PCB contamination and biological impacts in Lyons Creek East: Implementation of a Canada-Ontario Decision-making framework for contaminated sediments

Prepared for the Niagara AOC steering committee

by

Danielle Milani¹ & Rachael Fletcher²

¹National Water Research Institute, Environment Canada ²Biomonitoring Section, EMRB, Ontario Ministry of the Environment

Executive Summary

This report describes sediment and biota quality in Lyons Creek East. Previous studies have shown elevated levels of PCBs in the sediment and detrimental effects on biota in the creek. The National Water Research Institute of Environment Canada (EC) and the Ontario Ministry of Environment (MOE) sampled the creek in the fall of 2002 and 2003, with detailed sampling efforts focusing on the area between the Lyons Creek pumping station at the Welland Canal to Highway 140, an area identified as having the highest levels of PCBs based on a preliminary chemical screening performed by the MOE. Remaining sites were located from Highway 140 to just downstream of the QEW. Four neighbouring creeks, similar in morphology to Lyons Creek, were sampled as reference locations.

Included in the assessment were physico-chemical analyses of the surficial sediment and sediment core samples, resident benthic invertebrate tissue analysis, resident benthic community structure, laboratory sediment toxicity tests, and forage fish, sport fish and mussel tissue analysis.

A risk-based, decision-making framework for the management of contaminated sediment was developed recently by the Canada-Ontario Agreement Sediment Task Group. This framework is a step by step approach to assessing ecological condition, and is based on the ecological risk assessment principles. The overall assessment of each Lyons Creek site is achieved by integrating the information obtained both within and among the following four lines of evidence: sediment chemistry, benthic invertebrate community structure, sediment toxicity and the biomagnification potential for PCBs. Collections of resident sport fish in the creek provided ground-truthing of the model, as well as demonstrating the bioaccumulation of PCBs in higher trophic level organisms. The placement of mussels at select locations in the creek provided an indication of the bioavailability of contaminants from the water column, as well as providing an indication of availability in areas where resident biota were unavailable.

The area of the creek from the Welland Canal to Highway 140 has the highest levels of PCBs and metals in the sediment, higher than SQGs and higher than reference creek concentrations. PCB concentrations at depth in this area also exceed both the SQG criteria and the reference concentrations. The highest PCB concentrations in benthic invertebrates also occur in the upper reaches of the creek, and are elevated above reference creek concentrations. Acute toxicity is evident at 3 sites between the canal and Highway 140, and generally, Lyons Creek communities are similar to those at reference, with 1 site upstream of Highway 140 having a depauperate community compared to reference creeks. Based on resident invertebrate concentrations and literature based BMFs, predicted PCB concentrations could bioaccumulate in upper trophic level receptors to levels that are not protective of adverse effects at 2 to all 11 Lyons Creek sites where tissue was collected, with sites in the upper reaches of the creek being the most severe. The area of the creek from the canal to Highway 140 has the highest sediment, benthic invertebrate, fish and mussel PCB concentrations, and laboratory toxicity, altered benthic communities and potentially adverse effects due to biomagnification are all observed within this area.

