gill Creek (in creek)	5	<=W	87	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
U/S Gill Creek (in creek)	5	<=W	98	P40	4	<=W	5	<=W	4	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
U/S Gill Creek (in creek)	5	<=W	88	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek	5	<=W	59	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek	5	<=W	70	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek	5	<=W	58	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (btwn 7th and 8th post)	5	<=W	40	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W		<=W	2	<=W	1	<=V
Bloody Run Creek (btwn 7th and 8th post)	5	<=W	52	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (btwn 7th and 8th post)	5	<=W	41	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (btwn 4th and 5th post)	5	<=W	83	P40	4	<=W	5	<=W	5	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>6</td><td><t< td=""></t<></td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	6	<t< td=""></t<>
Bloody Run Creek (btwn 4th and 5th post)	5	<=W	57	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (btwn 4th and 5th post)	5	<=W	64	P40	4	<=W	5	<=W	3	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (Downstream)	5	<=W	40	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (Downstream)	5	<=W	36	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bloody Run Creek (Downstream)	5	<=W	46	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Canadian Sites			10	1 10			5		-				50				-		-	
Fort Erie @ Robertson St.	5	<=W	28	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Fort Erie @ Robertson St.	5	<=W	29	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Fort Erie @ Robertson St.	5	<=W	26	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Miller Creek	5	<=W	38	P40	4	<=W	5	<=W	4	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Miller Creek	5	<=W	47	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Miller Creek	5	<=W	56	P40	4	<=W	5	<=W	2	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Bovers Creek @ Sherk Rd.	5	<=W	29	P40	4	<=W	5	<=W	4	<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td>2</td><td><=W</td><td>2</td><td><=W</td><td>1</td><td><=V</td></t<>	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Boyers Creek @ Sherk Rd.	5	<=W	31	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W	2	<=W	2	<=W	1	<=V
Boyers Creek @ Sherk Rd.	5	<=W	40	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W		<=W		<=W	1	<=V
Chippawa Channel, NR	5	<=W	36	P40	4	<=W	5	<=W		<t< td=""><td>5</td><td><=W</td><td>50</td><td><=W</td><td></td><td><=W</td><td>2</td><td><=W</td><td></td><td><=V</td></t<>	5	<=W	50	<=W		<=W	2	<=W		<=V
Chippawa Channel, NR	5	<=W	34	P40	4	<=W	5	<=W		<=W	5	<=W	50	<=W		<=W	2	<=W		<=V
Chippawa Channel, NR	5	<=W	35	P40	4	<=W	5	<=W	1	<=W	5	<=W	50	<=W		<=W	2	<=W		<=V
NOTL	5	<=W	50	P40	4	<=W	5	<=W		<=W	5	<=W	50	<=W		<=W	2	<=W		<=V
NOTL	5	<=W	47	P40	4	<=W	5	<=W		<=W	5	<=W	50	<=W		<=W	2	<=W		<=V
NOTL	5	<=W	50	P40	4	<=w <=w	-	<=W		<=W	5	<=W	50	<=W		<=W		<=W		<=V

Appendix D1: Tissue concentrations (ng/g wet	wt.) of	organ	ic comp	ounds	s in cage	ed mu	ssels, I	Niaga	ra River	, 201	2. <w=< th=""><th>= no r</th><th>neasura</th><th>able r</th><th>espons</th><th>se; <t< th=""><th>= meası</th><th>urable</th><th>trace a</th><th>mount</th><th></th><th></th><th></th><th></th></t<></th></w=<>	= no r	neasura	able r	espons	se; <t< th=""><th>= meası</th><th>urable</th><th>trace a</th><th>mount</th><th></th><th></th><th></th><th></th></t<>	= meası	urable	trace a	mount				
Station Description	X2123	VQF	X21234	VQF		VQF		VQF	X21245	VQF		VQF		VQF		VQF	X2OCST	VQF	X2PNCB	VQF		VQF	X2T245	5 VQF
	NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G		NG/G	
Balsam Lake	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Balsam Lake	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Balsam Lake	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Balsam Lake	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Balsam Lake	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
American Sites																								
Two Mile Creek	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Two Mile Creek	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Two Mile Creek	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	5	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Outer Site B)	2	<=W	5	<t< td=""><td>2</td><td>MPC</td><td>3</td><td><t< td=""><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>13</td><td></td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>7</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<></td></t<>	2	MPC	3	<t< td=""><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>13</td><td></td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>7</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	2	MPC	2	<=W	13		1	<=W	1	<=W	7	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Pettit Flume (Outer Site B)	2	<=W	5	<t< td=""><td>2</td><td>MPC</td><td>3</td><td><t< td=""><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>13</td><td></td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>7</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<></td></t<>	2	MPC	3	<t< td=""><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>13</td><td></td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>7</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	2	MPC	2	<=W	13		1	<=W	1	<=W	7	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Pettit Flume (Outer Site B)	2	<=W	4	<t< td=""><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>2</td><td>MPC</td><td>2</td><td><=W</td><td>14</td><td></td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>8</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	2	MPC	2	<=W	2	MPC	2	<=W	14		1	<=W	1	<=W	8	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Pettit Flume (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Pettit Flume (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fisherman's Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	< <u>-</u> vv	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fisherman's Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fisherman's Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	< <u>r</u>	1	<=W	1	<=W	1	<=W	-	<=W	1	<=W
Fisherman's Park (Opsitean)	2	<=vv	1	<=vv <=W	1	<=vv	2	<=vv	1	<=vv	2	<=w	2	<t< td=""><td>1</td><td><=vv</td><td>1</td><td><=vv</td><td>1</td><td><=vv</td><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv	1	<=vv	1	<=vv	1	<=vv <=W	1	<=vv <=W
	-		-						_							-		-			_			
Fisherman's Park (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fisherman's Park (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Gratwick Riverside Park (Downstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
102nd Street (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
102nd Street (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
102nd Street (Upstream)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Little Niagara River (near 102nd St)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Little Niagara River (near 102nd St)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Little Niagara River (near 102nd St)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Cayuga Creek	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>3</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	1	<=W	1	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Cayuga Creek	2	<=W	2	< T	1	<=W	2	<=W	1	<=W	2	<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>4</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	1	<=W	1	<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Cayuga Creek	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>3</td><td><t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<></td></t<>	1	<=W	1	<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Little Niagara River (Downstream Cayuga Ck)	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W

Appendix D1: Tissue concentrations (ng/g wet	wt.) of	organ	ic comp	ounds	s in cage	ed mu	ssels, I	Viaga	ira River	, 2012	2. <w=< th=""><th>= no r</th><th>neasura</th><th>able re</th><th>espons</th><th>ie; <t< th=""><th>= measu</th><th>ırable</th><th>trace ar</th><th>moun</th><th>t</th><th></th><th></th><th></th></t<></th></w=<>	= no r	neasura	able re	espons	ie; <t< th=""><th>= measu</th><th>ırable</th><th>trace ar</th><th>moun</th><th>t</th><th></th><th></th><th></th></t<>	= measu	ırable	trace ar	moun	t			
Station Description	X2123	VQF	-	VQF	X21235	VQF		VQF	X21245	VQF	X2135	VQF	-	VQF	X2HCE	VQF	X2OCST	VQF	X2PNCB	VQF		VQF	X2T245	VQF
Upstream of Occidental	NG/G 2		NG/G 1	<=W	NG/G	MADC	NG/G 2		NG/G	MPC	NG/G 2	<=W	NG/G	-	NG/G 1	<=W	NG/G	<=W	NG/G 1	<=W	NG/G	. 14/	NG/G	<=W
Upstream of Occidental	2	<=W		<=vv <=W	1	MPC MPC	2	<=W		MPC		<=w	2	<ा <ा	1	<=vv <=W	1	<=W	1	<=w	1	<=W	1	<=vv <=W
Upstream of Occidental	2	<=vv <=W		<=vv <=W	1	MPC	2	<=vv <=W		MPC		<=\v <=W	3 2	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td></td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv <=W	1	<=vv <=W	1	<=vv <=W		<=vv <=W	1	<=vv <=W
Occidental 003	2	<=vv	49	<=vv	2	MPC	6	<=vv <t< td=""><td>2</td><td>MPC</td><td></td><td><=\v</td><td>42</td><td>\$1</td><td>1</td><td><=vv</td><td>3</td><td><=vv</td><td>44</td><td><=vv</td><td>43</td><td><=vv</td><td>24</td><td><=vv</td></t<>	2	MPC		<=\v	42	\$1	1	<=vv	3	<=vv	44	<=vv	43	<=vv	24	<=vv
Occidental 003	2	<=vv	49 6				2	<=W		MPC		<=\v	42		1	<=vv	2	<ī <ī	44 9	<t< td=""><td>43</td><td><t< td=""><td>24 5</td><td></td></t<></td></t<>	43	<t< td=""><td>24 5</td><td></td></t<>	24 5	
Occidental 003	2	<=vv	13	<t< td=""><td>1</td><td>MPC MPC</td><td>2</td><td><=w</td><td></td><td>MPC</td><td></td><td><=\v</td><td>24</td><td></td><td>1</td><td><=vv <=W</td><td>4</td><td><ī <ī</td><td>9 17</td><td><u><</u>1</td><td>14</td><td><1</td><td>8</td><td>ा रा</td></t<>	1	MPC MPC	2	<=w		MPC		<=\v	24		1	<=vv <=W	4	<ī <ī	9 17	<u><</u> 1	14	<1	8	ा रा
350 m U/S Gill Creek (in NR)	2	<=VV		<=W	1	MPC	2	<=W		MPC		<=\v	3	<t< td=""><td>1</td><td><=vv</td><td>4</td><td><=W</td><td>1</td><td><=W</td><td>14</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=vv	4	<=W	1	<=W	14	<=W	1	<=W
350 m U/S Gill Creek (in NR)	2	<=vv <=W		<=w	1	MPC	2	<=w		MPC		<=\v	3	<=W	1	<=vv <=W	1	<=vv <=W	1	<=w		<=vv <=W	1	<=vv <=W
350 m U/S Gill Creek (in NR)	2	<=vv		<=vv <=W	1	MPC	2	<=w		MPC		<=\v	2		1	<=vv <=W	1	<=\v	1	<=\v <=W		<=vv <=W	1	<=vv <=W
Gill Creek (Mouth)	2	<=vv		<=w	1	MPC	2	<=w		MPC		<=w	4	া <	1	<=vv <=W	1	<=vv	1	<=w	1	<=vv	1	<=vv
Gill Creek (Mouth)	2	<=vv			1	MPC	2	<=w		MPC		<=\v <=W	4	<ī <ī	1	<=vv <=W	1	<=vv	1	<=w	1	<=vv	1	<=vv
Gill Creek (Mouth)	2	<=vv	_	<=W <=W	1	MPC	2	<=vv <=W		MPC		<=w	4 5	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>1</td><td><=w</td><td>1</td><td><=vv</td><td>1</td><td><=vv</td></t<>	1	<=vv <=W	1	<=W	1	<=w	1	<=vv	1	<=vv
U/S Gill Creek (in creek)	2	<=\v	-	<=vv <=W	1	MPC	2	<=vv		MPC		<=\v	3	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=vv</td><td>1</td><td><=\v</td></t<>	1	<=vv <=W	1	<=W	1	<=W	1	<=vv	1	<=\v
U/S Gill Creek (in creek)	2	<=vv <=W		<=vv <=W	1	MPC	2	<=vv <=W		MPC		<=\v <=W	3 4	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>1</td><td><=w</td><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv <=W	1	<=W	1	<=w	1	<=vv <=W	1	<=vv <=W
U/S Gill Creek (in creek)	2	<=vv <=W		<=w	1	MPC	2	<=w		MPC		<=\v <=W	4 2	<t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td>1</td><td><=w</td><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv <=W	1	<=vv <=W	1	<=w	1	<=vv <=W	1	<=vv <=W
Bloody Run Creek	2	<=vv		<=w	1	<=W	3	<=vv	1	<=W		<=w	13	<1	1	<=vv	1	<=vv	7	<=vv	5	<=vv	5	<=vv
Bloody Run Creek	2	<=vv		<=w	1	<=vv	3 8	<ा <ा	1	<=vv <=W		<=\v <=W	13		1	<=vv <=W	1	<=vv <=W	8		8		10	<u> </u>
Bloody Run Creek	2	<=vv		<=vv <=W	1	<=W	8 2	<=W	_	<=vv <=W		<=w	9	<t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>8 3</td><td><⊺ <⊺</td><td>8 2</td><td><t <t< td=""><td>2</td><td><t< td=""></t<></td></t<></t </td></t<>	1	<=vv <=W	1	<=W	8 3	<⊺ <⊺	8 2	<t <t< td=""><td>2</td><td><t< td=""></t<></td></t<></t 	2	<t< td=""></t<>
· · · · · · · · · · · · · · · · · · ·					1							_	9 10	<1			1		3 6			<=W	2	<t< td=""></t<>
Bloody Run Creek (btwn 7th and 8th post) Bloody Run Creek (btwn 7th and 8th post)	2	<=W		<=W	1	<=W	2	<=W	_	<=W		<=W	10		1	<=W	1	<=W	7	<⊺ <⊺	1		3	<t< td=""></t<>
Bloody Run Creek (blwn 7th and 8th post) Bloody Run Creek (btwn 7th and 8th post)	2	<=W	-	<=W	1	<=W	2	<=W		<=W			11		1	<=W	1	<=W	8	र। <t< td=""><td>6</td><td><=W</td><td>3 4</td><td><t< td=""></t<></td></t<>	6	<=W	3 4	<t< td=""></t<>
Bloody Run Creek (blwn 7th and 8th post) Bloody Run Creek (btwn 4th and 5th post)	2	<=vv <=W	3	<=W <t< td=""><td>1</td><td><=W</td><td>4</td><td><=vv <t< td=""><td>1</td><td><=vv <=W</td><td></td><td><=W <=W</td><td>32</td><td></td><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>8 21</td><td><1</td><td>35</td><td><1</td><td>4 27</td><td><1</td></t<></td></t<>	1	<=W	4	<=vv <t< td=""><td>1</td><td><=vv <=W</td><td></td><td><=W <=W</td><td>32</td><td></td><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>8 21</td><td><1</td><td>35</td><td><1</td><td>4 27</td><td><1</td></t<>	1	<=vv <=W		<=W <=W	32		1	<=vv <=W	1	<=W	8 21	<1	35	<1	4 27	<1
Bloody Run Creek (blwn 4th and 5th post)	2	<=vv	2	<u>रा</u> <ा	1	<=vv	4 2	<=W		<=vv <=W		<=\v <=W	32 18		1	<=vv <=W	1	<=vv <=W	14		35 12		8	<t< td=""></t<>
Bloody Run Creek (blwn 4th and 5th post)	2	<=vv		<=W	1	<=vv	2	<=w		<=vv <=W		<=\v <=W	18		1	<=vv	1	<=vv	14 5	<t< td=""><td>5</td><td><t< td=""><td>8 5</td><td><t< td=""></t<></td></t<></td></t<>	5	<t< td=""><td>8 5</td><td><t< td=""></t<></td></t<>	8 5	<t< td=""></t<>
Bloody Run Creek (Downstream)	2	<=vv		<=w	1	<=vv	2	<=w		<=vv		<=w	6	<t< td=""><td>1</td><td><=vv</td><td>1</td><td><=vv</td><td>2</td><td><ा</td><td>5</td><td><=W</td><td>3</td><td><t< td=""></t<></td></t<>	1	<=vv	1	<=vv	2	<ा	5	<=W	3	<t< td=""></t<>
Bloody Run Creek (Downstream)	2	<=vv		<=w	1	<=vv	2	<=w		<=vv		<=w	4	<t< td=""><td>1</td><td><=vv</td><td>1</td><td><=vv</td><td>1</td><td><=W</td><td>1</td><td><=vv</td><td>2</td><td><t< td=""></t<></td></t<>	1	<=vv	1	<=vv	1	<=W	1	<=vv	2	<t< td=""></t<>
Bloody Run Creek (Downstream)	2	<=vv		<=w	1	<=vv	2	<=w	_	<=vv <=W		<=w	4	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td>3</td><td><=vv</td><td>1</td><td><=vv</td><td>2</td><td><t< td=""></t<></td></t<>	1	<=vv <=W	1	<=vv <=W	3	<=vv	1	<=vv	2	<t< td=""></t<>
Canadian Sites	2	<=vv	1	<=vv	1	<=vv	2	<=vv	1	<=vv	Z	<=vv		51	1	<=vv	1	<=vv	3	<1	1	<=vv	3	
Fort Erie @ Robertson St.	2	<=W	1	<=W	1	MPC	2	<=W	1	MPC	2	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fort Erie @ Robertson St.	2	<=W		<=W	1	MPC	2	<=W		MPC		<=W	2	<-vv	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Fort Erie @ Robertson St.	2	<=W		<=W	1	MPC	2	<=W		MPC		<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Miller Creek	2	<=W		<=W	1	<=W	2	<=W		<=W		<=W	2	<-vv	1	<=W	1	<=W	1	<=W		<=W	1	<=W
Miller Creek	2	<=W		<=W	1	<=W	2	<=W		<=W		<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td></td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W		<=W	1	<=W
Miller Creek	2	<=W		<=W	1	<=W	2	<=W		<=W		<=W	3	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Boyers Creek @ Sherk Rd.	2	<=W		<=W	1	<=W	2	<=W		<=W		<=W	3	<u>रा</u>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Boyers Creek @ Sherk Rd.	2	<=W	1	<=W	1	<=W	2	<=W		<=W	2	<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Boyers Creek @ Sherk Rd.	2	<=W	-	<=W	1	<=W	2	<=W		<=W		<=W	2	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W
Chippawa Channel, NR	2	<=VV	_	<=w	1	<=vv <=W	2	<=W		<=vv <=W		<=W	2	<t< td=""><td>1</td><td><=vv</td><td>1</td><td><=VV</td><td>1</td><td><=W</td><td></td><td><=VV</td><td>1</td><td><=W</td></t<>	1	<=vv	1	<=VV	1	<=W		<=VV	1	<=W
Chippawa Channel, NR	2	<=vv <=W		<=w	1	<=vv <=W	2	<=w		<=vv <=W		<=\v <=W	2	<t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td>1</td><td><=w</td><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv <=W	1	<=vv <=W	1	<=w	1	<=vv <=W	1	<=vv <=W
Chippawa Channel, NR	2	<=vv <=W		<=w	1	<=vv <=W	2	<=w		<=vv <=W		<=\v <=W	3	<t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=vv <=W</td><td>1</td><td><=w</td><td></td><td><=vv <=W</td><td>1</td><td><=vv <=W</td></t<>	1	<=vv <=W	1	<=vv <=W	1	<=w		<=vv <=W	1	<=vv <=W
NOTL	2	<=vv		<=vv <=W	1	<=W	2	<=vv <=W		<=vv <=W		<=\v	3	<i <t< td=""><td>1</td><td><=vv</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td></td><td><=vv</td><td>1</td><td><=W</td></t<></i 	1	<=vv	1	<=W	1	<=W		<=vv	1	<=W
NOTL	2	<=vv		<=vv <=W	1	<=vv	2	<=vv <=W		<=vv <=W		<=w	3	<1 <t< td=""><td>1</td><td><=vv <=W</td><td>1</td><td><=W</td><td>1</td><td><=w</td><td>1</td><td><=vv</td><td>1</td><td><=W</td></t<>	1	<=vv <=W	1	<=W	1	<=w	1	<=vv	1	<=W
		-											-			÷			_	÷				
NOTL	2	<=W	1	<=W	1	<=W	2	<=W	1	<=W	2	<=W	4	<t< td=""><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td><td>1</td><td><=W</td></t<>	1	<=W	1	<=W	1	<=W	1	<=W	1	<=W

Appendix D2: Congener specific PCB tussue of	concentrations	in caged mussels, 2	2012, Niagara	River. <v< th=""><th>V = n</th><th>o measural</th><th>ble r</th><th>esponse; <</th><th><t=m< th=""><th>neasural</th><th>ble tra</th><th>ace amount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=m<></th></v<>	V = n	o measural	ble r	esponse; <	<t=m< th=""><th>neasural</th><th>ble tra</th><th>ace amount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=m<>	neasural	ble tra	ace amount								
Station Description		Field Sample No	LIPID VQF						-				PCB033 VQF	PCB037	VQF	PCB044 VQF	PCB049 VQ	F PCB052 VQ	PCB054	VQF
· · · · · · · · · · · · · · · · · · ·			E3136A	E3411A		E3411A		E3411A	1	E3411A		E3411A	E3411A	E3411A		E3411A	E3411A	E3411A	E3411A	
			%	ng/g dry	wt.	ng/g dry	wt.	ng/g dry w	vt. r	ng/g dry	y wt.	ng/g dry wt.	ng/g dry wt.	ng/g dry	wt.	ng/g dry wt.	ng/g dry wt.	ng/g dry wt.	ng/g dry	wt.
Balsam Lake	1800010001	GL123262	5.6	48	<t< td=""><td></td><td><t< td=""><td></td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>		<t< td=""><td></td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>		=W	3	<t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	7	4	<t< td=""><td>1</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	1	2	3	1	<t< td=""></t<>
Balsam Lake	1800010001	GL123263	6.2	50	<t< td=""><td>-</td><td><t< td=""><td></td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<></td></t<>	-	<t< td=""><td></td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<>		=W	3	<t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<>	6	6	4	<t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<>	1	2	2	0.2	<=W
Balsam Lake	1800010001	GL123264	5.8	37	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>5</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>5</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>5</td><td>5</td><td>4</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<>	5	5	4	<t< td=""><td>1</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<>	1	2	2	0.2	<=W
Two Mile Creek	500020197	GL123119	5.4	440		9	<t< td=""><td>2 <:</td><td>=W</td><td>4</td><td><t< td=""><td>12</td><td>7</td><td>10</td><td></td><td>25</td><td>23</td><td>29</td><td>2</td><td></td></t<></td></t<>	2 <:	=W	4	<t< td=""><td>12</td><td>7</td><td>10</td><td></td><td>25</td><td>23</td><td>29</td><td>2</td><td></td></t<>	12	7	10		25	23	29	2	
Two Mile Creek	500020197	GL123120	5.4	450		10	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>12</td><td>10</td><td>15</td><td></td><td>27</td><td>20</td><td>32</td><td>3</td><td></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>12</td><td>10</td><td>15</td><td></td><td>27</td><td>20</td><td>32</td><td>3</td><td></td></t<>	12	10	15		27	20	32	3	
Two Mile Creek	500020197	GL123121	5.1	460		10	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>13</td><td>9</td><td>14</td><td></td><td>26</td><td>24</td><td>39</td><td>2</td><td></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>13</td><td>9</td><td>14</td><td></td><td>26</td><td>24</td><td>39</td><td>2</td><td></td></t<>	13	9	14		26	24	39	2	
Fisherman's Park (Upstream)	500020001	GL123104	5	140	<t< td=""><td>8</td><td><t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>12</td><td>7</td><td>5</td><td><t< td=""><td>8</td><td>8</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>12</td><td>7</td><td>5</td><td><t< td=""><td>8</td><td>8</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>12</td><td>7</td><td>5</td><td><t< td=""><td>8</td><td>8</td><td>10</td><td>3</td><td></td></t<></td></t<>	12	7	5	<t< td=""><td>8</td><td>8</td><td>10</td><td>3</td><td></td></t<>	8	8	10	3	
Fisherman's Park (Upstream)	500020001	GL123105	5.3	110	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>5</td><td>4</td><td><t< td=""><td>5</td><td>5</td><td>6</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>5</td><td>4</td><td><t< td=""><td>5</td><td>5</td><td>6</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>7</td><td>5</td><td>4</td><td><t< td=""><td>5</td><td>5</td><td>6</td><td>3</td><td></td></t<></td></t<>	7	5	4	<t< td=""><td>5</td><td>5</td><td>6</td><td>3</td><td></td></t<>	5	5	6	3	
Fisherman's Park (Upstream)	500020001	GL123106	5.4	120	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>6</td><td>6</td><td>8</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>6</td><td>6</td><td>8</td><td>2</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>6</td><td>6</td><td>8</td><td>2</td><td></td></t<></td></t<>	7	5	3	<t< td=""><td>6</td><td>6</td><td>8</td><td>2</td><td></td></t<>	6	6	8	2	
Fisherman's Park (Downstream)	500020002	GL123112	4.8	85	<t< td=""><td>8</td><td><t< td=""><td>9 4</td><td><t< td=""><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>4</td><td>4</td><td>5</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>9 4</td><td><t< td=""><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>4</td><td>4</td><td>5</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	9 4	<t< td=""><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>4</td><td>4</td><td>5</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2	<t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>4</td><td>4</td><td>5</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	7	5	3	<t< td=""><td>4</td><td>4</td><td>5</td><td>1</td><td><t< td=""></t<></td></t<>	4	4	5	1	<t< td=""></t<>
Fisherman's Park (Downstream)	500020002	GL123113	5	78	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>5</td><td>3</td><td><t< td=""><td>1</td><td>4</td><td>4</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>5</td><td>3</td><td><t< td=""><td>1</td><td>4</td><td>4</td><td>2</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>5</td><td>3</td><td><t< td=""><td>1</td><td>4</td><td>4</td><td>2</td><td></td></t<></td></t<>	6	5	3	<t< td=""><td>1</td><td>4</td><td>4</td><td>2</td><td></td></t<>	1	4	4	2	
Fisherman's Park (Downstream)	500020002	GL123114	4.9	100	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>3</td><td>4</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>3</td><td>4</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>3</td><td>4</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	6	4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>3</td><td>4</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	3	<t< td=""><td>2</td><td>3</td><td>4</td><td>1</td><td><t< td=""></t<></td></t<>	2	3	4	1	<t< td=""></t<>
Gratwick Riverside Park (Downstream)	500020199	GL123144	5.1	220	<t< td=""><td>11</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>13</td><td>7</td><td>5</td><td><t< td=""><td>12</td><td>13</td><td>15</td><td>4</td><td></td></t<></td></t<></td></t<></td></t<>	11	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>13</td><td>7</td><td>5</td><td><t< td=""><td>12</td><td>13</td><td>15</td><td>4</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>13</td><td>7</td><td>5</td><td><t< td=""><td>12</td><td>13</td><td>15</td><td>4</td><td></td></t<></td></t<>	13	7	5	<t< td=""><td>12</td><td>13</td><td>15</td><td>4</td><td></td></t<>	12	13	15	4	
Gratwick Riverside Park (Downstream)	500020199	GL123145	4.9	180	<t< td=""><td>10</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>6</td><td>5</td><td><t< td=""><td>10</td><td>11</td><td>14</td><td>4</td><td></td></t<></td></t<></td></t<></td></t<>	10	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>6</td><td>5</td><td><t< td=""><td>10</td><td>11</td><td>14</td><td>4</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>10</td><td>6</td><td>5</td><td><t< td=""><td>10</td><td>11</td><td>14</td><td>4</td><td></td></t<></td></t<>	10	6	5	<t< td=""><td>10</td><td>11</td><td>14</td><td>4</td><td></td></t<>	10	11	14	4	
Gratwick Riverside Park (Downstream)	500020199	GL123146	5	260		12	<t< td=""><td>3 4</td><td><t< td=""><td>3</td><td><t< td=""><td>10</td><td>7</td><td>6</td><td><t< td=""><td>13</td><td>13</td><td>18</td><td>5</td><td></td></t<></td></t<></td></t<></td></t<>	3 4	<t< td=""><td>3</td><td><t< td=""><td>10</td><td>7</td><td>6</td><td><t< td=""><td>13</td><td>13</td><td>18</td><td>5</td><td></td></t<></td></t<></td></t<>	3	<t< td=""><td>10</td><td>7</td><td>6</td><td><t< td=""><td>13</td><td>13</td><td>18</td><td>5</td><td></td></t<></td></t<>	10	7	6	<t< td=""><td>13</td><td>13</td><td>18</td><td>5</td><td></td></t<>	13	13	18	5	
102nd Street (Upstream)	500020093	GL123151	5.8	300		9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>9</td><td>6</td><td>4</td><td><t< td=""><td>9</td><td>7</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>9</td><td>6</td><td>4</td><td><t< td=""><td>9</td><td>7</td><td>10</td><td>3</td><td></td></t<></td></t<>	9	6	4	<t< td=""><td>9</td><td>7</td><td>10</td><td>3</td><td></td></t<>	9	7	10	3	
102nd Street (Upstream)	500020093	GL123152	5.1	270		9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>8</td><td>6</td><td>3</td><td><t< td=""><td>7</td><td>7</td><td>11</td><td>2</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>8</td><td>6</td><td>3</td><td><t< td=""><td>7</td><td>7</td><td>11</td><td>2</td><td></td></t<></td></t<>	8	6	3	<t< td=""><td>7</td><td>7</td><td>11</td><td>2</td><td></td></t<>	7	7	11	2	
102nd Street (Upstream)	500020093	GL123153	5.2	250		8	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>7</td><td>10</td><td>2</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>7</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>7</td><td>10</td><td>2</td><td></td></t<></td></t<>	7	5	3	<t< td=""><td>7</td><td>7</td><td>10</td><td>2</td><td></td></t<>	7	7	10	2	
Little Niagara River (near 102nd St)	500020095	GL123158	4.9	180	<t< td=""><td>9</td><td><t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>10</td><td>6</td><td>9</td><td><t< td=""><td>9</td><td>6</td><td>11</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<>	9	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>10</td><td>6</td><td>9</td><td><t< td=""><td>9</td><td>6</td><td>11</td><td>2</td><td></td></t<></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>10</td><td>6</td><td>9</td><td><t< td=""><td>9</td><td>6</td><td>11</td><td>2</td><td></td></t<></td></t<>	10	6	9	<t< td=""><td>9</td><td>6</td><td>11</td><td>2</td><td></td></t<>	9	6	11	2	
Little Niagara River (near 102nd St)	500020095	GL123159	4.7	180	<t< td=""><td>9</td><td><t< td=""><td>3 •</td><td><t< td=""><td>3</td><td><t< td=""><td>8</td><td>5</td><td>7</td><td><t< td=""><td>9</td><td>6</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	9	<t< td=""><td>3 •</td><td><t< td=""><td>3</td><td><t< td=""><td>8</td><td>5</td><td>7</td><td><t< td=""><td>9</td><td>6</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	3 •	<t< td=""><td>3</td><td><t< td=""><td>8</td><td>5</td><td>7</td><td><t< td=""><td>9</td><td>6</td><td>10</td><td>3</td><td></td></t<></td></t<></td></t<>	3	<t< td=""><td>8</td><td>5</td><td>7</td><td><t< td=""><td>9</td><td>6</td><td>10</td><td>3</td><td></td></t<></td></t<>	8	5	7	<t< td=""><td>9</td><td>6</td><td>10</td><td>3</td><td></td></t<>	9	6	10	3	
Little Niagara River (near 102nd St)	500020095	GL123160	5	210	<t< td=""><td>11</td><td><t< td=""><td>3 •</td><td><t< td=""><td>4</td><td><t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>9</td><td>7</td><td>13</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	11	<t< td=""><td>3 •</td><td><t< td=""><td>4</td><td><t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>9</td><td>7</td><td>13</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	3 •	<t< td=""><td>4</td><td><t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>9</td><td>7</td><td>13</td><td>3</td><td></td></t<></td></t<></td></t<>	4	<t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>9</td><td>7</td><td>13</td><td>3</td><td></td></t<></td></t<>	11	7	9	<t< td=""><td>9</td><td>7</td><td>13</td><td>3</td><td></td></t<>	9	7	13	3	
Cayuga Creek	500150031	GL123165	5.6	580		7	<t< td=""><td>7 •</td><td><t< td=""><td>3</td><td><t< td=""><td>9</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	7 •	<t< td=""><td>3</td><td><t< td=""><td>9</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	3	<t< td=""><td>9</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	9	4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	3	<t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<>	7	8	14	1	<t< td=""></t<>
Cayuga Creek	500150031	GL123166	5.6	510		6	<t< td=""><td>5 •</td><td><t< td=""><td>2</td><td><t< td=""><td>8</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>13</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	5 •	<t< td=""><td>2</td><td><t< td=""><td>8</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>13</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2	<t< td=""><td>8</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>13</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	8	4 <t< td=""><td>3</td><td><t< td=""><td>7</td><td>8</td><td>13</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	3	<t< td=""><td>7</td><td>8</td><td>13</td><td>1</td><td><t< td=""></t<></td></t<>	7	8	13	1	<t< td=""></t<>
Cayuga Creek	500150031	GL123167	5.6	490		7	<t< td=""><td>7 •</td><td><t< td=""><td>2</td><td><t< td=""><td>10</td><td>6</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	7 •	<t< td=""><td>2</td><td><t< td=""><td>10</td><td>6</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2	<t< td=""><td>10</td><td>6</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	10	6	3	<t< td=""><td>7</td><td>8</td><td>14</td><td>1</td><td><t< td=""></t<></td></t<>	7	8	14	1	<t< td=""></t<>
Little Niagara River (Downstream Cayuga Ck)	500020096	GL123172	4.8	360		8	<t< td=""><td>4 •</td><td><t< td=""><td>2</td><td><t< td=""><td>11</td><td>5</td><td>3</td><td><t< td=""><td>9</td><td>10</td><td>15</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<>	4 •	<t< td=""><td>2</td><td><t< td=""><td>11</td><td>5</td><td>3</td><td><t< td=""><td>9</td><td>10</td><td>15</td><td>2</td><td></td></t<></td></t<></td></t<>	2	<t< td=""><td>11</td><td>5</td><td>3</td><td><t< td=""><td>9</td><td>10</td><td>15</td><td>2</td><td></td></t<></td></t<>	11	5	3	<t< td=""><td>9</td><td>10</td><td>15</td><td>2</td><td></td></t<>	9	10	15	2	
Little Niagara River (Downstream Cayuga Ck)	500020096	GL123173	5.2	360		8	<t< td=""><td>5 •</td><td><t< td=""><td>2</td><td><t< td=""><td>12</td><td>5</td><td>4</td><td><t< td=""><td>11</td><td>11</td><td>15</td><td>4</td><td></td></t<></td></t<></td></t<></td></t<>	5 •	<t< td=""><td>2</td><td><t< td=""><td>12</td><td>5</td><td>4</td><td><t< td=""><td>11</td><td>11</td><td>15</td><td>4</td><td></td></t<></td></t<></td></t<>	2	<t< td=""><td>12</td><td>5</td><td>4</td><td><t< td=""><td>11</td><td>11</td><td>15</td><td>4</td><td></td></t<></td></t<>	12	5	4	<t< td=""><td>11</td><td>11</td><td>15</td><td>4</td><td></td></t<>	11	11	15	4	
Little Niagara River (Downstream Cayuga Ck)	500020096	GL123174	4.8	310		6	<t< td=""><td>4 •</td><td><t< td=""><td>2</td><td><t< td=""><td>10</td><td>5</td><td>4</td><td><t< td=""><td>9</td><td>10</td><td>13</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	4 •	<t< td=""><td>2</td><td><t< td=""><td>10</td><td>5</td><td>4</td><td><t< td=""><td>9</td><td>10</td><td>13</td><td>3</td><td></td></t<></td></t<></td></t<>	2	<t< td=""><td>10</td><td>5</td><td>4</td><td><t< td=""><td>9</td><td>10</td><td>13</td><td>3</td><td></td></t<></td></t<>	10	5	4	<t< td=""><td>9</td><td>10</td><td>13</td><td>3</td><td></td></t<>	9	10	13	3	
Upstream of Occidental	500020097	GL123197	4.4	170	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>8</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>11</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>8</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>11</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	1	<t< td=""><td>8</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>11</td><td>3</td><td></td></t<></td></t<>	8	5	3	<t< td=""><td>7</td><td>8</td><td>11</td><td>3</td><td></td></t<>	7	8	11	3	
Upstream of Occidental	500020097	GL123198	4.2	170	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>9</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>9</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>8</td><td>9</td><td>3</td><td></td></t<></td></t<>	10	5	3	<t< td=""><td>7</td><td>8</td><td>9</td><td>3</td><td></td></t<>	7	8	9	3	
Upstream of Occidental	500020097	GL123199	4.2	170	<t< td=""><td>8</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>9</td><td>11</td><td>3</td><td></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>9</td><td>11</td><td>3</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>10</td><td>5</td><td>3</td><td><t< td=""><td>7</td><td>9</td><td>11</td><td>3</td><td></td></t<></td></t<>	10	5	3	<t< td=""><td>7</td><td>9</td><td>11</td><td>3</td><td></td></t<>	7	9	11	3	
Occidental 003	500020042	GL123204	5	660		29		2 <:	=W	8		28	17	25		72	39	59	4	
Occidental 003	500020042	GL123205	4.4	710		28		2 <:	=W	9		32	18	27		77	40	62	3	
Occidental 003	500020042	GL123206	4.6	700		29		4 •	<t< td=""><td>9</td><td></td><td>29</td><td>17</td><td>27</td><td></td><td>77</td><td>41</td><td>63</td><td>3</td><td></td></t<>	9		29	17	27		77	41	63	3	
350 m U/S Gill Creek (in NR)	500020098	GL123211	4.8	63	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2 <:	=W	1	<t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	7	4 <t< td=""><td>2</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	2	<t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	3	1	<t< td=""></t<>
350 m U/S Gill Creek (in NR)	500020098	GL123212	4.8	63	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>2</td><td></td></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>7</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>2</td><td></td></t<></td></t<></td></t<>	7	4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>2</td><td>2</td><td>2</td><td></td></t<></td></t<>	2	<t< td=""><td>1</td><td>2</td><td>2</td><td>2</td><td></td></t<>	1	2	2	2	
350 m U/S Gill Creek (in NR)	500020098	GL123213	4.8	56	<t< td=""><td>4</td><td><t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>6</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	4	<t< td=""><td>2 <:</td><td>=W</td><td>1</td><td><t< td=""><td>6</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2 <:	=W	1	<t< td=""><td>6</td><td>4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	6	4 <t< td=""><td>2</td><td><t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	2	<t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td><t< td=""></t<></td></t<>	1	1	1	1	<t< td=""></t<>
Gill Creek (Mouth)	500020037	GL123218	5	390		8	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>12</td><td>5</td><td>5</td><td><t< td=""><td>16</td><td>18</td><td>24</td><td>4</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>12</td><td>5</td><td>5</td><td><t< td=""><td>16</td><td>18</td><td>24</td><td>4</td><td></td></t<></td></t<>	12	5	5	<t< td=""><td>16</td><td>18</td><td>24</td><td>4</td><td></td></t<>	16	18	24	4	
Gill Creek (Mouth)	500020037	GL123219	5.2	350		9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>10</td><td>6</td><td>5</td><td><t< td=""><td>15</td><td>17</td><td>24</td><td>4</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>10</td><td>6</td><td>5</td><td><t< td=""><td>15</td><td>17</td><td>24</td><td>4</td><td></td></t<></td></t<>	10	6	5	<t< td=""><td>15</td><td>17</td><td>24</td><td>4</td><td></td></t<>	15	17	24	4	
Gill Creek (Mouth)	500020037	GL123220	4.6	360		9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>12</td><td>6</td><td>5</td><td><t< td=""><td>15</td><td>17</td><td>22</td><td>4</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>12</td><td>6</td><td>5</td><td><t< td=""><td>15</td><td>17</td><td>22</td><td>4</td><td></td></t<></td></t<>	12	6	5	<t< td=""><td>15</td><td>17</td><td>22</td><td>4</td><td></td></t<>	15	17	22	4	
U/S Gill Creek (in creek)	500150022	GL123225	6	220	<t< td=""><td>9</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>11</td><td>15</td><td>18</td><td>6</td><td></td></t<></td></t<></td></t<></td></t<>	9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>11</td><td>15</td><td>18</td><td>6</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>11</td><td>7</td><td>9</td><td><t< td=""><td>11</td><td>15</td><td>18</td><td>6</td><td></td></t<></td></t<>	11	7	9	<t< td=""><td>11</td><td>15</td><td>18</td><td>6</td><td></td></t<>	11	15	18	6	
U/S Gill Creek (in creek)	500150022	GL123226	6.2	240	<t< td=""><td>9</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>9</td><td>9</td><td>9</td><td><t< td=""><td>12</td><td>17</td><td>21</td><td>8</td><td></td></t<></td></t<></td></t<></td></t<>	9	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>9</td><td>9</td><td>9</td><td><t< td=""><td>12</td><td>17</td><td>21</td><td>8</td><td></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>9</td><td>9</td><td>9</td><td><t< td=""><td>12</td><td>17</td><td>21</td><td>8</td><td></td></t<></td></t<>	9	9	9	<t< td=""><td>12</td><td>17</td><td>21</td><td>8</td><td></td></t<>	12	17	21	8	
U/S Gill Creek (in creek)	500150022	GL123227	6	220	<t< td=""><td>11</td><td><t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>11</td><td>9</td><td>11</td><td></td><td>11</td><td>15</td><td>22</td><td>7</td><td></td></t<></td></t<></td></t<>	11	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>11</td><td>9</td><td>11</td><td></td><td>11</td><td>15</td><td>22</td><td>7</td><td></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>11</td><td>9</td><td>11</td><td></td><td>11</td><td>15</td><td>22</td><td>7</td><td></td></t<>	11	9	11		11	15	22	7	
Fort Erie @ Robertson St.	500020203	GL123232	5.2	46	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>5</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	5	6	4	<t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	3	1	<t< td=""></t<>
Fort Erie @ Robertson St.	500020203	GL123233	5	50	<t< td=""><td>8</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>5</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>5</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>5</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	5	4	<t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	3	1	<t< td=""></t<>
Fort Erie @ Robertson St.	500020203	GL123234	5.4	56	<t< td=""><td>8</td><td><t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>2 <:</td><td>=W</td><td>3</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	3	<t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	7	4	<t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	3	1	<t< td=""></t<>
Chippawa Channel, NR	500020051	GL123246	4.8	44	<t< td=""><td>6</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	6	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>5</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	5	6	3	<t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	2	1	<t< td=""></t<>
Chippawa Channel, NR	500020051	GL123247	5	49	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>7</td><td>4</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	7	4	<t< td=""><td>2</td><td>2</td><td>2</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	2	1	<t< td=""></t<>
Chippawa Channel, NR	500020051	GL123248	4.8	46	<t< td=""><td>7</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	7	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>6</td><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	6	3	<t< td=""><td>2</td><td>2</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	2	3	1	<t< td=""></t<>
NOTL	1100020009	GL123253	5	54	<t< td=""><td>5</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<></td></t<></td></t<>	5	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>5</td><td>4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<>	5	4 <t< td=""><td>3</td><td><t< td=""><td>2</td><td>2</td><td>3</td><td>0.2</td><td><=W</td></t<></td></t<>	3	<t< td=""><td>2</td><td>2</td><td>3</td><td>0.2</td><td><=W</td></t<>	2	2	3	0.2	<=W
NOTL	1100020009	GL123254	5.8	54	<t< td=""><td></td><td><t< td=""><td></td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>5</td><td>2</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<></td></t<>		<t< td=""><td></td><td>=W</td><td>2</td><td><t< td=""><td>5</td><td>5</td><td>2</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<></td></t<>		=W	2	<t< td=""><td>5</td><td>5</td><td>2</td><td><t< td=""><td>2</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<></td></t<>	5	5	2	<t< td=""><td>2</td><td>2</td><td>2</td><td>0.2</td><td><=W</td></t<>	2	2	2	0.2	<=W
NOTL	1100020009	GL123255	5.2	55	<t< td=""><td>8</td><td><t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>3</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	8	<t< td=""><td>2 <:</td><td>=W</td><td>2</td><td><t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>3</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<></td></t<>	2 <:	=W	2	<t< td=""><td>6</td><td>6</td><td>4</td><td><t< td=""><td>2</td><td>3</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<></td></t<>	6	6	4	<t< td=""><td>2</td><td>3</td><td>3</td><td>1</td><td><t< td=""></t<></td></t<>	2	3	3	1	<t< td=""></t<>