Table of contents

List c List c	of Figures	4 5
1	Introduction 1.1 Background 1.2 Environment Canada methods and protocols 1.3 Ministry of the Environment methods and protocols 1.4 Canada-Ontario decision-making framework	7 7 8 8
2	Step 1: Examination of available data 2.1 Overview 2.2 Lyons Creek East 2.3 Assessment of available data 2.3.1 Historical data 2.3.2 Screening survey	9 9 10 10 10
3	 Step 2: Sampling and analysis 3.1 Overview 3.2 Sampling strategy 3.2.1 Sediment 3.2.2 Bioaccumulation in biota 3.2.3 Whole sediment toxicity tests 3.2.4 Benthic community 3.3 Quality assurance/ quality control 3.3.1 Field 3.3.2 Laboratory 3.4 Data analysis 3.4.1 Sediment chemistry 3.4.2 Bioaccumulation in biota 3.4.3 Whole sediment toxicity tests 3.4.4 Benthic community 	12 12 13 13 15 15 15 15 16 16 16 18 19
4	 Step 3: Potential risks based on contaminant concentrations 4.1 Overview 4.2 Comparison with existing objectives and guidelines 4.2.1 Sediment grab samples 	19 19 20 20
5	 Step 4: Potential for biomagnification 5.1 Overview 5.2 Bioaccumulation in biota 5.2.1 Benthic macroinvertebrates 5.2.2 Relationships between [PCBs] in tissue and sediment 5.2.3 Calculation of receptor PCB tissue concentration 5.2.4 Mussels 5.2.5 Fish 5.3 Modeled versus actual values 	21 22 22 23 24 25 26 30

6	 Step 5: Sediment toxicity 6.1 Overview 6.2 Whole sediment toxicity tests 6.3 Sediment Toxicity and Contaminant Concentrations 	31 31 31 32
7	Step 6: Benthic community composition7.1 Overview7.2 Community structure	34 34 34
8	 Step 7: Decision matrix 8.1 Overview 8.2 Sediment PCBs 8.3 Overall Toxicity 8.4 Benthos Alteration 8.5 Biomagnification Potential 	35 35 36 36 36
9	Step 8: Further assessments 9.1 Overview 9.2 Identification of additional work	37 37 37
10	Step 9: Deeper sediments10.1 Overview10.2 Collection of sediment cores10.3 Analysis and interpretation	37 37 37 38
11	Discussion 11.1 PCBs in sediment 11.2 PCBs in biota 11.3 Sediment toxicity 11.4 Benthic community 11.5 Biomagnification potential	38 38 39 41 42 43
12	Conclusion12.1PCBs12.2Metals12.3Toxicity12.4Benthic alteration12.5Biomagnification potential	43 43 44 44 44 44
Acknowledgements References Tables Figures		46 47 51 72

List of Tables

- 1 Surficial sediment chemistry metal concentrations from the initial survey of Lyons Creek
- 2 Surficial sediment OC concentrations from the initial sediment survey of Lyons Creek East
- 3 Surficial sediment PAH and total PCB concentrations from the initial sediment survey of Lyons Creek East
- 4 Sampling strategy for detailed study: 2002-2003
- 5 Toxic equivalency factors (TEFs) for selected PCB congeners
- 6 General chemistry, OC, PAH and PCB concentrations for the surficial sediment groupings collected from Lyons Creek East in 2002-2003
- 7 Prediction of whole body concentrations of total PCBs in biota based on sediment PCB concentration alone ("A" models), and sediment PCB concentration + other sediment physico-chemical variables ("B" models)
- 8 Predicted total PCB concentrations (µg/g wet weight) in fish and wildlife receptors
- 9 PCB congener (ng/g) and lipid (%) data for clams collected from Lyons Creek in 2002 and 2003, and from Balsam Lake (reference)
- 10 PCB congener data, lipid and length for forage fish collected in 2002 and 2003
- 11 PCB concentrations, length, weight and species of sport fish collected from Lyons Creek, 1991-2002
- 12 MOE *Guide to Eating Ontario Sport Fish* restrictions for fish collected from Lyons Creek at Highway 140 and downstream of the QEW
- 13 PCB congener data and calculated TEQ values for sport fish collected from Lyons Creek at Highway 140, 2003
- 14 Whole sediment toxicity test results. Toxicity is bolded, potential toxicity is italicized
- 15 Summary of BEAST assessment of toxicity
- 16 Decision matrix for Lyons Creek sites. Biomagnification potential provided for both minimum and intermediate exposure and uptake scenarios
- 17 Sediment chemistry for core samples collected from different depths in Lyons Creek