Appendix D2: Congener specific PCB tussue of	concentrations in	caged muss	sels	2012,	Niaga	ra River	. <w =<="" th=""><th>no measurab</th><th>le response; <</th><th><t=measurable< th=""><th>trace amount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=measurable<></th></w>	no measurab	le response; <	<t=measurable< th=""><th>trace amount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t=measurable<>	trace amount												
Station Description	PCB070 VQF	PCB074 VC	QF	PCB077	VQF	PCB08	1 VQF	PCB087 VQF	PCB095 VQ	PCB099 VQF	PCB101 VQF	PCB104	1 VQF	PCB105 VQF	PCB110 VC	QF PC	B114	VQF	PCB118	VQF	PCB119	VQF	PCB123 VC
·	E3411A	E3411A		E3411A	1	E3411/	4	E3411A	E3411A	E3411A	E3411A	E3411A	۱	E3411A	E3411A	E3	411A		E3411A		E3411A	4	E3411A
	ng/g dry wt.	ng/g dry w	t. 1	ng/g dr	y wt.	ng/g di	ry wt.	ng/g dry wt.	ng/g dry wt.	ng/g dry wt.	ng/g dry wt.	ng/g dr	y wt.	ng/g dry wt.	ng/g dry wi	. ng	g dry	wt.	ng/g dry	wt.	ng/g dr	y wt.	ng/g dry w
Balsam Lake	2	0.1 <=	W	0.2	<=W	0.5	<=W	4	2	1	0.1 <=W	0.1	<=W	1	0.1 <=	W).1	<=W	0.1	<=W	0.1	<=W	0.2 <=
Balsam Lake	2	0.1 <=	W	0.2	<=W	0.5	<=W	11	2	1	1	0.1	<=W	2	0.1 <=	w ().1	<=W	0.1	<=W	0.1	<=W	0.2 <=
Balsam Lake	1	0.1 <=	W	0.2	<=W	0.5	<=W	5	2	0.1 <=W	0.1 <=W	0.1	<=W	0.1 <=W	0.1 <=	w).1	<=W	0.1	<=W	0.1	<=W	0.2 <=
Two Mile Creek	16	0.1 <=	-W/	12		1	<t< td=""><td>20</td><td>55</td><td>16</td><td>28</td><td>0.1</td><td><=W</td><td>8</td><td>7</td><td></td><td>1</td><td></td><td>17</td><td></td><td>8</td><td></td><td>1 M</td></t<>	20	55	16	28	0.1	<=W	8	7		1		17		8		1 M
Two Mile Creek	16	0.1 <=	-	13		2	<t< td=""><td>26</td><td>57</td><td>14</td><td>28</td><td>0.1</td><td><=W</td><td>8</td><td>7</td><td></td><td>1</td><td></td><td>16</td><td></td><td>0.1</td><td><=W</td><td></td></t<>	26	57	14	28	0.1	<=W	8	7		1		16		0.1	<=W	
Two Mile Creek	10	0.1 <=	_	13		4	<t< td=""><td>20</td><td>58</td><td>15</td><td>29</td><td>0.1</td><td><=W</td><td>8</td><td>7</td><td></td><td>2</td><td></td><td>10</td><td></td><td>6</td><td></td><td>1 M</td></t<>	20	58	15	29	0.1	<=W	8	7		2		10		6		1 M
Fisherman's Park (Upstream)	6	4		0.2	<=W	0.5	<=W	8	12	3	6	0.1	<=W	2	1	_	_	<=W	4		0.1	<=W	0.2 <=
Fisherman's Park (Upstream)	5	2		0.2	<=W	0.5	<=W		8	2	5	0.1	<=W	2	1			<=W	4		0.1	<=W	
Fisherman's Park (Upstream)	5	1		0.2	<=W	1	<t< td=""><td>10</td><td>9</td><td>3</td><td>6</td><td>0.1</td><td><=W</td><td>2</td><td>1</td><td></td><td></td><td><=W</td><td>4</td><td></td><td>0.1</td><td><=W</td><td></td></t<>	10	9	3	6	0.1	<=W	2	1			<=W	4		0.1	<=W	
Fisherman's Park (Downstream)	3	0.1 <=	w	4		2	<t< td=""><td>3</td><td>6</td><td>1</td><td>2</td><td>0.1</td><td><=W</td><td>1</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>0.2 <=</td></t<>	3	6	1	2	0.1	<=W	1	1		1		1		1		0.2 <=
Fisherman's Park (Downstream)	4	0.1 <=	w	4		1	<t< td=""><td>5</td><td>6</td><td>1</td><td>3</td><td>0.1</td><td><=W</td><td>2</td><td>0.1 <=</td><td>w</td><td>1</td><td></td><td>1</td><td></td><td>0.1</td><td><=W</td><td></td></t<>	5	6	1	3	0.1	<=W	2	0.1 <=	w	1		1		0.1	<=W	
Fisherman's Park (Downstream)	0.1 <=W	39		2		1	<t< td=""><td>4</td><td>6</td><td>1</td><td>3</td><td>0.1</td><td><=W</td><td>2</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	4	6	1	3	0.1	<=W	2	1		1		1		0.1	<=W	0.2 <=
Gratwick Riverside Park (Downstream)	13	0.1 <=	w	1	<t< td=""><td>1</td><td><t< td=""><td>9</td><td>21</td><td>7</td><td>11</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td>(</td><td>).1</td><td><=W</td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<></td></t<>	1	<t< td=""><td>9</td><td>21</td><td>7</td><td>11</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td>(</td><td>).1</td><td><=W</td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	9	21	7	11	0.1	<=W	4	2	().1	<=W	9		0.1	<=W	0.2 <=
Gratwick Riverside Park (Downstream)	11	0.1 <=	_	0.2	<=W	2	<t< td=""><td>6</td><td>18</td><td>5</td><td>9</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td></td><td></td><td><=W</td><td>7</td><td></td><td>0.1</td><td><=W</td><td>-</td></t<>	6	18	5	9	0.1	<=W	4	2			<=W	7		0.1	<=W	-
Gratwick Riverside Park (Downstream)	0.1 <=W	53		0.2	<=W	2	<t< td=""><td>8</td><td>22</td><td>7</td><td>11</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td></td><td></td><td><=W</td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	8	22	7	11	0.1	<=W	4	2			<=W	9		0.1	<=W	0.2 <=
102nd Street (Upstream)	0.1 <=W	140		0.2	<=W	1	<t< td=""><td>9</td><td>13</td><td>4</td><td>9</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td></td><td></td><td><=W</td><td>5</td><td></td><td>1</td><td></td><td>0.2 <=</td></t<>	9	13	4	9	0.1	<=W	3	2			<=W	5		1		0.2 <=
102nd Street (Upstream)	0.1 <=W	130		0.2	<=W	1	<t< td=""><td>10</td><td>10</td><td>3</td><td>7</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td></td><td>1</td><td></td><td>5</td><td></td><td>1</td><td></td><td>0.2 <=</td></t<>	10	10	3	7	0.1	<=W	3	2		1		5		1		0.2 <=
102nd Street (Upstream)	0.1 <=W	110		0.2	<=W	1	<t< td=""><td>10</td><td>12</td><td>3</td><td>8</td><td>0.1</td><td><=W</td><td>3</td><td>1</td><td>(</td><td>).1</td><td><=W</td><td>5</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	10	12	3	8	0.1	<=W	3	1	().1	<=W	5		0.1	<=W	0.2 <=
Little Niagara River (near 102nd St)	8	0.1 <=	W	3		2	<t< td=""><td>8</td><td>12</td><td>3</td><td>9</td><td>0.1</td><td><=W</td><td>3</td><td>3</td><td></td><td></td><td><=W</td><td>8</td><td></td><td>1</td><td></td><td>0.2 <=</td></t<>	8	12	3	9	0.1	<=W	3	3			<=W	8		1		0.2 <=
Little Niagara River (near 102nd St)	8	0.1 <=	W	3		2	<t< td=""><td>13</td><td>12</td><td>3</td><td>9</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	13	12	3	9	0.1	<=W	4	2		1		8		0.1	<=W	0.2 <=
Little Niagara River (near 102nd St)	8	7		3		2	<t< td=""><td>9</td><td>14</td><td>3</td><td>11</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td>(</td><td>).1</td><td><=W</td><td>9</td><td></td><td>1</td><td></td><td>0.2 <=</td></t<>	9	14	3	11	0.1	<=W	4	3	().1	<=W	9		1		0.2 <=
Cayuga Creek	0.1 <=W	370		1	<t< td=""><td>2</td><td><t< td=""><td>17</td><td>18</td><td>6</td><td>18</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<></td></t<>	2	<t< td=""><td>17</td><td>18</td><td>6</td><td>18</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	17	18	6	18	0.1	<=W	4	3		1		9		0.1	<=W	0.2 <=
Cayuga Creek	0.1 <=W	310		0.2	<=W	2	<t< td=""><td>18</td><td>17</td><td>5</td><td>17</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	18	17	5	17	0.1	<=W	4	3		1		9		0.1	<=W	0.2 <=
Cayuga Creek	0.1 <=W	290		0.2	<=W	2	<t< td=""><td>17</td><td>18</td><td>6</td><td>18</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	17	18	6	18	0.1	<=W	4	3		1		9		0.1	<=W	0.2 <=
Little Niagara River (Downstream Cayuga Ck)	0.1 <=W	180		0.2	<=W	2	<t< td=""><td>12</td><td>15</td><td>4</td><td>12</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	12	15	4	12	0.1	<=W	3	2		1		8		0.1	<=W	0.2 <=
Little Niagara River (Downstream Cayuga Ck)	0.1 <=W	140		0.2	<=W	3	<t< td=""><td>15</td><td>22</td><td>6</td><td>15</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>9</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	15	22	6	15	0.1	<=W	4	3		1		9		0.1	<=W	0.2 <=
Little Niagara River (Downstream Cayuga Ck)	0.1 <=W	130		0.2	<=W	2	<t< td=""><td>9</td><td>18</td><td>5</td><td>13</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td></td><td>1</td><td></td><td>8</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	9	18	5	13	0.1	<=W	3	2		1		8		0.1	<=W	0.2 <=
Upstream of Occidental	0.1 <=W	40		0.2	<=W	0.5	<=W	9	12	3	7	0.1	<=W	3	1		1		5		0.1	<=W	0.2 <=
Upstream of Occidental	0.1 <=W	35		0.2	<=W	0.5	<=W	5	12	4	9	0.1	<=W	3	2		1		6		0.1	<=W	0.2 <=
Upstream of Occidental	0.1 <=W	26		0.2	<=W	0.5	<=W	5	13	4	8	0.1	<=W	3	2	().1	<=W	5		0.1	<=W	0.2 <=
Occidental 003	58	32		12		6		18	81	14	27	0.1	<=W	16	0.1 <=	w	2		22		8		1 M
Occidental 003	60	35		15		10		19	84	15	28	3		16	1		2		24		13		1 M
Occidental 003	57	33		15		8		19	82	14	27	2		15	1		2		22		12		1 M
350 m U/S Gill Creek (in NR)	0.1 <=W	7		0.2	<=W	0.5	<=W		3	0.1 <=W	2	0.1	<=W	2	1			<=W	1		1		0.2 <=
350 m U/S Gill Creek (in NR)	0.1 <=W	8		0.2	<=W	0.5	<=W		2	0.1 <=W		0.1	<=W	1	0.1 <=			<=W	0.1	<=W	0.1	<=W	
350 m U/S Gill Creek (in NR)	0.1 <=W	9		0.2	<=W	0.5	<=W		2	1	1	0.1	<=W	1	0.1 <=	_		<=W	0.1	<=W	0.1	<=W	0.2 <=
Gill Creek (Mouth)	0.1 <=W	160		0.2	<=W	0.5	<=W		28	9	15	0.1	<=W	4	3		1		10		0.1	<=W	
Gill Creek (Mouth)	0.1 <=W	120	_	0.2	<=W	2	<t< td=""><td>8</td><td>28</td><td>8</td><td>15</td><td>0.1</td><td><=W</td><td>5</td><td>2</td><td></td><td>1</td><td></td><td>11</td><td></td><td>0.1</td><td><=W</td><td>-</td></t<>	8	28	8	15	0.1	<=W	5	2		1		11		0.1	<=W	-
Gill Creek (Mouth)	0.1 <=W	130		0.2	<=W	2	<t< td=""><td>12</td><td>27</td><td>7</td><td>14</td><td>0.1</td><td><=W</td><td>4</td><td>2</td><td></td><td>1</td><td></td><td>10</td><td></td><td>0.1</td><td><=W</td><td>0.2 <=</td></t<>	12	27	7	14	0.1	<=W	4	2		1		10		0.1	<=W	0.2 <=
U/S Gill Creek (in creek)	9	2		3		1	<t< td=""><td>14</td><td>18</td><td>5</td><td>11</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td></td><td>1</td><td></td><td>7</td><td></td><td>0.1</td><td><=W</td><td></td></t<>	14	18	5	11	0.1	<=W	3	2		1		7		0.1	<=W	
U/S Gill Creek (in creek)	10	1	_	0.2	<=W	2	<t< td=""><td>12</td><td>21</td><td>6</td><td>12</td><td>0.1</td><td><=W</td><td>4</td><td>3</td><td></td><td>1</td><td></td><td>8</td><td></td><td>0.1</td><td><=W</td><td></td></t<>	12	21	6	12	0.1	<=W	4	3		1		8		0.1	<=W	
U/S Gill Creek (in creek)	9	3		0.2	<=W	1	<t< td=""><td>9</td><td>20</td><td>5</td><td>10</td><td>0.1</td><td><=W</td><td>3</td><td>2</td><td>_</td><td>1</td><td></td><td>,</td><td></td><td>0.1</td><td><=W</td><td>1 M</td></t<>	9	20	5	10	0.1	<=W	3	2	_	1		,		0.1	<=W	1 M
Fort Erie @ Robertson St.	2	0.1 <=		0.2	<=W	0.5	<=W		2	0.1 <=W		0.1	<=W	1	0.1 <=			<=W	0.1	<=W	0.1	<=W	1
Fort Erie @ Robertson St.	2	0.1 <=		0.2	<=W	0.5	<=W		3	0.1 <=W	1	0.1	<=W	1	0.1 <=			<=W	0.1	<=W	0.1	<=W	0.2 <=
Fort Erie @ Robertson St.	2	0.1 <=		0.2	<=W	0.5	<=W	-	2	0.1 <=W	1	0.1	<=W	1	0.1 <=			<=W	0.1	<=W	0.1	<=W	0.2 <=
Chippawa Channel, NR	2	-		0.2	<=W	0.5	<=W		2	0.1 <=W		0.1	<=W	2	0.1 <=			<=W	-		0.1	-	
Chippawa Channel, NR	2			0.2	<=W	0.5	<=W	-		0.1 <=W	1	0.1	<=W	1	0.1 <=			<=W	0.1	<=W	0.1	<=W	0.2 <=
Chippawa Channel, NR NOTL	2	0.1 <=	- v v	0.2	<=W	0.5	<=W		2	0.1 <=W	1 2	0.1	<=W	1	0.1 <=			<=W <=W	0.1	<=W	0.1	<=W	0.2 <=
NOTL	2	3		1	<t< td=""><td>0.5</td><td><=vv <=W</td><td>-</td><td>3</td><td>0.1 <=W</td><td>1</td><td>0.1</td><td><=vv <=W</td><td>1</td><td>0.1 <=</td><td></td><td></td><td><=vv <=W</td><td>0.1</td><td><=vv <=W</td><td>0.1</td><td><=vv <=W</td><td>0.2 <=</td></t<>	0.5	<=vv <=W	-	3	0.1 <=W	1	0.1	<=vv <=W	1	0.1 <=			<=vv <=W	0.1	<=vv <=W	0.1	<=vv <=W	0.2 <=
NOTL	2	1	-	1	<t< td=""><td>0.5</td><td><=vv <=W</td><td></td><td>3</td><td>0.1 <=W</td><td>-</td><td>0.1</td><td><=vv <=W</td><td>1</td><td>0.1 <=</td><td></td><td></td><td><=vv <=W</td><td>0.1</td><td><=vv <=W</td><td>0.1</td><td><=vv <=W</td><td>-</td></t<>	0.5	<=vv <=W		3	0.1 <=W	-	0.1	<=vv <=W	1	0.1 <=			<=vv <=W	0.1	<=vv <=W	0.1	<=vv <=W	-
NOIL	2	1		1		0.5	~-VV	2	3	0.1 <-W	2	0.1	~-vv	1	0.1 <=	••	J. 1	~-vv	0.1	~-vv	0.1	~-vv	0.2 <=

Appendix D2: Congener specific PCB tussue of	oncentra	itions in	caged r	nussels	s, 2012,	Niaga	ra River.	<w =<="" th=""><th>no measurabl</th><th>e respor</th><th>nse; <t< th=""><th>=measu</th><th>rable t</th><th>race am</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<></th></w>	no measurabl	e respor	nse; <t< th=""><th>=measu</th><th>rable t</th><th>race am</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	=measu	rable t	race am	ount													
Station Description	PCB12	6 VQF	PCB128	VQF	PCB138	3 VQF	PCB149	VQF	PCB151 VQF	PCB15	3 VQF	PCB155	VQF	PCB156	5 VQF	PCB157	7 VQF	PCB158	3 VQF	PCB167	VQF	PCB16	8 VQF	PCB16	9 VQF	PCB170	0 VQF	PCB171 VQF
	E3411/	A	E3411A		E3411A	۱	E3411A		E3411A	E3411/	4	E3411A		E3411A	۹.	E3411A	4	E3411/	4	E3411A		E3411	A	E3411/	A	E3411/	4	E3411A
	ng/g d	ry wt.	ng/g dr	y wt.	ng/g dr	y wt.	ng/g dry	/ wt.	ng/g dry wt.	ng/g dr	y wt.	ng/g dr	y wt.	ng/g dr	y wt.	ng/g dr	y wt.	ng/g di	y wt.	ng/g dr	y wt.	ng/g d	lry wt.	ng/g d	ry wt.	ng/g dr	ry wt.	ng/g dry wt.
Balsam Lake	1		0.2	<=W	0.2	<=W	0.2	<=W	1	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0		0.1	<=W	0.2	<=W	0.2 <=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1 <=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2 <=W
Balsam Lake	1		0.2	<=W	0.2	<=W	0.2	<=W	0.1 <=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2 <=W
Two Mile Creek	2		3		21		23		12	18		1		0.2	<=W	0.2	<=W	2		1	<t< td=""><td>14</td><td>MPC</td><td>0.1</td><td><=W</td><td>5</td><td></td><td>0.2 <=W</td></t<>	14	MPC	0.1	<=W	5		0.2 <=W
Two Mile Creek	2		4		21		23		12	15		1		3		0.2	<=W	2		1	<t< td=""><td>13</td><td>MPC</td><td>0.1</td><td><=W</td><td>5</td><td></td><td>2</td></t<>	13	MPC	0.1	<=W	5		2
Two Mile Creek	2		3		20		23		13	15		1		3		0.2	<=W	2		1	<t< td=""><td>14</td><td>MPC</td><td>0.1</td><td><=W</td><td>5</td><td></td><td>2</td></t<>	14	MPC	0.1	<=W	5		2
Fisherman's Park (Upstream)	2		1	<t< td=""><td>6</td><td></td><td>4</td><td></td><td>2</td><td>4</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>2</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	6		4		2	4		0.1	<=W	0.2	<=W	0.2	<=W	1		0.2	<=W	2	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Fisherman's Park (Upstream)	2		1	<t< td=""><td>4</td><td></td><td>3</td><td></td><td>3</td><td>5</td><td></td><td>0.1</td><td><=W</td><td></td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>2</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	4		3		3	5		0.1	<=W			0.2	<=W	1		0.2	<=W	2	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Fisherman's Park (Upstream)	2		1	<t< td=""><td>5</td><td></td><td>4</td><td></td><td>2</td><td>5</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>2</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	5		4		2	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	2	MPC	0.1	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Fisherman's Park (Downstream)	0.1	<=W	0.2	<=W	2		1	<t< td=""><td>0.1 <=W</td><td>2</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.1 <=W	2		0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2 <=W
Fisherman's Park (Downstream)	2		0.2	<=W	4		1	<t< td=""><td>0.1 <=W</td><td>3</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.1 <=W	3		0.1	<=W	0.2	<=W	0.2	<=W	1		0.2	<=W	0.1	<=W	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Fisherman's Park (Downstream)	0.1	<=W	0.2	<=W	2		1	<t< td=""><td>1</td><td>2</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	1	2		0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	0.1	<=W	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Gratwick Riverside Park (Downstream)	2		0.2	<=W	8		8		2	7		0.1	<=W	2		0.2	<=W	0.1	<=W	0.2	<=W		MPC	0.1	<=W	2		2
Gratwick Riverside Park (Downstream)	2		0.2	<=W	6		6		2	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	3	MPC	0.1	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Gratwick Riverside Park (Downstream)	2	_	0.2	<=W	8		8		2	7		0.1	<=W	2		0.2	<=W	1		0.2	<=W	4	MPC	0.1	<=W	2		1 <t< td=""></t<>
102nd Street (Upstream)	3		0.2	<=W	6		6		2	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W		MPC	0.1	<=W	2		1 <t< td=""></t<>
102nd Street (Upstream)	1		0.2	<=W	6		5		3	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	2	MPC	0.1	<=W	2		1 <t< td=""></t<>
102nd Street (Upstream)	6		0.2	<=W	6		5		3	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	-	MPC	0.1	<=W	2	-	1 <t< td=""></t<>
Little Niagara River (near 102nd St)	4		0.2	<=W	8		6		4	8		0.1	<=W			0.2	<=W	0.1	<=W	0.2	<=W	-	MPC	2	~- ~ ~	3		2
Little Niagara River (near 102nd St)	3		2	~- **	7		6		3	7		1	~~~~	3		0.2	<=W	0.1	<=W	0.2	<=W	3	MPC	1		2		2
Little Niagara River (near 102nd St)	6		2		7		6		3	7		1		3		0.2	<=W	0.1	<=W	0.2	<=W		MPC	2		3		2
Cayuga Creek	2		1	<t< td=""><td>, 11</td><td></td><td>11</td><td></td><td>4</td><td>10</td><td></td><td>1</td><td></td><td>3</td><td></td><td>0.2</td><td><=W</td><td>1</td><td>~- **</td><td>1</td><td><t< td=""><td>7</td><td>MPC</td><td>0.1</td><td><=W</td><td>4</td><td></td><td>2</td></t<></td></t<>	, 11		11		4	10		1		3		0.2	<=W	1	~- **	1	<t< td=""><td>7</td><td>MPC</td><td>0.1</td><td><=W</td><td>4</td><td></td><td>2</td></t<>	7	MPC	0.1	<=W	4		2
Cayuga Creek	2		1	<t< td=""><td>11</td><td></td><td>10</td><td></td><td>4</td><td>10</td><td></td><td>1</td><td></td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>4</td><td>-</td><td>2</td></t<>	11		10		4	10		1		2		0.2	<=W	1		0.2	<=W	-	MPC	0.1	<=W	4	-	2
Cayuga Creek	0.1	<=W	1	<t< td=""><td>11</td><td></td><td>10</td><td></td><td>5</td><td>10</td><td></td><td>0.1</td><td><=W</td><td>-</td><td>-</td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td></td><td>MPC</td><td>0.1</td><td><=W</td><td>4</td><td>-</td><td>0.2 <=W</td></t<>	11		10		5	10		0.1	<=W	-	-	0.2	<=W	1		0.2	<=W		MPC	0.1	<=W	4	-	0.2 <=W
Little Niagara River (Downstream Cayuga Ck)	2	<-vv	1	<t< td=""><td>8</td><td></td><td>8</td><td></td><td>4</td><td>7</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>4</td><td>MPC</td><td>1</td><td>~- ~</td><td>3</td><td></td><td>1 <t< td=""></t<></td></t<>	8		8		4	7		0.1	<=W	2		0.2	<=W	1		0.2	<=W	4	MPC	1	~- ~	3		1 <t< td=""></t<>
Little Niagara River (Downstream Cayuga Ck)	2		1	<t< td=""><td>10</td><td></td><td>9</td><td></td><td>5</td><td>9</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>1</td><td><t< td=""><td>6</td><td>MPC</td><td>1</td><td></td><td>3</td><td></td><td>2</td></t<></td></t<>	10		9		5	9		0.1	<=W	2		0.2	<=W	1		1	<t< td=""><td>6</td><td>MPC</td><td>1</td><td></td><td>3</td><td></td><td>2</td></t<>	6	MPC	1		3		2
Little Niagara River (Downstream Cayuga Ck)	0.1	<=W	1	<t< td=""><td>8</td><td></td><td>7</td><td></td><td>3</td><td>7</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td></td><td>MPC</td><td>0.1</td><td><=W</td><td>4</td><td></td><td>2</td></t<>	8		7		3	7		0.1	<=W	2		0.2	<=W	1		0.2	<=W		MPC	0.1	<=W	4		2
Upstream of Occidental	0.1	<=W	1	<t< td=""><td>6</td><td></td><td>4</td><td></td><td>3</td><td>5</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>2</td><td>MPC</td><td>1</td><td>~~~</td><td>2</td><td></td><td>0.2 <=W</td></t<>	6		4		3	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	2	MPC	1	~~~	2		0.2 <=W
Upstream of Occidental	0.1	<=W	1	<t< td=""><td>6</td><td></td><td>5</td><td></td><td>3</td><td>5</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>3</td><td></td><td>0.2 <=W</td></t<>	6		5		3	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W	-	MPC	0.1	<=W	3		0.2 <=W
Upstream of Occidental	0.1	<=W	1	<t< td=""><td>6</td><td></td><td>5</td><td></td><td>3</td><td>5</td><td></td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td></td><td>MPC</td><td>1</td><td>~- ~</td><td>2</td><td></td><td>0.2 <=W</td></t<>	6		5		3	5		0.1	<=W	2		0.2	<=W	1		0.2	<=W		MPC	1	~- ~	2		0.2 <=W
•	7	<- VV	3		10		14		13	8		1	<- vv	3		0.2	<=W	2		0.2	<=W	-	MPC		<=W	2		3
Occidental 003	8		3		10		14		13	8		2		2		0.2	<=vv <=W	2		0.2	<=w		MPC	0.1	<=vv <=W	2		3
Occidental 003 Occidental 003	7		4		10		15		12	7		2		2		0.2	<=W	2		0.2	<=W	1	MPC	0.1	<=W	2	<t< td=""><td>3</td></t<>	3
	-	- 14/		<- 14/	-			τ.					- 1A/			-			- 14/	-	-		-	-				-
350 m U/S Gill Creek (in NR)	0.1	<=W	0.2	<=W	2		1	<t <t< td=""><td>1</td><td>2</td><td></td><td>0.1</td><td><=W</td><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></t 	1	2		0.1	<=W	3		0.2	<=W	0.1	<=W	0.2	<=W		<=W	0.1	<=W	0.2	<=W	0.2 <=W
350 m U/S Gill Creek (in NR)	-	<=W	0.2	<=W	2	-	1	<1 <t< td=""><td>1</td><td>1</td><td>-</td><td>-</td><td><=W</td><td>3</td><td>-</td><td>0.2</td><td><=w</td><td>0.1</td><td><=W</td><td>-</td><td><=W</td><td>-</td><td><=W</td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<>	1	1	-	-	<=W	3	-	0.2	<=w	0.1	<=W	-	<=W	-	<=W	0.1	<=W	2		0.2 <=W
350 m U/S Gill Creek (in NR)	0.1		0.2	-				<u> </u>	-			0.1		-			-	0.1	<=vv	0.2				0.1	<=vV			
Gill Creek (Mouth)	0.1	<=W	1	<t< td=""><td>9</td><td>_</td><td>9</td><td></td><td>6</td><td>8</td><td></td><td>0.1</td><td><=W</td><td>2</td><td>_</td><td>1</td><td><t< td=""><td>1</td><td></td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>1</td><td></td><td>3</td><td>_</td><td>0.2 <=W</td></t<></td></t<>	9	_	9		6	8		0.1	<=W	2	_	1	<t< td=""><td>1</td><td></td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>1</td><td></td><td>3</td><td>_</td><td>0.2 <=W</td></t<>	1		0.2	<=W	-	MPC	1		3	_	0.2 <=W
Gill Creek (Mouth)	0.1	<=W	2	-	9	_	9		6	8		0.1	<=W	2	_	0.2	<=W	1		0.2	<=W	5	MPC	0.1	<=W	4	_	0.2 <=W
Gill Creek (Mouth)	0.1	<=W	1	<t <=W</t 	8		9		5	7		0.1	<=W	2	-7	0.2	<=W	1		0.2	<=W	-	MPC MPC	0.1	<=W	4		0.2 <=W
U/S Gill Creek (in creek)	2		0.2		-		8		5	8		0.1			<t< td=""><td>0.2</td><td></td><td>1</td><td></td><td></td><td>-</td><td>5</td><td>-</td><td>0.1</td><td><=W</td><td>-</td><td>-</td><td></td></t<>	0.2		1			-	5	-	0.1	<=W	-	-	
U/S Gill Creek (in creek)	1		0.2	<=W	10		9		6	8	-	0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.2</td><td><=W</td><td>6</td><td>MPC</td><td>1</td><td></td><td>3</td><td>-</td><td>0.2 <=W</td></t<>	0.2	<=W	1		0.2	<=W	6	MPC	1		3	-	0.2 <=W
U/S Gill Creek (in creek)	1		1	<t< td=""><td>8</td><td>_</td><td>8</td><td></td><td>4</td><td>7</td><td></td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td></td><td>1</td><td><t< td=""><td>5</td><td>MPC</td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<></td></t<>	8	_	8		4	7		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td></td><td>1</td><td><t< td=""><td>5</td><td>MPC</td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1		1	<t< td=""><td>5</td><td>MPC</td><td>0.1</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<>	5	MPC	0.1	<=W	2		0.2 <=W
Fort Erie @ Robertson St.	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td>_</td><td></td><td>0.1</td><td><=W</td><td>-</td><td><=W</td><td>-</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.1 <=W	_		0.1	<=W	-	<=W	-	<=W	0.1	<=W	0.2	<=W	-	MPC	0.1	<=W	0.2	<=W	0.2 <=W
Fort Erie @ Robertson St.	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td></td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.1 <=W			0.1	<=W	0.2	<=W	-	<=W	0.1	<=W	0.2	<=W		MPC	0.1	<=W	0.2	<=W	0.2 <=W
Fort Erie @ Robertson St.	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td>-</td><td></td><td>0.1</td><td><=W</td><td></td><td><=W</td><td></td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	0.1 <=W	-		0.1	<=W		<=W		<=W	0.1	<=W	0.2	<=W	-	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Chippawa Channel, NR	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td></td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	0.1 <=W			0.1	<=W	0.2	<=W		<=W	0.1	<=W	0.2	<=W		MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Chippawa Channel, NR	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td>-</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.1 <=W	-		0.1	<=W	0.2	<=W	-	<=W	0.1	<=W	0.2	<=W	-	MPC	0.1	<=W	0.2	<=W	0.2 <=W
Chippawa Channel, NR	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1 <=W</td><td>-</td><td></td><td>0.1</td><td><=W</td><td></td><td><=W</td><td></td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	0.1 <=W	-		0.1	<=W		<=W		<=W	0.1	<=W	0.2	<=W	-	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<>	1	<t< td=""><td>1</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	1	1		0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td>MPC</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	1		0.1	<=W	0.2	<=W		<=W	0.1	<=W	0.2	<=W	-	MPC	0.1	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td>MPC</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	1	1		0.1	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.2	<=W	1	MPC	0.1	<=W	0.2	<=W	0.2 <=W