List of Figures

- 1 Sediment sample locations for initial screening survey
- 2 Sediment groupings as a result of cluster analysis on the sediment chemistry data
- 3 PCA ordination plot of Lyons Creek sediment samples
- 4 PCB concentrations and sediment grouping relationships for surficial sediments collected from the initial screening survey of Lyons Creek East
- 5 Sample locations for 2002 and 2003 detailed survey
- 6 Lyons Creek sediment chemistry, 2002-2003. NMDS Axis 1 vs. Axis 2
- 7 Lyons Creek sediment chemistry, 2002-2003. NMDS Axis 1 vs. Axis 3
- 8 Sediment chemistry concentrations for selected metals from Lyons Creek (2002 & 2003) and the reference creeks
- 9 Total PCBs in benthic invertebrates collected from Lyons Creek and reference creeks
- 10 Total PCBs in biota collected from Lyons Creek and reference creeks
- 11 PCB concentrations expressed in toxic equivalent quantities for coplanar PCBs
- 12 Relationships between total PCBs in biota and total PCBs in sediment
- 13 Predictions of total PCBs in benthivorous fish receptor species, fish receptor species, and wildlife receptor species
- 14 Ordination plot of % lipid and PCB congener concentrations in clams deployed at Lyons Creek and reference streams in 2002 and 2003
- 15 Total PCB concentrations in clam tissue collected from Lyons Creek and reference streams in 2002 and 2003
- 16 TEQ concentrations of coplanar PCBs in clan tissue from Lyons Creek and reference sites
- 17 Total PCB concentration and TEQ values for forage fish collected from Lyons Creek and reference fish in 2002
- 18 Total PCB concentration and TEQ values for forage fish collected from Lyons Creek and reference fish in 2003
- 19 Total PCB concentration, calculated TEQ values and lipid and length measurements for bluntnose minnow in 2002 and 2003

- 20 PCB concentrations in sport fish collected from highway 140 and the QEW from 1991 2003
- 21 TEQ values calculated for sport fish collected from Highway 140 in 2003
- 22 Toxicological responses of Lyons Creek and reference sites represented by 2dimensional hybrid multidimensional scaling
- 23 Abundance of most prominent macroinvertebrate taxa and total number of taxa present at reference sites and Lyons Creek sites
- 24 Ordination of Lyons Creek and reference community structure data represented by 3-dimensional hybrid multidimensional scaling
- 25 Sediment profile data for Lyons Creek
- 26 Sediment profiles of PCB congeners for Lyons Creek
- 27 Seven PCB homologues found in the sediment of Lyons Creek

1 Introduction

1.1 Background

In the 1970's, 42 locations in the Great Lakes were identified as "problem areas" by the International Joint Commission (IJC), having aquatic environments that were severely degraded. Of these, 17 were along Canadian lakeshores or in rivers shared by Canada and the U.S. In 1985, the IJC Great Lakes Water Quality Board recommended a Remedial Action Plan (RAP) be developed and implemented for each problem area. The goal of the RAP was to restore the "beneficial uses" of the aquatic ecosystem in each problem area, which were now called "Areas of Concern" (AOCs). One of the areas identified by the IJC as impaired was the Niagara River, and in 1987 Canada and the U.S. signed a joint agreement whereby each country pledged their commitment to restore the environmental integrity of these waters.

Since the early 1900's, the Niagara River watershed has shown signs of significant water pollution problems. Increased population, industry and agriculture in the Niagara River watershed have subjected the river to excessive levels of pollutants, such as high levels of bacteria, oil, phosphorus, chlorine, phenols, PCBs and mercury. As part of the Niagara River RAP, tributaries of the river, including Lyons Creek, were identified as part of the rivers AOCs. This consideration provides a more consistent ecosystem approach.

In 1999, the Ministry of the Environment (MOE), Environment Canada (EC) and the Niagara Peninsula Conservation Authority (NPCA) entered into an agreement under which the NPCA co-ordinate activities for the continued development and implementation of the Niagara River RAP.

1.2 Environment Canada methods and protocols

The Canadian government's commitment to the GLWQA was renewed in 2000 with the Great Lakes Basin 2020 Action Plan, under which the efforts of eight federal departments to "restore, conserve, and protect the Great Lakes basin" over the next five years were to be co-ordinated. Environment Canada's contribution included the funding of detailed chemical and biological assessments of sediments in Canadian AOCs. The National Water Research Institute (NWRI) was given the responsibility of conducting and reporting on these assessments.

Under the terms of reference for the NWRI's mandate, the Benthic Assessment of Sediment (BEAST) methodology of Reynoldson et al., (1995; 2000) is to be applied to the AOC assessments. BEAST methodology involves the assessment of sediment quality based on multivariate techniques using data on abundances and diversity of benthic invertebrate communities, the functional responses of laboratory organisms in toxicity tests and the physical and chemical attributes of the sediment and overlying water. Data are compared to biological criteria developed previously for the Laurentian Great Lakes (Reynoldson et al., 1995; 2000; 2002). Recent reviews of the BEAST framework have recommended the inclusion of information on the bioaccumulation of

contaminants liable to biomagnify, where the prediction of contaminant concentrations in representative consumers of benthic invertebrates and their predators are made using screening-level trophic transfer models (Grapentine et al., 2002).

1.3 Ministry of the Environment methods and protocols

Since the publication of the Provincial Sediment Quality Guidelines (PSQG) in 1992 (MOE, 1993a), there has been a need for guidance on assessing and managing contaminated sediments, particularly with respect to biological assessment tools for determining the severity of sediment contamination. The MOE document "*An Integrated Approach to the Evaluation and Management of Contaminated Sediments*" (MOE, 1996) provides guidance on assessing sediment contamination and devising, where warranted, management strategies for dealing with the contamination.

In order for a sediment survey to be of maximum benefit, it must meet all of the stated objectives of the study. *An Integrated Approach to the Evaluation and Management of Contaminated Sediments* (MOE 1996) describes a stepwise approach to assessing sediment. The document outlines an ecosystem approach, which recognizes all components (biotic and abiotic) within the sediment. The approach outlined in the report considers the effects of local conditions on organisms that are not directly impacted, such as fish, which frequent a range of sites. Impacts on organisms such as fish may be felt through the food chain by means of bioaccumulation processes, with consequent impacts on higher organisms and on human health.

1.4 Canada-Ontario decision-making framework

The underlying philosophy of the approach to sediment assessment is that observations of elevated concentrations of contaminants alone are not indications of ecological degradation. Rather, it is the biological responses to these contaminants that are the concern. A recommendation on remedial activity requires evidence to be provided of an adverse biological effect either on the biota resident in the sediment, or on biota that are affected by contaminants originating from the sediment, either by physical, chemical or biological relocation.

To make decisions on sediment quality and the need to remediate, four components of information (in addition to knowledge on the stability of sediments) are required: sediment chemistry and grain size, benthic invertebrate community structure, sediment toxicity and invertebrate body burdens (Krantzberg et al., 2000). A risk-based, decision-making framework for the management of contaminated sediment was developed recently by the Canada-Ontario Agreement Sediment Task Group using the above lines of evidence. This decision framework was developed from the Sediment Triad (Long and Chapman, 1985; Chapman, 1996) and the BEAST (Reynoldson et al., 1995; 2000) frameworks, is described in detail in Grapentine et al., (2002) and has been recently updated (Chapman, 2005). The overall assessment of each site in Lyons Creek is achieved by integrating the information obtained both within and among the four lines of evidence. Invertebrate body burdens are used to model the biomagnification potential,

i.e., if PCBs from sediments in Lyons Creek bioaccumulate in the tissues of resident benthic invertebrates and if the PCBs could *potentially* be transferred through benthic invertebrates to fish, wildlife or humans. Resident forage fish and sport fish collections in Lyons Creek provides a means of "ground truthing" the biomagnification model as well as providing evidence of actual PCB bioaccumulation in higher trophic level organisms.