Appendix D2: Congener specific PCB tussue co	oncentra	ations in	caged r	nussels	s, 2012, N	iagar	a River.	<w =<="" th=""><th>no meas</th><th>surable</th><th>respor</th><th>nse; <t:< th=""><th>=measu</th><th>rable tr</th><th>ace am</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t:<></th></w>	no meas	surable	respor	nse; <t:< th=""><th>=measu</th><th>rable tr</th><th>ace am</th><th>ount</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t:<>	=measu	rable tr	ace am	ount													
Station Description	PCB17	7 VQF	PCB178	VQF	PCB180	VQF	PCB183	VQF	PCB187	VQF	PCB188	3 VQF	PCB189	VQF	PCB19	1 VQF	PCB194	VQF	PCB199	VQF	PCB201	VQF	PCB202	2 VQF	PCB205	VQF	PCB206	5 VQF	PCB208 VQF
	E3411	A	E3411A		E3411A		E3411A		E3411A		E3411A	1	E3411A	1	E3411/	4	E3411A		E3411A	1	E3411A		E3411/	4	E3411A		E3411A	\ \	E3411A
	ng/g d	lry wt.	ng/g dr	v wt.	ng/g dry	wt.	ng/g dr	v wt.	ng/g dr	v wt.	ng/g dr	v wt.	ng/g dr	v wt.	ng/g di		ng/g dry	v wt.	ng/g dr	v wt.	ng/g dry	wt.	ng/g dr	rv wt.	ng/g dr	v wt.	ng/g dr	v wt.	ng/g dry wt.
Balsam Lake	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Balsam Lake	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
			-		-		-		-		-		-				-		-		-		-				-		-
Two Mile Creek	1		0.2	<=W	6		1	<t< td=""><td>4</td><td></td><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>2</td><td></td><td>5</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	4		3		0.2	<=W	0.2	<=W	0.2	<=W	2		5		0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Two Mile Creek	2		0.2	<=W	6		1	<t< td=""><td>4</td><td></td><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<></td></t<></td></t<>	4		4		0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<>	5		0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Two Mile Creek	2		0.2	<=W	6		1	<t< td=""><td>3</td><td></td><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<></td></t<>	3		3		0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<>	1	<t< td=""><td>5</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	5		0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Fisherman's Park (Upstream)	1		0.2	<=W	0.2	<=W	0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	2		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Fisherman's Park (Upstream)	0.1	<=W	0.2	<=W	2		0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<>	2		0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td></t<>	2
Fisherman's Park (Upstream)	1		0.2	<=W	3		0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	2		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Fisherman's Park (Downstream)	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2 <=W
Fisherman's Park (Downstream)	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<></td></t<>	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<>	2		0.2 <=W
Fisherman's Park (Downstream)	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Gratwick Riverside Park (Downstream)	1		0.2	<=W	5		0.2	<=W	2		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>4</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>2</td><td></td><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>4</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>2</td><td></td><td>1 <t< td=""></t<></td></t<></td></t<>	4		1	<t< td=""><td>0.2</td><td><=W</td><td>2</td><td></td><td>1 <t< td=""></t<></td></t<>	0.2	<=W	2		1 <t< td=""></t<>
Gratwick Riverside Park (Downstream)	1		0.2	<=W	3		0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	3		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Gratwick Riverside Park (Downstream)	1		0.2	<=W	5		0.2	<=W	3		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<>	1	<t< td=""><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<>	4		0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td></t<>	2
102nd Street (Upstream)	1		0.2	<=W	3		0.2	<=W	2		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	3		1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
102nd Street (Upstream)	1		0.2	<=W	3		0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	3		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
102nd Street (Upstream)	1		0.2	<=W	3		0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	3		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Little Niagara River (near 102nd St)	1		0.2	<=W	4		0.2	<=W	3		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2		1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Little Niagara River (near 102nd St)	1		0.2	<=W	4		1	<t< td=""><td>2</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2		1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Little Niagara River (near 102nd St)	0.1	<=W	0.2	<=W	4		2		4		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	2		1	<t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	2		1	<t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Cayuga Creek	1		0.2	<=W	4		1	<t< td=""><td>2</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	2		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	0.2	<=W	4		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Cayuga Creek	1		0.2	<=W	3		0.2	<=W	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	3		0.2	<=W	2		1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Cayuga Creek	1		0.2	<=W	3		1	<t< td=""><td>2</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	3		0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Little Niagara River (Downstream Cayuga Ck)	1		0.2	<=W	3		0.2	<=W	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1</td><td><l< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></l<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1</td><td><l< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></l<></td></t<></td></t<>	1	<t< td=""><td>1</td><td><l< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></l<></td></t<>	1	<l< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></l<>	0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Little Niagara River (Downstream Cayuga Ck)	1		0.2	<=W	4		0.2	<=W	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1</td><td>-۲</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1</td><td>-۲</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<>	1	<t< td=""><td>1</td><td>-۲</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<>	1	-۲	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td></t<>	2
Little Niagara River (Downstream Cayuga Ck)	1		0.2	<=W	4		0.2	<=W	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<></td></t<>	1	<t< td=""><td>4</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td></t<></td></t<>	4		0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td></t<>	2
Upstream of Occidental	0.1	<=W	0.2	<=W	2		0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	2		0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Upstream of Occidental	0.1	<=W	0.2	<=W	2		0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	2		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Upstream of Occidental	0.1	<=W	0.2	<=W	2		0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>6</td><td></td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>6</td><td></td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	2		0.2	<=W	6		1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Occidental 003	0.1	<=W	0.2	<=W	2		0.2	<=W	0.1	<=W	10		0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1 <t< td=""></t<></td></t<>	0.2	<=W	0.2	<=W	0.2	<=W	1 <t< td=""></t<>
Occidental 003	0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>3</td><td></td><td>9</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<></td></t<>	3		9		0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2 <=W</td></t<>	2		0.2	<=W	2		0.2 <=W
Occidental 003	0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>9</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>3</td><td></td><td>0.2 <=W</td></t<></td></t<></td></t<>	2		9		1	<t< td=""><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>3</td><td></td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	2		0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>3</td><td></td><td>0.2 <=W</td></t<>	2		0.2	<=W	3		0.2 <=W
350 m U/S Gill Creek (in NR)	0.1	<=W	0.2	<=W	2		0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<></td></t<>	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2 <=W</td></t<>	2		0.2 <=W
350 m U/S Gill Creek (in NR)	0.1	<=W	0.2	<=W	2		0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
350 m U/S Gill Creek (in NR)	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<></td></t<></td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<></td></t<>	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2 <=W
Gill Creek (Mouth)	1		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>3</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	3		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Gill Creek (Mouth)	1		0.2	<=W	4		1	<t< td=""><td>2</td><td></td><td>0.1</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	2		1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
Gill Creek (Mouth)	1		0.2	<=W	3		0.2	<=W	2		0.1	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>1</td><td><t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<></td></t<>	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1 <t< td=""></t<></td></t<></td></t<>	2		0.2	<=W	0.2	<=W	1	<t< td=""><td>1 <t< td=""></t<></td></t<>	1 <t< td=""></t<>
U/S Gill Creek (in creek)	0.1	<=W	0.2	<=W	4		1	<t< td=""><td>3</td><td></td><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>2</td><td></td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	3		2		0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	2		0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2 <=W
U/S Gill Creek (in creek)	1		0.2	<=W	4		0.2	<=W	3		2		0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	2		0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
U/S Gill Creek (in creek)	1		0.2	<=W	4		0.2	<=W	3		1		0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>2</td><td></td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	2		0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Fort Erie @ Robertson St.	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>-</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	-	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Fort Erie @ Robertson St.	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td></td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W		<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Fort Erie @ Robertson St.	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W		<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Chippawa Channel, NR	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<></td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2 <=W</td></t<></td></t<>	0.2	<=W		<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2 <=W</td></t<>	0.2 <=W
Chippawa Channel, NR	0.1	<=W	0.2	<=W	1	<t -</t 	0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td></td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W		<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
Chippawa Channel, NR	0.1	<=W	0.2	<=W	1	<t -</t 	0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	-	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	1	<t -</t 	0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t -</t 	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.1</td><td><=W</td><td>0.1</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>1</td><td><t </t </td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	0.1	<=W	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>1</td><td><t </t </td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	1	<t </t 	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W
NOTL	0.1	<=W	0.2	<=W	0.2	<=W	0.2	<=W	1		0.1	<=W	0.2	<=W	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>1</td><td><t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<></td></t<>	0.2	<=W	1	<t< td=""><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2</td><td><=W</td><td>0.2 <=W</td></t<>	0.2	<=W	0.2	<=W	0.2	<=W	0.2 <=W

Appendix D3: Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in caged mussels (pg/g wet wt.) deployed in the Niagara River, and sediment (ng/g dry wt), 2012. n=1 composite of four mussels. Values less than the detection limit (<) are replaced with a 0 when calculating TEQs.

Station Description		Fisherman's Park (Upstream)	Fisherman's Park (Downstream)	Pettit Flume (Downstream)	Pettit Flume (Outer Site B)	Pettit Flume (Upstream)	Bloody Run Creek	Bloody Run Creek (btwn 7th and 8th post)	Bloody Run Creek (btwn 4th and 5th post)	Bloody Run Creek (Downstream
Station No		500020001	500020002	500020187	500020186	500020185	1100020017	1100020131	1100020132	1100020025
Collect Date		08/07/2012 12:15	08/07/2012 13:27	08/08/2012 8:09	08/08/2012 8:40	08/08/2012 9:16	08/09/2012 7:41	08/09/2012 7:40	08/09/2012 8:02	08/09/2012 7:54
Field Sample No		GL123103	GL123111	GL123126	GL123131	GL123135	GL123179	GL123183	GL123188	GL123193
Water Depth		0.4	0.9	1	0.9	0.9	0.5	0.6	0.8	0.7
LIPID	%	0.52	0.65	0.71	1.1	0.58	0.42	0.4	0.97	0.88
2378-tetrachlorofuran	pg/g wet wt	3.5	1.1	6.7	9.7	0.32	< 0.9	0.46	0.74	0.28
12378-pentachlorofuran	pg/g wet wt	1.3	0.22	< 0.95	1.1	0.15	< 0.19	< 0.18	< 0.26	< 0.17
23478-pentachlorofuran	pg/g wet wt	2.6	0.46	6.3	3.2	0.18	< 0.42	0.31	< 0.34	< 0.17
123478-hexachlorofuran	pg/g wet wt	7.2	0.98	36	11	0.27	< 0.61	0.37	< 0.63	0.23
123678-hexachlorofuran	pg/g wet wt	1.6	0.29	< 5.4	2.2	0.22	< 0.3	< 0.21	< 0.29	< 0.23
123789-hexachlorofuran	pg/g wet wt	0.31	< 0.22	< 0.32	< 0.25	< 0.26	< 0.21	< 0.27	< 0.26	< 0.28
234678-hexachlorofuran	pg/g wet wt	0.66	< 0.18	< 1.4	0.63	0.22	< 0.18	< 0.22	< 0.21	< 0.24
1234678-heptachlorofuran	pg/g wet wt	9.4	1.1	45	20	0.14	< 0.48	0.32	< 0.38	0.16
1234789-heptachlorofuran	pg/g wet wt	0.46	0.22	< 2.6	0.7	0.21	< 0.2	< 0.24	< 0.22	< 0.24
Octachlorofuran	pg/g wet wt	8.8	0.88	< 68	11	0.41	< 1.3	0.97	< 1.1	0.33
2378-tetrachlorodioxin	pg/g wet wt	0.22	< 0.17	< 0.25	< 0.66	0.19	< 12	5.2	9.5	0.8
12378-pentachlorodioxin	pg/g wet wt	0.42	< 0.23	< 0.25	< 0.51	< 0.23	< 0.17	< 0.22	< 0.34	< 0.2
123478-hexachlorodioxin	pg/g wet wt	0.24	< 0.18	< 0.27	< 0.18	< 0.16	0.21	< 0.18	< 0.27	< 0.22
123678-hexachlorodioxin	pg/g wet wt	0.36	< 0.18	< 0.48	0.45	0.19	< 1.1	0.7	< 0.82	0.23
123789-hexachlorodioxin	pg/g wet wt	0.25	< 0.18	< 0.2	< 0.29	< 0.19	< 0.48	0.3	< 0.38	< 0.24
1234678-heptachlorodioxin	pg/g wet wt	1.3	0.31	< 1.1	< 0.86	< 0.41	< 2.8	1.1	< 1.8	0.32
Octachlorodioxin	pg/g wet wt	4.8	0.47	< 3.1	1.5	1.5	2.4	1.3	2	0.8
mammals	Total TEQ	2.2	0.4	7.4	4.3	0.02	12	5.2	9.7	0.8
fish	Total TEQ	2.5	0.4	8.3	4.4	0.08	12	5.2	9.6	0.8
birds	Total TEQ	7.2	1.7	18	15	0.01	13	5.7	10	0.8

		Fisherman's Park (Upstream)	Fisherman's Park (Downstream)	Pettit Flume (Downstream)	Pettit Flume (Outer Site B)	Bloody Run Creek (Upstream)	Bloody Run Cree
Station No		500020001	500020002	500020187	500020186	1100020018	1100020017
Collect Date		08/07/2012 14:20	08/07/2012 14:30	08/08/2012 9:45	08/08/2012 10:10	08/09/2012 7:30	08/09/2012 7:42
Field Sample No		GL123053	GL123054	GL123055	GL123056	GL123058	GL123059
Water Depth		0.4	0.4	1	0.9	0.4	0.4
TOC	mg/g	37	41	26	83	10	5
2378-tetrachlorofuran	pg/g dry	84	64	100	8900	9.4	130
12378-pentachlorofuran	pg/g dry	43	41	41	3500	3.9	37
23478-pentachlorofuran	pg/g dry	110	68	110	8800	10	140
L23478-hexachlorofuran	pg/g dry	1600	1000	2000	120000	130	1200
L23678-hexachlorofuran	pg/g dry	270	180	290	23000	22	230
L23789-hexachlorofuran	pg/g dry	2.2	2.6	1.9	140	0.64	5.6
234678-hexachlorofuran	pg/g dry	68	46	61	4900	4.5	46
L234678-heptachlorofuran	pg/g dry	5600	3400	6100	300000	86	920
L234789-heptachlorofuran	pg/g dry	160	100	200	13000	20	210
Octachlorofuran	pg/g dry	11000	7600	14000	100000	220	4900
2378-tetrachlorodioxin	pg/g dry	4.6	< 2.8	< 6	< 580	310	3600
L2378-pentachlorodioxin	pg/g dry	12	7.7	11	1300	3.6	49
L23478-hexachlorodioxin	pg/g dry	12	7.7	12	1000	9.8	130
L23678-hexachlorodioxin	pg/g dry	26	16	24	2400	210	2300
L23789-hexachlorodioxin	pg/g dry	24	6.6	20	2100	130	1400
L234678-heptachlorodioxin	pg/g dry	310	140	200	15000	1600	11000
Octachlorodioxin	pg/g dry	1800	570	1200	31000	1400	8800
mammals	Total TEQ	319	200	366	24458	386	4362
fish	Total TEQ	333	210	379	25494	346	4000
birds	Total TEQ	467	304	528	38266	368	4264
SUM2 (silt)	% VOLUME	66.6	59.1	72.1	65.5	76.2	75.7
SUM4 (sand)	% VOLUME	22.6	30.2	7.4	21.6	1.8	3.4
SUM5 (Clay)	% VOLUME		10.7	20.5	12.9	22	20.9