2 Step 1: Examination of available data

2.1 Overview

The initial step of the Ontario-Canada decision-making framework examines all available information, reports and data to determine the contaminants of potential concern in the sediments and their surficial concentrations. The receptors that may be affected by the contaminants of concern are also identified, and exposure pathways and consumption advisories are also identified in this step of the process (Chapman, 2005).

As the majority of sediment-dwelling organisms inhabit the top 10 cm of sediment, the information gathered considers the surficial sediments. It also considers deeper sediments, their contaminant levels at depth, and the stability of sediments with respect to their likelihood of being uncovered or moved (Chapman, 2005).

2.2 Lyons Creek East

The headwaters of Lyons Creek originate in the Wainfleet Marsh, and historically drained the southerly section of the Municipality of Welland near Dain City, flowing north-east to the Welland River, discharging to the Niagara River near Chippawa. After the construction of the Welland Ship Canal Bypass in the 1960's, Lyons Creek was bisected in two by the canal. One condition of the canal's construction was that the portion of Lyons Creek downstream of the canal (Lyons Creek East) would have its flow maintained by pumping water from the canal into the creek at a rate that would maintain the original integrity of the creek. Flow from the original headwaters now outlets to the Welland Canal on the west side. The Ministry of Natural Resources has defined the Lyons Creek East as a Class 1 wetland, consisting of a high diversity of fauna and flora present in the area, and meriting a high level of protection from detrimental impacts (Boyd et al., unpublished). The area is primarily used for recreational hunting and fishing.

A study of sediments from the west side of Lyons Creek (Environmental Strategies Ltd., 1992), shortly after a spill of PCB oil from the Ontario Hydro Crowland Transformer in May of 1990, indicated elevated of PCBs in the sediments. Due to the possibility that the observed PCB pollution may have occurred prior to the construction of the Welland Ship Canal Bypass, and hence the bisection of Lyons Creek, an extensive study of the east side of Lyons Creek was proposed.

2.3 Assessment of available data

2.3.1 Historical data

Previous studies, dating from as early as 1978 (Acres, 1978; MOE, 1997; 1998; Boyd et al, unpublished) have shown evidence of elevated levels of PCBs in the sediment and detrimental effects on biota in the creek. The sediments in the upper reaches of Lyons Creek East have been shown to be highly contaminated with metals and PCBs. Elevated nutrient levels have also been observed in the sediments.

2.3.2 Screening Survey

An initial survey was conducted in 2002 with the objectives of identifying areas of elevated sediment contamination (particularly PCBs). From this, the area of concern could be delineated and locations for further more detailed studies could then be selected.

Study design

Depositional areas with fine silty sediment were targeted for sediment collection. A total of thirty-nine surficial sediment samples were collected from the Lyons Creek system (Figure 1), focusing mainly on the area between the Lyons Creek pumping station at the Welland Canal to Highway 140 (17 sites). The remaining sites were from downstream of Highway 140, at the C.N. railway tracks to downstream of the QEW. Duplicate samples were collected from two of the stations for QA/QC purposes.

Sediment collection is described in detail by Fletcher & Perto (2005), and were analysed for PCBs, metals, organochlorines (OCs), PAHs, grain size, and organic content according to MOE protocol (MOE1993b).

Data analysis

Sediment concentrations of the various chemical parameters measured were compared, where applicable, to the Provincial Sediment Quality Guidelines (PSQG) Lowest Effect Level (LEL) and Severe Effect Level (SEL) criteria (MOE, 1993a). The LEL criteria indicate the level of contaminant that can be tolerated by the majority of organisms. The SEL is the level of contamination at which a pronounced disturbance of the sediment-dwelling community can be expected; this is the sediment concentration of a compound that would be detrimental to the majority of benthic species.

Multivariate analyses, such as clustering and ordination were also considered. The primary purpose of clustering was to create groups or 'clusters' in such a way that the sediment chemistry relationships varied most between the groups and least within the groups.

Multivariate methods of analysis allows all of the sediment chemistry data to be considered simultaneously, and the relationships between the sites based on their sediment chemistry can then be graphically represented in two or more axes. Nonparametric Multi-Dimensional Scaling (NMDS) was used in the analysis (PATN; Belbin, 1993). NMDS calculates a matrix of dissimilarity values from the sediment chemistry data to create the ordination diagram (Jongman et al., 1995). This is done such that the rank order of dissimilarities of the samples is reflected in their distances in ordination space relative to one another. The Bray-Curtis association measure was used in the analysis to express the dissimilarity between the samples.

Results

Seven cluster groups are identified through cluster analysis; Groups 1, 2, 4, 6 and 7 all contain a single site, whereas Groups 3 and 5 are made up of 13 and 21 of the sites respectively. These groupings are mapped, and are shown in Figure 2.

Ordination using Principle Components Analysis (PCA) allowed the sites to be grouped and plotted according to their similarities in sediment composition (Figure 3). The closer two points are to each other in ordination space, the more similar they are.

<u>Metals</u>

Four metals exceed the PSQG SEL criteria at one or more sites; manganese exceeds the SEL of 1100ug/g at only one of the sites (LC34, 2000ug/g), located downstream of Crowland Road (Table 1). Iron also exceeds the SEL of 40000ug/g at this location (44000ug/g); the SEL for iron is also exceeded at LC14 and LC16 (54000ug/g and 57000ug/g, respectively), both sites are located upstream of Highway 140. Sediment concentrations of zinc and nickel are both elevated over their SEL criteria (820ug/g and 75ug/g, respectively) at LC02, LC16, LC27 and LC33. Each of these sites is situated in areas where deposition is high. Zinc also exceeds its SEL criteria at 7 other locations: LC08 – LC11, LC14, LC24, and LC34.

OC pesticides

OC pesticides are generally low in all of the samples (Table 2), often in concentrations below the MOE method detection limits. Average values for each of the seven groups identified through cluster analysis (also provided in Table 2) were compared. The only OC pesticide present in any significant concentration is pp-DDE, which exceeds the LEL criteria of 5ng/g at 34 of the 39 sample locations. Groups 1, 4, 6 and 7, which represent a general area extending from the area adjacent to the Welland Pipe property (LC02) downstream to Highway 140 (LC17) have significantly higher levels of DDE than the most upstream location (Group2, LC01) or downstream of Highway 140. Although agricultural practices appear to be more prevalent in the downstream locations, these data may be more of a reflection of past land uses.

<u>PAH</u>

PAHs are generally elevated in the upstream portion of Lyons Creek (LC02 – LC17); the LEL criteria is exceeded at one or more of these locations for 10 of the 12 PAHs for which guidelines are available (Table 3). LC02, located adjacent to the Welland Pipe property, exceeds the PSQG criteria for 10 of the 12 parameters considered. Downstream of Highway 140, PAH levels are lower than upstream, exceeding only 4 of the 12 criteria. These values are all lower than those observed upstream of Highway 140 (Table 3).

<u>PCB</u>

Sediment concentrations are generally higher in the upper portion of the creek and are elevated above the PSQG LEL criteria of 70ng/g at all sites, including LC01, upstream of LC36 (downstream of Crowland) (Table 3). PCB concentrations range from a high of 19000ng/g at Highway 140 (LC16) to non-detect at the QEW (LC40). An overall downstream decrease in PCB concentration is observed, with dramatic drops in concentration occurring just downstream of the CNR railway (LC20), at Conrail (LC31) and downstream of Crowland Road (LC36) (Figure 1). These trends are reflected in the average concentrations observed in the cluster groupings (Figure 4, Table 3).