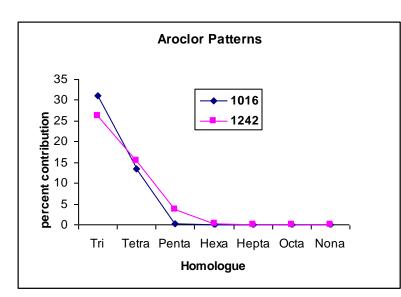
Appendix E. Total TEQ pg/g* and TEQ for Dioxin-Like (DL) PCBs(pg/g)** in caged mussels (wet wt.) and sediment (dry wt.) collected from the Niagara River (1987-2012). NR-Niagara River; ND-below the detection limit

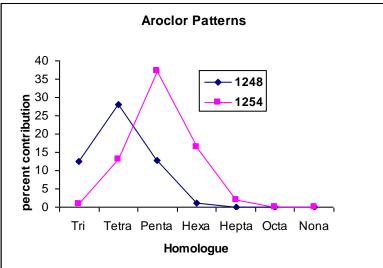
NR-Niagara River; ND-below the detection		Mussels	;	Sediment	:		
STATION	YEAR	Total TEQ	DL-PCB TEQ	Total TEQ	DL-PCB TEQ	TOC (mg/g)	
Canadian Sites						(
NR - Fort Erie	1995	ND		0.9			
	1997			10		20	
	2000	0.01	0.01	2	0.01	9	
NR - Chippawa Channel	2000	ND	ND	0.01	0.01	5	
Niagara-on-the-Lake	1993 1995	ND ND		13 14			
	1995	ND		14			
	2000	0.01	0.01				
	2003	0.01	0.01	8	0.05	7	
American Sites							
Tonawanda Channel (U/S Two Mile Ck.)	2009	0.01					
Scajaquada Creek	2009	0.03		13		45	
Rattlesnake Creek	2009	0.11		13		30	
Two Mile Creek	2000			30	3.3	39	
	2003			52	1.4	65	
Exalon (upstream) in Erie Canal	2003	0.04	0.04	77	0.2	33	
NR - Gratwick /Riverside Park	1991	15					
NR - Wheatfield	1987	ND 16		200	2.1	12	
Little Niagara River (downstream 102nd St.) Cayuga Creek	2006 1995	16 18		300 18	2.1	43	
Jayuga Uleek	2003	0.16	0.05	59	0.3	82	
Little Niagara River (downstream Cayuga Ck.)	2003	8	0.05	140	0.6	110	
Occidental Sewer 003	1991	ND		140	0.0	110	
Gill Creek (upstream in Creek)	2000			71	0.8	14	
	2003	0.44	0.08	88	1.0	17	
	2006	1		28	0.3	8	
NR - 102nd Street	1991	70					
	1993	96		230			
	1995	130		500			
	1997	1		ND		ND	
Pettit Flume (upstream)	1991	5					
	1993	ND		26			
	2000	ND	0.05	13	0.3	23	
	2003	ND	ND	37	0.3	34	
	2006	0.03 0.010		15 21		44	
	2009 2012	0.010		21		44	
Pettit Flume Cove (site A)	1991	960					
	1993	200		48000			
Pettit Flume Cove (site B)	1997	46		20000		110	
	2000	74	ND	30000	2.6	120	
	2003	60	0.05	11000	1.4	120	
	2006	190		15000			
	2009	46		3800		71	
	2012	4		25500		83	
Pettit Flume (downstream)	2000	3	0.03	490	0.2	33	
	2003	0.36	0.01	2000	0.3	20	
	2006	5		680			
	2009	1		7200		47	
Fisherman's Dark (unatroan intat)	2012	8		379		26	
Fisherman's Park (upstream inlet)	2012	3		333		37	
Fisherman's Park (downstream inlet)	2012	0.4	ND	210	0.2	41 5	
NR - Bloody Run Creek (upstream)	2000 2003	ND	ND	43 180	0.3	5	
	2003	0.01	0.01	100	01	3	
	2004	2	0.01	36		12	
	2009	ND		44		9	
	2012			346		10	
NR- Bloody Run Creek	1993	270		120000			
	1994	56					
	1995	120		61000			
	1997	84		52000		29	
	2000	23	0.04	3300		7	
	2003	10	0.00	110000	6.2	22	
	2004	46	0.06	4000		44	
	2006	45		4200		14	
	2009 2012	18 9		48000 4000		16 5	
Bloody Run Creek (downstream)	2012	9	0.02	-000		3	
	2004	6	0.02	220		7	
	2000	6		2200		22	
	2003	1					
*Dioxin, furan and dioxin-like PCB cor				lied by t	he WU) Tovio	itv
							, ir y
Equivalency Factors (TEF) for protect						xicity	
on a common basis and then summe	d to yield	d a total	toxic ed	quivalent	(TEQ).		
					. /		
** Analysis for dioxin-like PCBs was n	ot availa	ble prio	r to 200	0			
,							

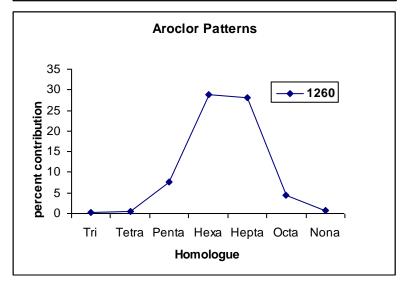
	2 Mile Creek		2 Mile Creek		2 Mile Creek		Pettit Flume ¹		Pettit Flume	1	Pettit Flume		Gratwick Riverside Park		Gratwick Riverside Park		Gratwick Riverside Pa	ark
	-1		-2		-3		upstream-3		outer-3		Downstream-3		upstream-1		upstream-2		upstream-3	
1,3-Dichlorobenzene	8.35		8.24		6.82		1.02	J	59.2		14.8		2.36	J	2.89	J	2.85	J
1,4-Dichlorobenzene	21.9		24.4		21.8		9.06		175		30.1		11.5		13.9		12.7	
1,2-Dichlorobenzene	1.98	J	1.6	J	1.44	J	2.13	J	86.7		1.68	J	1.27	J	1.29	J	1.27	NDR .
1,3,5-Trichlorobenzene	30.8		29.8		28.8			ND	96.2		17.3		2.06	J	2.49	J	2.12	J
1,2,4-Trichlorobenzene	45.4		46.4		47.8		1.13	J	250		9.68		10.7		11.2		12.4	
1,2,3-Trichlorobenzene	3.8		4.27		4.02			ND	145		1.72	J	1.22	J	1.53	J	1.48	J
1,2,4,5-/1,2,3,5-Tetrachlorobenzene	95.7		93.2		98.6		0.499	J	318		13.7		3.02	J	3.13	J	3.05	J
1,2,3,4-Tetrachlorobenzene	135		131		137		0.345	J	572		7.34		1.77	J	1.98	J	2.16	J
Hexachlorobutadiene	2.55	J	2.68	J	2.66	J		ND	2.67	J	3.29	J		ND		ND		ND
Pentachlorobenzene	230		214		231		0.849	J	462		61.9		8.8		8.67		8.75	
Hexachlorobenzene	55.3		50		54.2		2.14	J	382		233		18.7		18.7		19.8	
HCH, alpha	352		350		356			ND		NQ		ND		ND		ND		ND
HCH, beta	108		90.1		118			ND		ND		ND		ND		ND		ND
HCH, gamma	25.6	NDR	24.2	NDR	25	NDR		ND		NQ		ND	5.47	NDR J		ND	3.68	NDR .
Heptachlor		ND		ND		ND		ND		ND		ND		ND		ND		ND
Aldrin		ND	0.955	J		ND		ND		ND		ND		ND		ND		ND
Chlordane, gamma (trans)	7.99		6.92		7.57		1.27	J	12.3		1.98	J	2.25	J	1.98	J	1.99	J
Chlordane, alpha (cis)	12.7		11.1		11.8		1.8	J	20.4		2.36	NDR J	3.47	J	2.97	J	2.85	J
Octachlorostyrene	0.545	J	0.426	J	0.353	J		ND	0.934	J	1.04	J		ND		ND		ND
Chlordane, oxy-	42.1	NDR	35.1	NDR	38.7	NDR	38	NDR	24.8	NDR	23.9	NDR	11.1	NDR J	21.3	NDR	16.6	NDR
Nonachlor, trans-	5.67	J	4.68	J	4.99	J	1.03	J	7.8	J	1.32	J	1.51	J	1.57	J	1.43	J
Nonachlor, cis-	1.49	J	1.34	J	1.6	J		ND	1.89	J	0.477	J	0.463	J	0.477	J	0.664	J
Mirex	6.39	NDR	5.07	NDR	5.96	NDR		ND	3.16	NDR J		ND		ND		ND		ND
2,4'-DDE	3.05	NDR	2.92	NDR	2.62	NDR J	0.753	NDR J	1.97	NDR J	0.954	NDR J	1.58	NDR J	1.84	NDR J	1.73	NDR .
4,4'-DDE	17.9		16.9		17.2		3.11	J	13.4		4.28	J	5.69	J	6.46		6.49	
2,4'-DDD	7.78	D	9	D	8.88	D		ND	16.3			ND		ND		ND	1.11	J
4,4'-DDD	40.3	D	40.8	D	41.3	D	2.98	J	59.2		4.19	J	5.46	J	5.92	J	5.84	J
2,4'-DDT	4.94	NDR D J	4.31	NDR D J	4.67	NDR D J	1.17	NDR J	2.11	NDR J	2	NDR J	4.16	NDR J	4.43	NDR J	4.36	NDR .
4,4'-DDT	2.06	DJ	1.35	DJ	2.12	DJ		ND		ND		ND		ND	1.15	J		ND
HCH, delta	42.8	D	45.5	D	59.5	D		ND		ND	0.49	DJQ		ND D	0.504	DJQ		ND D
Heptachlor Epoxide	2.31	DJQ	2.05	DJQ	2.21	DJQ	0.967	JQ	3.13	JQ	1.14	DJQ	1.36	DJQ	1.75	DJQ	1.35	DJQ
Dieldrin	7.93	DJ	7.21	DJ	7.46	DJ	5.31	J	9.78		6.07	DJ	7.11	DJ	7.3	DJ	7.06	DJ
Endrin		ND D		ND D		ND D		ND		ND		ND D		ND D		ND D		ND D
Endrin Aldehyde		ND D		ND D		ND D		ND		ND		ND D		ND D		ND D		ND D
Endrin Ketone		ND D		ND D		ND D		ND		ND		ND D		ND D	1.3	DJ	0.314	DJQ
Methoxychlor	10.1	DQ	10.1	DQ	10.1	DQ		ND		ND		ND D		ND D		ND D	2.14	DJ
alpha-Endosulphan	2.93	DJQ	2.75	DJQ	2.95	DJ		ND	0.383	J	0.622	DJ	0.874	DJ	0.539	DJ		ND D
beta-Endosulphan	2.93	DJ	2.71	DJ	3.1	DJ		ND	0.811	JQ		ND D		ND D		ND D		ND D
Endosulphan Sulphate	1.98	DJQ	2.21	DJQ		ND D	0.991	JQ	3.78	JQ	0.585	DJQ		ND D		ND D		ND D
J = concentration less than lowes				lto ro	orted record	onto		ooible :	inhua Caraa	rad data								
NDR=Peak detected but did not r	each quantific	ation	criteria, resu	us rep	Joncea repres	sents I	naximum po	SSIDIE	value. Censo	rea data								
D= Sample diluted																		
ND= not detected at reporting leve	el																	
Q= Contract defined limit																		
Pettit Flume ¹ = the three Pettit Flume			4															

	Gratwick Riverside Park		Gratwick Riverside Park		Gratwick Riverside Park		102nd Street		102nd Street		102nd Street		Little Niagara River		Little Niagara River		Little Niagara River
	downstream-1		downstream-2		downstream-3		Upstream-1		Upstream-2		Upstream-3		(near 102nd St)-1		(near 102nd St)-2		(near 102nd St)-3
,3-Dichlorobenzene	3.85	J	3.85	J	2.95	J	2.27	J	2.86	J	2.58	J	9.59		11		12.9
,4-Dichlorobenzene	31.1		22.6		22.4		6.47		7		6.87		36.7		35.5		39.5
,2-Dichlorobenzene	2.53	J	2.73	J	2.12	J	6.8	NDR	7.38	NDR	11.7	NDR	1.44	J	1.57	J	1.69
,3,5-Trichlorobenzene	2.32	J	1.99	J	1.87	J		ND		ND	0.898	NDR J	27		27.9		29.9
,2,4-Trichlorobenzene	3.26	J	3.55	J	2.82	J	1.56	J	1.6	J	1.71	J	27.4		27.9		30.2
,2,3-Trichlorobenzene	0.8	J	1.02	J	0.853	J		ND		ND	0.863	NDR J	4.26	J	4.08	J	4.65
,2,4,5-/1,2,3,5-Tetrachlorobenzene	2.5	J	2.29	J	2.5	J	8.82	J	10.4	J	9.26	J	68		68.4		53.1
,2,3,4-Tetrachlorobenzene	1.87	J	2.01	J	1.94	J	2.2	J	2.65	J	2.88	J	93.1		88.4		84.6
lexachlorobutadiene	0.261	J		ND		ND	0.776	NDR J	0.944	NDR J	0.819	NDR J	0.775	NDR J		ND	
Pentachlorobenzene	7.64		7.68		7.47		8.54		7.92		8.05		110		110		104
Hexachlorobenzene	14.3		14.5		14		33.1		30.5		31.1		38.5		36.3		32.9
HCH, alpha		ND	2.23	J		ND		ND		ND		ND	3.94	J	4.02	NDR J	3.33
ICH, beta		ND		ND		ND		ND		ND		ND		ND		ND	
ICH, gamma		ND	1.81	NDR .		NDR J		ND	2.64	NDR J		ND		ND		ND	
Heptachlor		ND		ND		ND		ND		ND		ND		ND		ND	
Ndrin		ND		ND		ND		ND		ND		ND		ND		ND	
Chlordane, gamma (trans)	1.66	J	1.46	J	1.47	J	2.21	J	2.13	J	1.76	J	1.85	J	1.69	J	1.35
Chlordane, alpha (cis)	2.88	J	1.84	J	1.64	J	3.52	J	3.07	J	2.89	J	2.32	J	2.35	J	2.14
Dctachlorostyrene	2.00	ND		ND		ND	0.02	ND	0.01	ND	2.00	ND	2.02	ND	2.00	ND	
Chlordane, oxy-	23.7	NDR		NDR		NDR	20.3	NDR	31.5	NDR	31.9	NDR	16.7	NDR	24.9	NDR	12.3
Nonachlor, trans-	1.45	J	1.56	J	1.56	J	1.99	J	1.72	J	1.73	J	1.51	J	1.59	J	1.19
Nonachlor, cis-	0.448	J	0.252	NDR .		J	0.735	J	0.68	J	0.522	J	0.378	J	0.461	J	1.10
Airex	0.440	ND		ND		ND	1.6	J	1.72	J	0.022	ND	23.5	J	21.3	5	19.6
2.4'-DDE	1.34	NDR J		NDR		ND	0.791	NDR J	1.14	NDR J	1.12	NDR J	20.0	ND	0.937	NDR J	10.0
I,4'-DDE	3.26	J	4.84	J	5.17	J	3.95	J	3.89	NDR J	3.78	J	6.23	ND	6.32	NDK J	5.59
2.4'-DDD	1.08	J	1	NDR .		ND	1.03	J	0.934	J	0.966	NDR J	6.47		6.32		5.95
I,4'-DDD	4.52	J	4.7	J	4.66	J	4.3	J	4.57	J	4.12	J	26.1		26.1		23.9
2.4'-DDT		NDR J		NDR .		ND	1.77	NDR J	1.08	NDR J	1.39	NDR J		NDR J	2.46	NDR J	1.9
.4'-DDT	2.51	NDR J		NDR .		ND	1.77	NDR J	0.965	J	0.819	J	1.00	NDR J	2.40	NDR J	1.5
ICH. delta		ND		ND		ND	0.634	JQ	0.931	10	0.447	10	0.988	DJ	0.873	DJ	1.1
Heptachlor Epoxide	1.27	JQ	1.31	JQ		JQ	1.29	10	1.14	10	0.868	10		DJQ		DIO	0.636
Dieldrin	6.8	JQ	6.56	JU	6.61	10	7.48	J (1	7.1	J (1	6.24	JQ	3.53	DIG	3.2	DIG	3.02
Endrin	0.0						7.40		7.1	ND	0.24	ND	3.00		3.2		3.02
Endrin Aldehyde		ND ND		ND ND		ND ND		ND ND		ND		ND		ND D		ND D	
Endrin Ketone		ND		ND		ND	0.632	JQ	0.575	JQ	0.771	JQ		ND D		ND D	
Aethoxychlor		ND		ND		ND	0.032	J Q ND	0.575	J Q ND	0.579	10		ND D		ND D	
alpha-Endosulphan		ND	0.697		0.746	J	2.15		1.68		1.53	10	1.05		1.17		1.17
aipna-Endosulphan beta-Endosulphan			0.097	J		J	2.13	J	1.00	J ND	1.55	J	0.849	DJQ	0.771	DJ	0.747
•		ND ND		ND ND		ND		ND ND	0.576			ND	0.649		0.771	ND D	0.63
Endosulphan Sulphate		ND		ND		ND		ND	0.576	ĴQ		ND		ND D		ND D	0.63
J = concentration less than lowes																	
NDR=Peak detected but did not r	eacn quantification crite	rıa, ı	results reported represe	ents r	maximum possible value.	Cer	sored data										
D= Sample diluted																	
ND= not detected at reporting lev Q= Contract defined limit	el																