3 Step 2: Sampling and analysis plan

3.1 Overview

Based on the results from Step 1 of the framework, a sampling and analysis plan (SAP) was developed for Lyons Creek, which included filling in the gaps in information identified from Step 1. It included the sampling of surficial sediments, and based on the contaminant of concern (PCBs - identified in Step 1), toxicity to biota as well as the possibility of biomagnification were considered.

In this step of the framework, the following are considered (Chapman, 2005):

- i) Whether the contaminants of concern are present in the sediment above levels that could potentially have a toxic effect, which is addressed by comparing the concentrations of contaminants of concern to their SQGs, and;
- ii) Whether the contaminants of concern in the sediment have the potential to biomagnify, and therefore affect the health of biological communities, which is addressed by determining if the biomagnifiable substances are present at quantifiable concentrations.

The two possible decisions are (Chapman, 2005):

Comparison	Decision
All sediments and COPC are less than the SQG-low, <u>and</u> no substances biomagnify	No further assessment or remediation is required
One or more sediment COPC is greater than the SQG-low, <u>and/or</u> one or more of the substances can biomagnify	Potential risk: further assessment is required

COPC – contaminants of potential concern

SQG-low guideline levels resulting in toxicity in less than 5% of the fauna

3.2 Sampling strategy

3.2.1 Sediment

Grab samples of surficial sediment were collected from in 2002 and 2003 from a total of 16 sites along Lyons Creek (Table 4), and from four streams with similar morphological characteristics as Lyons Creek which were used as reference sites: Tee Creek, Usshers Creek, Black Creek and Beaver Creek (TC, UC, BLC and BEC, respectively).

Depositional areas were targeted for the sediment collection, and were sampled using a petit (or mini) ponar which is designed to 'grab' sediment to a depth of 10cm. Composite grabs were homogenized and sent to the MOE laboratory in Etobicoke, ON, with a detailed description of the sampling strategy is provided in Fletcher and Petro (2005), and to Caduceon Laboratories in Ottawa, ON, with a detailed description provided in Milani and Grapentine (2005).

3.2.2 Bioaccumulation in biota

Benthic macroinvertebrates

Resident invertebrate tissue was collected using a mini-ponar. Details on the collection and handling of invertebrate tissue are provided in Milani and Grapentine (2005). Several distinct invertebrate taxa were collected from each location. Analyses of PCBs were performed on samples composited from organisms within each taxon (i.e., taxa were analyzed separately). Due to sample size requirements and time constraints, taxa of similar functional feeding groups were combined. Amphipods and isopods were combined (hereafter referred to as 'amphipod') and damselflies and dragonflies were combined (hereafter referred to as 'odonate'). Invertebrates were not allowed time to clear sediment from their guts since predators consume whole organisms. PCBs associated with sediment, as well as that incorporated into tissues, are potentially available for transfer through the food chain.

Caged mussels

Mussels have been shown to be shown to be an effective means of biomonitoring PCBs in the aquatic environment (Binelli et al., 2001) as they are able to bioaccumulate organic contaminants from the water (and to some degree from the sediment).

Ten mussels (*Elliptio complanata*) of a similar size range (65-72cm), randomly selected, were placed into 30cm by 45cm envelope shaped mesh cages, one cage was deployed at each of 12 locations in Lyons Creek (Table 4, Figure 5) as well as three of the reference streams (Fletcher and Petro, 2005).

A random subset of three individual mussels from each sample were analysed for PCB congeners and lipid content according to the MOE standard laboratory protocol (MOE, 2003). A set of mussels from Balsam Lake was also submitted to the MOE laboratory as a control, and represents background levels of PCB congeners and lipid content observed in unexposed mussels.