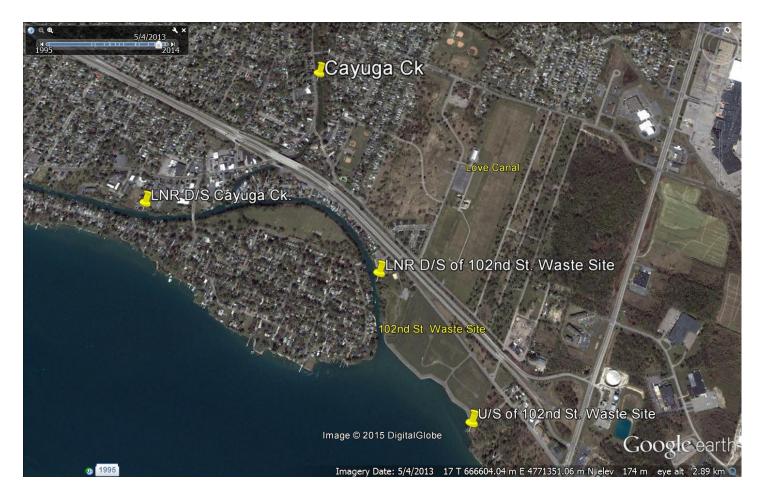
	Cayuga		Cayuga		Cayuga		Little Niagara River	L L	ittle Niagara River		Little Niagara River		Occidental		Occidental		Gill Creek		Gill Creek		Gill Creek		Gill Creek	(Gill Creek	<u>ر</u>	Gill Creek
	Creek -1		Creek -2		Creek -3	5	(D/S Cayuga ck)-1		(D/S Cayuga ck)-2		(D/S Cayuga ck)-3		Sewer-21		Sewer-3		(in creek)-1	1	(in creek)-2	2	(in creek)-3		mouth-1		mouth-2		mouth-3
,3-Dichlorobenzene		ND D	34.8	D	31.5	D	2.44	J	3.31	J	2.83	J	8.14		6.43		8.44		6.71		6.41		30.7		35		27.4
,4-Dichlorobenzene	239	D	224	D	166	D	21.6		24.6		24.7		9.31		11.9		79.7		46		49.5		99.3		107		101
,2-Dichlorobenzene		ND D		ND D	0.914	DJ	0.581	J		ND		ND	1.49	J	2.31	J	9.12		11.2		5.49	J	69.2		76.1		68.4
,3,5-Trichlorobenzene	2.25	NDR D J	1.87	DJ	1.59	DJ	8.21		9.68		8.53		3.05	J	11.8		7.32		4.36	J	5.5	J	2.47	J	3.68	J	2.3
1,2,4-Trichlorobenzene	7.95	DJ	7.8	DJ	5.67	DJ	3.77	J	5.55	J	4.44	J	33.8		126		44.7		28.3		33.3		105		159		89.7
,2,3-Trichlorobenzene		ND D	1.94	DJ	2.09	NDR D J	1.32	J	1.27	J	1.99	J	8.62		28.1		3.62	J	3.58	J	2.79	J	29.2		45		26.4
,2,4,5-/1,2,3,5-Tetrachlorobenzene	4.09	J	4.13	DJ	3.26	DJ	20.4		21.4		22		602		646		32		25		26.7		82.2		92.1		85.1
,2,3,4-Tetrachlorobenzene	3.62		3.65	DJ	3.02	DJ	27		28.7		30		12	J	1390		17.9		16.4		16.8		40		44.3		43
Hexachlorobutadiene	0.295	J		ND D		ND D		ND		ND		ND	22.6		11.3	J	1.78	J	0.67	NDR J	1.08	J	1460		1830		1590
Pentachlorobenzene	19.8		18.8	D	17.1	D	48.7		48.7		49.2		3.82	NDR J	19.2		20.1		21.2		18.4		71.5		77.7		78
Hexachlorobenzene	48.3		44.1	D	41.6	D	18.4		18.3		18.1		1.97	NDR J	2.19	J	22.2		23.1		20.3		79.8		86.6		87.6
HCH, alpha		ND D		ND D		ND D	24.7		23.3		27.4			ND	3.88	NDR J	623		587		606		229		246		254
HCH, beta		ND		ND D		ND D	10.8	J	10.5	J	14.4		2.07	J		ND	143		155		167		59.1		53.3		47.6
HCH, gamma		ND D		ND D		ND D	16.6	-	14.4	-	6.53	NDR J	2.8	J	2.22	NDR J	68.2		69.7		75.9		28		22.6		34.6
Heptachlor		ND		ND D		ND D		ND		ND		ND	59.5	-	2.48	J		ND		ND		ND		ND		ND	22
Aldrin		ND		ND D		ND D		ND		ND		ND	15	NDR	65.5	5		ND	1.47	NDR J	1.04	NDR J		ND		ND	
Chlordane, gamma (trans)	20.1	DJ	17.7	D	17.3	DJ	3.91	J	3.74	J	3.64		2.31	d	54.4	NDR	3.65		3.25	J	3.42	I I I	1.26	110	1.71	110	1.62
Chlordane, alpha (cis)	33	D	27.7	D	27.1	D	6.13		5.54	J	5.69		0.739		2.38	d	5.14		5.54		4.5		2.75		2.85		2.86
Octachlorostyrene	00	ND D	0.689	DJ	2/	ND D	0.10	ND	0.01	ND		ND	216		0.825	J	0.767	4	0.01	ND		ND	1.38		2.03		1.5
Chlordane, oxy-	32.1	NDR D	36.7	NDR D	33	NDR D	14.5	NDR	10.6	NDR .		NDR	210	ND	234	5	46.3	NDR	41.3	NDR	40.6	NDR	16.7	NDR	22.7	NDR	17.9
Nonachlor, trans-	12.7	NORD	11.8	DJ	11.2	DJ	3.78	J	3.65	J	3.21	NDK	5.52	ND	204	ND	2.22	NDK	2.35	J	1.71	NDK	1.59	NDK	1.73	J	1.78
Nonachlor, cis-	3.33		2.9	DJ	2.79	DJ	1.23	J	1	J	1.14	J	0.02	ND	4.59	.I.	0.843	NDR J	1.05	J	0.888		0.492	NDR J	0.501		1.70
Mirex	12.5	DJ	10.7	NDR D	10.5	NDR D	6.25	J	4.59	J	4.65	J	4.25	J	4.55	ND	2.61	NDR J	1.89	NDR J		J	0.432	NDR J	1.21	NDR J	
2,4'-DDE	5.36	NDR	3.3	NDR D.I	3.47	NDR D J		NDR J	1.58	NDR .		J NDR J	2.75	NDR J	3.84	J	0.985	NDR J	1.55	NDR J		NDR J	0.040	ND	0.796	NDR J	0.441
4,4'-DDE	25.6	NDR	21.1	D	19.6	D	8.26	NDR J	7.81	NDR .	5.79	J	1.3	J	2.66	NDR J	9.33	NDR J	10.9	NDR 3	9.86	NDR J	4.79	ND	5.77	NDR J	5.53
2,4'-DDD	13.3	DJ	12.5	D	12.6	D	3.28		3.29			J	1.5	J	2.00	NDR J	2.71	J	2.51		2.61	J	1.21		1.08	J	1.41
4,4'-DDD	54		52.2	-	51.8		13.5	J	12.1	J	12.4	J				ND	15.5	J	16	J	14.5	J	6.11	J	6.58	J	6.31
4,4-DDD 2,4'-DDT	7.28	D NDR D J		D NDR D J		D NDR D J		NDR J	3.24	NDR .							15.5		2.02				1.72	J NDR J	1.55		1.74
4.4'-DDT	4.87		3.5		4.19		1.31		1.3		3 3.02	NDR J					1.9	NDR J	2.02	NDR J	1.92	NDR J	1.72	NDR J	1.55	NDR J	1.74
HCH. delta	4.07	DJ		DJ		DJ	12.5	J	8.46	J	10.3	ND					41.7	ND	42.4	ND	48.5	ND	9.56		9.73		8.87
Heptachlor Epoxide	1.4	DJTQ	7.81	DJTQ	7.87	DJT		D	1.25	DJ		DJ	2.67	ND	1.0	ND	0.559		42.4		46.5		9.56	J	9.73	J	1.37
		DT	25.2	DJT	25.2	DJT		DJQ		DJQ		ND D	2.67	JQ	1.9 6.88	JQ	0.559	JQ		JQ	0.6	ND	1.44	JQ	9.75	JQ	9.69
Dieldrin	27.3	D	25.2	D	25.2	D	3.8	DJ	4.09	DJ		DJ	6.22	JQ	0.00	JQ	9	J	9.96		9.6	J	10		9.75		9.69
Endrin		ND D		ND D		ND D	2.24	ND D		ND D		ND D		ND		ND		ND		ND		ND		ND		ND	
Endrin Aldehyde		ND D		ND D		ND D		DJQ		ND D		ND D	2.00	ND	0.40	ND		ND		ND		ND		ND		ND	
Endrin Ketone	40	ND D	47.0	ND D	47.4	ND D	5.29	DJQ		ND D		ND D	3.22	J	2.42	JQ		ND		ND		ND		ND		ND	
Methoxychlor	19	DQ	17.2	DQ	17.1	DQ		DJQ	4.40	ND D		ND D	4.00	ND	0.50	ND	0.0	ND	0.70	ND	0.40	ND	4.40	ND	4.74	ND	4.00
alpha-Endosulphan		ND D T	2.34	DJT	2.2	DJTQ	1.24	DJ	1.42	DJ		DJ	4.63	J	2.59	J	3.2	J	3.76	J	2.19	JQ	1.49	J	1.74	J	1.69
beta-Endosulphan		ND D		ND D		ND D		DJQ	0.609	DJ		ND D		ND		ND	0.739	JQ	1.17	J	0.545	JQ		ND		ND	
Endosulphan Sulphate	1.79	DJQ	3.85	DJQ	3.9	DJQ	1.19	DJQ	0.752	DJ		ND D		ND		ND	1.41	JQ	1.47	JQ	1.51	JQ	0.695	JQ	0.687	JQ	0.554
J = concentration less than lowes	t calibrati	ion eau	uivalent.																								
NDR=Peak detected but did not r				ia, res	ults repo	orted re	epresents maximum	n poss	ible value. Censor	ed d	lata																
D= Sample diluted	Saon qua				and rope			. 2000		Juu																	
ND= not detected at reporting lev	vol.																										
1 0						-																					
Q= Contract defined limit																											
Pettit Flume ¹ = the three Pettit Flume	e sites eac	h have	only 1 rep	licate ((rep -1 an	d rep-2	were used for dioxin	/furan a	analysis)																		


	Balsam Lake-1		Balsam Lake-2		Balsam Lake-3		Fort Erie -21		Fort Erie-3		Millers Creek-1		Millers Creek-2		Millers Creek-3	3
1,3-Dichlorobenzene		ND		ND		ND		ND		ND	0.813	J	0.849	J	1.07	J
1,4-Dichlorobenzene	3.32	J	3.42	J	2.8	J	5.74	J	5.22	J	4.67		6.15		6.64	
1,2-Dichlorobenzene		ND		ND		ND	8.12	NDR	2.52	NDR J		ND		ND		ND
1,3,5-Trichlorobenzene		ND		ND		ND		ND		ND	0.343	J	0.391	J	0.277	J
1,2,4-Trichlorobenzene		ND		ND		ND		ND		ND	0.563	J	0.609	J	0.605	J
1,2,3-Trichlorobenzene		ND		ND		ND		ND		ND		ND		ND		ND
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		ND		ND		ND	0.514	NDR J		ND	0.605	J	0.613	J	0.578	J
1,2,3,4-Tetrachlorobenzene		ND		ND		ND	1.92	J	0.997	J	0.208	J	0.246	J	0.22	NDR
Hexachlorobutadiene	0.873	J		ND		ND	1.06	NDR J	1.03	NDR J		ND		ND		ND
Pentachlorobenzene		ND		ND		ND	1.87	J	1.34	J	0.839	J	0.746	J	0.873	J
Hexachlorobenzene	1.24	J	1.04	J	1.04	J	2.6	J	2.29	J	1	J	0.955	J	0.964	J
HCH, alpha		ND		ND		ND		ND		ND		ND		ND		ND
HCH, beta		ND		ND		ND		ND		ND		ND		ND		ND
HCH, gamma		ND		ND		ND	1.33	NDR J	7.89	NDR J		ND		ND		ND
Heptachlor		ND		ND		ND		ND		ND		ND		ND		ND
Aldrin		ND		ND		ND		ND		ND		ND		ND		ND
Chlordane, gamma (trans)		ND		ND		ND		ND	0.824	NDR J	0.683	J	0.654	J	0.618	J
Chlordane, alpha (cis)		ND		ND		ND	1.28	J	1.27	J	0.985	J	0.813	J	0.974	J
Octachlorostyrene		ND		ND		ND		ND		ND		ND		ND		ND
Chlordane, oxy-	34.7	NDR	35	NDR	30.4	NDR	30.3	NDR	30.1	NDR	17.2	NDR	21.4	NDR	19.5	ND
Nonachlor, trans-	0.412	J		ND		ND	0.728	NDR J	0.92	J	0.553	J	0.518	J	0.504	J
Nonachlor, cis-		ND		ND		ND	0.33	J	0.407	J	0.242	J	0.243	J	0.238	NDR
Mirex		ND		ND		ND		ND		ND		ND		ND		ND
2,4'-DDE		ND		ND		ND		ND		ND	0.402	J	0.454	J	0.465	NDR
4,4'-DDE	2.13	J	1.85	J	1.86	J	6	J	5.97	J	15.4		14.8		14.4	
2,4'-DDD		ND		ND		ND	0.727	J	0.803	J	2.41	DJ	2.1	DJ	2.21	DJ
4,4'-DDD	0.813	J	0.743	J	0.71	J	4.45	J	5.15	J	13.5	D	13.6	D	14.2	D
2,4'-DDT		ND		ND		ND		ND	0.663	NDR J		ND D		ND D		ND I
4,4'-DDT		ND		ND		ND		ND	0.725	J	0.486	DJ		ND D		ND
HCH, delta		ND		ND		ND	0.456	JQ	0.548	JQ		ND D		ND D	0.098	DJ
Heptachlor Epoxide		ND		ND		ND	1.33	JQ	1.3	JQ		ND D	0.415	DJQ	0.344	DJ
Dieldrin	2.78	J	1.84	J	2.48	J	6.72	J	7.76	J	2.1	DJ	1.84	DJ	1.93	DJ
Endrin		ND		ND		ND		ND		ND		ND D		ND D		ND
Endrin Aldehyde		ND		ND		ND		ND		ND		ND D		ND D		ND I
Endrin Ketone		ND		ND		ND	0.201	JQ	0.08	JQ		ND D		ND D		ND I
Methoxychlor		ND		ND		ND		ND		ND		ND D		ND D		ND
alpha-Endosulphan	1.12	J	0.998	J	0.889	J	0.542	J	0.756	J	1.22	DJ	1.25	DJ	1.3	DJ
beta-Endosulphan		ND		ND		ND		ND		ND	0.496	DJQ		ND D	0.426	DJ
Endosulphan Sulphate	1.53	JQ	1.15	JQ	1.19	JQ		ND	0.537	JQ	0.599	DJQ	0.625	DJQ	,	ND
J = concentration less than lowest ca	libration equival	ent.				-										+
NDR=Peak detected but did not read	h quantification	crite	ria, results repo	rted	represents maxi	imuı	m possible va	lue.	Censored da	ata						
D= Sample diluted																
ND= not detected at reporting level																
Q= Contract defined limit																
Fort Erie ¹ = There are only 2 reps for						1				-						-


	Boyers Ck -1		Boyers Ck -	2	Boyers Ck -3	5	Chippawa		Chippawa		Chippawa		NOTL-1		NOTL-2		NOTL-3	5
	-						Channel-1		Channel-2		Channel-3							
1,3-Dichlorobenzene		ND D	0.471	NDR J	0.642	NDR J	1.01	NDR J		ND	1.63	J	1.23	NDR J		ND	1.66	NDR
1,4-Dichlorobenzene	5.18	DJ	5.06	J	5.07	J	5.46	NDR J	4.6	J	11.6		5.37	J	3.98	NDR J	4.39	J
1,2-Dichlorobenzene		ND D	0.623	NDR J		ND	11.2	NDR		ND		ND	8.04	NDR	6.73	NDR	7.38	ND
1,3,5-Trichlorobenzene		ND D		ND		ND		ND		ND		ND		ND		ND		NE
1,2,4-Trichlorobenzene		ND D	0.343	NDR J		ND		ND		ND		ND	2.88	J	2.76	J	1.9	J
1,2,3-Trichlorobenzene		ND D	0.449	NDR J		ND		ND	0.732	NDR J		ND	1.4	NDR J	1.62	NDR J	1.25	NDR
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		ND D	0.29	NDR J		ND	0.31	NDR J		ND		ND	5.88	J	5.01	J	4.11	J
1,2,3,4-Tetrachlorobenzene		ND D	0.19	NDR J		ND	0.717	J	0.522	J		ND	13.7		11.2		9.94	
Hexachlorobutadiene		ND D	0.553	NDR J		ND	0.691	NDR J	0.762	NDR J		ND	4.5	J	3.9	J	3.1	J
Pentachlorobenzene	0.469	DJ	0.608	NDR J	0.543	NDR J	1.53	J	1.19	J	0.815	J	16.5		14.5		14.1	
Hexachlorobenzene	0.501	DJ	0.562	NDR J	0.421	J	4.04	J	2.03	J	1.87	J	15.2		13.8		14.2	
HCH, alpha		ND D		ND		ND		ND		ND		ND		ND		ND	0.954	J
HCH, beta		ND D		ND		ND		ND		ND		ND		ND		ND		NE
HCH, gamma		ND D	13.4	NDR	5.88	NDR J	1.16	NDR J	1.55	NDR J	3.74	NDR J	3.46	NDR J	1.91	NDR J	1.98	NDR
Heptachlor		ND D		ND		ND		ND		ND		ND		ND	1.75	J		NE
Aldrin		ND D		ND		ND		ND		ND		ND		ND		ND		NE
Chlordane, gamma (trans)	0.505	DJ		ND		ND	0.738	J		ND	0.834	J	0.891	J	1.1	NDR J	0.834	L
Chlordane, alpha (cis)	0.559	DJ		ND		ND	1.19	J	1.02	NDR J	1.15	J	1.53	J	1.62	J	1.51	J
Octachlorostyrene		ND D		ND		ND		ND		ND		ND	0.674	J	0.762	J	0.663	J
Chlordane, oxy-	42.6	NDR D	25.5	NDR	24.1	NDR	29.1	NDR	28.4	NDR	28	NDR	35.8	NDR	31.6	NDR	28.6	ND
Nonachlor, trans-	0.356	DJ	0.306	NDR J		ND	0.84	J	0.922	J	0.793	J	1.17	J	1.12	J	0.961	J
Nonachlor, cis-	0.000	ND D	0.000	ND		ND	0.251	NDR J		NDR J	0.43	J	0.392	NDR J		NDR J	0.353	J
Mirex		ND D		ND		ND	0.201	ND	0.011	ND	0.10	ND	0.002	ND	0.101	ND	0.000	NE
2,4'-DDE		ND D		ND		ND		ND	2.04	NDR J		ND	0.809	NDR J	0.983	NDR J	0.519	NDR
4,4'-DDE	1.05	DJ	1.01	J	1.1	J	4.7	J	8.67	NDR	5.74	J	4.41	J	4.67	NDR J	3.83	J
2,4'-DDD		ND D		ND		ND	0.577	J	0.01	ND	0.823	J		ND	0.973	NDR J	0.00	NE
4,4'-DDD		ND D		ND		ND	3.88	J		ND	4.71	J	3.34	J	2.98	J	2.63	J
2,4'-DDT		ND D		ND		ND	0.587	NDR J	16.7	NDR		ND	1.63	NDR J	1.8	NDR J	1.46	NDR
4,4'-DDT		ND D		ND		ND	0.881	NDR J	-	ND	1.11	J	2.27	NDR J	1.24	NDR J		NE
HCH, delta		ND D	0.595	DJQ	0.484	DJ	0.001	ND		ND		ND	2.21	ND	0.592	J	0.893	J
Heptachlor Epoxide		ND D	0.000	ND D	0.101	ND D	1.32	JQ	0.943	JQ	1.5	JQ	1.32	JQ	1.42	٦đ	1.45	JC
Dieldrin	1.28	DJ	1.33	DJ	1.19	DJ	6.24	J	6.48	J	6.64	J	6.14	J	7.77	J	6.78	J
Endrin	1.20	ND D	1.55	ND D	1.15	ND D	0.24	ND	0.40	ND	0.04	ND	0.14	ND	1.11	ND	0.70	ND
Endrin Aldehyde		ND D		ND D		ND D		ND		ND		ND		ND		ND		NE
Endrin Ketone		ND D		ND D		ND D		ND	4.22	JQ		ND	0.444	JQ		ND	0.295	JC
Vethoxychlor		ND D		ND D		ND D		ND	7.22	ND		ND	0.578	J (1		ND	0.200	NE
alpha-Endosulphan	2.72	DJ	3.38	DJ	3.01	DJ	0.852	JQ		ND	1.1	JQ	1.26	J	0.859	J	0.909	J
peta-Endosulphan	0.946	DJ	1.06	DJ	1.05	DJ	1.01	10	2.39	JQ		ND	1.20	ND	0.000	ND	0.000	NE
	3.01		2.97		2.7		1.01		2.55		0.700		0.504		0.582			
Endosulphan Sulphate	3.01	DJ	2.97	DJ	2.1	DJ		ND		ND	0.708	JQ	0.564	JQ	0.562	JQ		NE
J = concentration less than lowest ca																		
NDR=Peak detected but did not reac	n quantificatio	n crite	eria, results re	eporte	d represents n	naxim	um possible	valu	e. Censorec	i data	l							-
D= Sample diluted				_		_		-		-								
ND= not detected at reporting level																		


	Millers Creek		Chippawa Channel		Pettit Flume Outer		Little Niagara River (near 102nd St)	L	.ab Blank	Lab Blank		Spiked Matrix	Spiked Matrix	
	Field Blank		Field Blank		Field Blank		Field Blank							
1,3-Dichlorobenzene	0.846	NDR J	0.918	J	1.3	J	1.85	NDR J			ND	100		% Recover
1,4-Dichlorobenzene	14.8		5.89		9.72		20.2		2.17		J	98.7		% Recover
1,2-Dichlorobenzene	0.702	J	0.524	J	0.765	J	18.1		0.506		J	93.2		% Recover
1,3,5-Trichlorobenzene		ND		ND		ND		ND			ND	97.3		% Recover
1.2.4-Trichlorobenzene	0.39	J	0.569	J	0.565	J	0.569	J			ND	99.4		% Recover
1.2.3-Trichlorobenzene		ND		ND	0.136	NDR J		ND			ND	99.1		% Recover
1,2,4,5-/1,2,3,5-Tetrachlorobenzene		ND		ND		ND		ND			ND	198		% Recovery
1,2,3,4-Tetrachlorobenzene		ND	0.188	J	0.118	J		ND			ND	101		% Recovery
Hexachlorobutadiene		ND		ND		ND		ND			ND	96.8		% Recovery
Pentachlorobenzene		ND	0.227	NDR J		ND		ND			ND	99.2		% Recovery
Hexachlorobenzene		ND	0.177	NDR J		ND		ND			ND	90.5		% Recovery
HCH, alpha		ND		ND		ND		ND			ND	97.9		% Recover
HCH, beta		ND		ND		ND		ND			ND	97.5		% Recovery
HCH, gamma		ND		ND		ND		ND			ND	94.3		% Recovery
Heptachlor		ND		ND		ND		ND			ND	95.7		% Recovery
Aldrin		ND		ND		ND		ND			ND	99.9		% Recover
Chlordane, gamma (trans)	0.218	J		ND	0.211	J	0.207	NDR J			ND	103		% Recovery
Chlordane, alpha (cis)	0.177	J		ND		ND	0.211	J			ND	90.8		% Recovery
Octachlorostyrene		ND		ND		ND		ND			ND	99.1		% Recovery
Chlordane, oxy-	33.3	NDR	33.8	NDR	34.9	NDR	39	NDR			ND	97		% Recover
Nonachlor, trans-	0.136	NDR J		ND	0.085	NDR J		ND			ND	110		% Recovery
Nonachlor, cis-		ND		ND		ND		ND			ND	107		% Recover
Mirex		ND		ND		ND		ND			ND	97.2		% Recovery
2,4'-DDE		ND		ND		ND		ND			ND	96.6		% Recover
4,4'-DDE	0.435	NDR J		ND	0.54	NDR J	0.473	NDR J	0.325		NDR J	91.9		% Recovery
2,4'-DDD		ND		ND		ND		ND			ND	96.1		% Recover
4,4'-DDD		ND		ND		ND		ND			ND	97.1		% Recover
2.4'-DDT		ND		ND		ND		ND			ND	97.8		% Recover
4,4'-DDT		ND		ND		ND		ND			ND	24.4		% Recover
HCH. delta		ND D		ND D		ND D		ND D			ND D	95.1	100	% Recover
Heptachlor Epoxide		ND D		ND D		ND D		ND D	0.088	1.13	DJ	94.7	102	% Recover
Dieldrin		ND D		ND D		ND D		ND D	0.000		ND D	92.4	100	% Recover
Endrin		ND D		ND D		ND D		ND D			ND D	105	110	% Recover
Endrin Aldehyde		ND D		ND D		ND D		ND D			ND D	61.8	64.2	% Recover
Endrin Ketone		ND D		ND D		ND D		ND D			ND D	103	107	% Recover
Methoxychlor		ND D		ND D		ND D		ND D	ND D	0.231	DJ	120	122	% Recover
alpha-Endosulphan	0.771	DJ	0.742	DJ		ND D		ND D	ND D	0.301	DJ	102	104	% Recover
beta-Endosulphan	0.771	ND D	0.172	ND D		ND D		ND D	0.328	0.301	DJ	95.7	104	% Recover
Endosulphan Sulphate		ND D		ND D		ND D		ND D	ND D	1.58	DJ	102	119	% Recover
Total PCBs	157	ND D	155	ND D	150	ND D	154	UUU	NDD	1.00	03	102	113	/e Recovery
Total PCBs with PRC subtracted	6		6		59		5							

Little Niagara River (LNR)																		
Gratwick Riverside Park (GRP)																		
		2 Mile Creek	,	2 Mile Creek		2 Mile Creek	(Pettit Flume	1	Pettit Flume	•	Pettit Flume		GRP	GRP		GRP	
COMPOUND	UNIT	-1		-2		-3		upstream-3		outer-3		Downstream-3		upstream-1	upstream-	2	upstream-	.3
Total Monochloro Biphenyls	ng/sample	2.75		3.70		4.41		6.1		7830		34.5		44.2	38.1		40.3	
Total Dichloro Biphenyls	ng/sample	42.8		41.3		42.5		49.1		2025		78.9		331.63	312		315	
Total Trichloro Biphenyls	ng/sample	106		81.1		88.1		115		36.5		148		1448	1414		1323	
Total Tetrachloro Biphenyls	ng/sample	153		148		154		101		34.1		138		2019	2009		2116	
Total Pentachloro Biphenyls	ng/sample	117		112		114		32.9		53.1		44.2		515	506		555	
Total Hexachloro Biphenyls	ng/sample			38.4		40.6		9.45		44.7		12.6		61.1	59.5		67.1	
Total Heptachloro Biphenyls	ng/sample			6.41		7.57		2.01		10.7		1.80		15.3	13.8		16.9	
Total Octachloro Biphenyls	ng/sample			0.71		0.68			ND		ND		ND	2.46	2.08		2.52	ND
Total Nonachloro Biphenyls	ng/sample		ND		ND	0.63			ND		ND		ND			ND		ND
Decachloro Biphenyl	ng/sample		ND		ND	0.00			ND		ND		ND		ND	ND		NE
TOTAL PCBs	ng/sample			432		453		315		10034		458		4437	4354		4436	
	· ·																	
		GRP		GRP		GRP		102nd Street		102nd Stree	t	102nd Street		LNR	LNR		LNR	
COMPOUND		downstream-	1	downstream-2	2 (downstream-	3	Upstream-1		Upstream-2	2	Upstream-3	C		D/S 102nd S	t-2 C		5t-3
Total Monochloro Biphenyls	ng/sample			19.6		20.5		8.02		5.80		8.45		15.4	16.3		13.9	
Total Dichloro Biphenyls	ng/sample	193		189		172		183		172		167		162	163		144	
Total Trichloro Biphenyls	ng/sample	462		496		409		271		260		266		273	258		227	
Total Tetrachloro Biphenyls	ng/sample	570		599		511		286		267		265		251	262		222	
Total Pentachloro Biphenyls	ng/sample	135		150		136		88.2		84.1		79.6		99.4	99.2		88.0	
Total Hexachloro Biphenyls	ng/sample	22.7		26.7		27.5		24.5		25.5		22.8		27.3	28.2		23.1	
Total Heptachloro Biphenyls	ng/sample	4.38		6.20		5.65		5.30		5.66		5.07		9.38	11.37		7.17	
Total Octachloro Biphenyls	ng/sample		ND		ND	0.89			ND	0.76		0.29			ND	ND		ND
Total Nonachloro Biphenyls	ng/sample		ND		ND		ND		ND		ND		ND		ND	ND		ND
Decachloro Biphenyl	ng/sample		ND		ND		ND		ND		ND		ND		ND	ND		ND
TOTAL PCBs	ng/sample			1487		1283		866		822		814		838	838		725	
				_														
		Cayuga		Cayuga		Cayuga	(D	LNR		LNR	L.) (1)	LNR	_	Occidental	Occidenta	1	Gill Creek	
COMPOUND	UNIT	Creek -1		Creek -2		Creek -3	(D)		()-(ID		к)-д	D/S Cayuga ck)	-3	Sewer-2	Sewer-3		(in creek)	-1
Total Monochloro Biphenyls	ng/sample			7.58		5.26		5.17		4.90		8.69		8.20	11.4		5.65	
Total Dichloro Biphenyls	ng/sample			47.8		48.1		79.8		79.9		82.6		244	279		35.1	
Total Trichloro Biphenyls	ng/sample			325		311		179		193		179		4290	5230		210	
Total Tetrachloro Biphenyls	ng/sample			1510		1464		223		205		196		8113	9494		333	
Total Pentachloro Biphenyls	ng/sample			734		711		75.0		70.6		67.5		1937	2149		130	
Total Hexachloro Biphenyls	ng/sample			210		213		20.9		19.8		17.6		123	131		38.0	
Total Heptachloro Biphenyls	ng/sample			38.3		39.2		4.35		3.96		3.41		10.9	10.3		8.79	
Total Octachloro Biphenyls	ng/sample	5.11		3.88		4.63			ND		ND		ND		0.61		0.59	
Total Nonachloro Biphenyls	ng/sample		ND				ND			0.82		1.21			ND	ND		ND
Decachloro Biphenyl	ng/sample		ND		ND		ND		ND		ND		ND		0.74			ND
TOTAL PCBs	ng/sample	3057		2877		2796		590		579		556		14729	17306		760	
		Gill Creek		Gill Creek		Gill Creek		Gill Creek		Gill Creek								
COMPOUND	UNIT	(in creek)-2		(in creek)-3		mouth-1		mouth-2		mouth-3								
Total Monochloro Biphenyls	ng/sample	• •		5.31		3.63		4.44		4.07								
Total Dichloro Biphenyls	ng/sample			33.2		42.8		47.0		47.0								
Total Trichloro Biphenyls	ng/sample			185		407		448		436								
Total Tetrachloro Biphenyls	ng/sample			300		738		868		849								
Total Pentachloro Biphenvis	ng/sample			116		200		232		232								
Total Hexachloro Biphenyls	ng/sample			35.3		30.8		35.7		38.1								
Total Heptachloro Biphenyls	ng/sample			8.12		5.41		6.68		5.83								
Total Octachloro Biphenyls	ng/sample			0.12	ND		ND		ND									
i otal Obtabliolo Diplicityio			ND		ND		ND		ND		ND							
Total Nonachloro Binhenvle																		
Total Nonachloro Biphenyls Decachloro Biphenyl	ng/sample		ND		ND		ND		ND		ND							


Appendix F: SPMD Ho	mologue o	data, ng/SPI	MD. Ir	ndividual c	onge	ener data can be	obt	ained on reques	t									
••																		
		Fort Erie -21		Fort Erie-3		Millers Creek-1		Millers Creek-2		Millers Creek-3		Boyers Ck -1	Boyers Ck -2		Boyers Ck -3			
COMPOUND	UNIT											boyers ok 1	Doyoro ok 2		Doyers on o			
Total Monochloro Biphenvls	ng/sample		ND	0.67	ND		ND		ND		ND	ND		ND		ND		
Total Dichloro Biphenyls	ng/sample	1.65	THE	2.08		1.14	T LD	1.27		1.25		ND	6.10		4.34	THE		
Total Trichloro Biphenvis	ng/sample	17.48		13.27		14.10		9.68		10.28		5.24	19.03		14.04			
Total Tetrachloro Biphenyls	ng/sample	9.86		7.15		10.17		9.40		9.31		1.79	7.42		0.86			
Total Pentachloro Biphenyls	ng/sample	5.01		4.93		8.02		8.02		7.28		2.10	3.92		2.39			
Total Hexachloro Biphenyls	ng/sample			2.80		3.01		2.97		3.23		0.57	0.66		0.52			
Total Heptachloro Biphenyls	ng/sample		ND	0.31		0.36		0.34		0.36		ND		ND	0.02	ND		
Total Octachloro Biphenyls	ng/sample		ND	0.01	ND	0.00	ND	0.01	ND	0.00	ND	ND		ND		ND		
Total Nonachloro Biphenyls	ng/sample		ND		ND		ND		ND	0.68		ND		ND		ND		
Decachloro Biphenyl	ng/sample		ND		ND		ND		ND	0.00	ND	ND		ND		ND		
TOTAL PCBs	ng/sample		THE	31		37	T LD	32		32		10	37		22	THE		
TOTALTODS	ng/sampic			51				52		52		10	57					
		Chippawa		Chippawa		Chippawa		NOTL-1		NOTL-2		NOTL-3	Balsam Lake-1		Balsam Lake-2	2 Ba	lsam Lak	e-3
COMPOUND	UNIT	Channel-1		Channel-2		Channel-3												
Total Monochloro Biphenyls	ng/sample		ND		ND		ND		ND		ND	ND	1.13			ND		ND
Total Dichloro Biphenyls	ng/sample			2.78		2.68		9.86		10.29		11.34		ND		ND	1.25	
Total Trichloro Biphenyls	ng/sample	29.79		12.46		17.06		48.12		41.16		38.50	2.33		3.92		3.33	
Total Tetrachloro Biphenyls	ng/sample	9.46		12.73		6.85		54.11		45.70		44.93	0.48			ND	1.47	
Total Pentachloro Biphenyls	ng/sample	5.08		4.15		3.46		21.85		18.04		18.25		ND		ND		ND
Total Hexachloro Biphenyls	ng/sample	1.86		2.37		2.27		6.54		6.31		6.85		ND		ND		NE
Total Heptachloro Biphenyls	ng/sample		ND		ND		ND	1.20		0.53		0.85		ND		ND		ND
Total Octachloro Biphenyls	ng/sample		ND		ND		ND		ND		ND	ND		ND		ND		ND
Total Nonachloro Biphenyls	ng/sample		ND		ND		ND		ND		ND	ND		ND		ND		ND
Decachloro Biphenyl	ng/sample		ND		ND		ND		ND		ND	ND		ND		ND		ND
TOTAL PCBs	ng/sample	50		34		32		142		122		121	4		4		6	
		Millers Creek	Chin	nawa Chan	nol	Pettit Flume Outer		NR (near 102nd St	4									
COMPOUND	UNIT	Field Blank		Field Blank		Field Blank		Field Blank	,									
Total Monochloro Biphenyls		0.13		0.24		0.63		0.62										
Total Dichloro Biphenyls	ng/sample		ND	0.24	ND	0.63		0.62										
Total Trichloro Biphenyls	ng/sample		ND	3.22	UVI	54.3		2.76										
Total Trichloro Biphenyls				0.59		0.96		2.10	ND									
Total Pentachloro Biphenyls	ng/sample	1.99		1.88		1.65		1.48	ND									
Total Hexachloro Biphenyls				0.41		0.47		0.30										
Total Heptachloro Biphenyls	ng/sample	0.49	ND	0.41	ND	0.47	ND	0.30	ND									
	ng/sample		ND				ND		ND									
Total Octachloro Biphenyls	ng/sample				ND		ND		ND									
Total Nonachloro Biphenyls	ng/sample		ND		ND													
Decachloro Biphenyl	ng/sample		ND	<u> </u>	ND	50	ND		ND									
TOTAL PCBs	ng/sample	6		6		59		5										

Appendix G: Homologue Patterns for Aroclor Technical Mixtures using PCB congeners analysed by the MOECC for comparison to homologue patterns present in caged mussel data and SPMDs Appendix H: Station Locations for Little Niagara River (LNR) and 102nd St. Hazardous Waste Site.