Forage fish

Forage fish were collected from Lyons Creek in 2002 and 2003, from the Welland River at the mouth of Lyons Creek (mouth), and from three reference creeks: Beaver Creek and Black Creek in 2002, and Usshers Creek in 2003 (Fletcher and Petro, 2005). Bluntnose minnow (*Pimephales notatus*) were targeted for collection in the creeks; this species was not always found so every effort was made to collect an additional species. Three additional species of forage fish: common shiner (*Notropis cornutus*), golden shiner (*Notemigonus crysoleucas*), and spottail shiners (*Notropis hudsonius*) were also targeted. Although McKenny Road had been identified in the past as having fish with elevated PCB concentrations, no fish could be collected during this study.

Each composite sample was made up of a single fish species. Every effort was made to collect enough fish to allow replicate samples of species to be analysed. Additional samples of a second fish species were collected when possible. An attempt was made to collect the same species from each site to allow for among-site comparisons.

Sport fish

Sport fish were collected by electro-fishing from a section of the creek upstream of Highway 140 (LC16) in 2002 and 2003, and downstream of the QEW (LC38), near the mouth of Tee Creek in 2002 only (Table 4). Bowfin (*Amia calva*), carp (*Cyprinus carpo*), brown bullhead (*Ictalurus nebulosus*), pumpkinseed (*Lepomis gibbosus*), bluegill (*Lepomis macrochirus*), largemouth bass (*Micropterus salmoides*) and black crappie (*Pomoxis nigromaculatus*) were collected from both locations. White suckers (*Catostomus commersoni*) were only collected from LC16, and northern pike (*Esox lucius*), rock bass (*Ambloplites rupestris*), white crappie (*Pomoxis annularis*) and yellow perch (*Perca flavescens*) were only collected from LC38.

Fish tissue samples, consisting of one skinless, boneless dorsal fillets per sample, were sent to the MOE laboratory at Resources Road for analyses of PCBs and lipid content (MOE, 2003).

3.2.3 Whole sediment toxicity tests

A mini-Ponar sampler was used to obtain the sediment for toxicity tests (five replicates/grabs per site). Four sediment toxicity tests were performed: *Chironomus riparius* 10-d survival and growth test, *Hyalella azteca* 28-d survival and growth test, *Hexagenia spp.* 21-d survival and growth test and *Tubifex tubifex* 28-d survival and reproduction test. Sediment handling procedures and toxicity test methods are described in Milani and Grapentine (2005).

3.2.4 Benthic community

A stainless steel mini-box core frame (40 cm x 40 cm x 25 cm) and Plexiglas tubes (6.5 cm x 10 cm) were used to obtain the top 10 cm of sediment for sediment chemistry and benthic community samples. At sites where the box core frame could not be used (due to site depth), a ponar sampler was used to obtain the sediment and benthic community samples. Three ponars per site were taken for benthic community structure analysis, and one ponar was taken for chemical and physical properties of the sediment. Complete descriptions on sampling, handling and identification of benthic community samples (to family level) are provided in Milani and Grapentine (2005).

3.3 Quality assurance/ quality control (QA/QC)

3.3.1 Field

One randomly chosen site (LC29) was designated as a QA/QC station, where triplicate sediment, water and benthic community samples were collected for determination of within-site and among-sample variability.

3.3.2 Laboratory

For MOE samples, QA/QC included matrix spike recoveries, which were performed on every sample to determine PAH recoveries. For Caduceon Environmental Laboratory, QC involved control charting of influences, standards, and blanks. Reference material was used in each analytical run. Calibration standards were run before and after each run. Blanks and reference standards were run 1 in 20 samples and duplicates were run 1 in 10 samples.

To evaluate control measures for benthic invertebrate enumeration, each month the remaining material from each sorted sample replicate was stored. One sample was randomly selected each month and re-sorted, and the number of new organisms found was counted. The percent of organisms missed (%OM) was calculated using the equation:

<u># Organisms Missed</u> X 100 = %OM Total Organisms Found

If % OM is greater than 5%, two more samples were randomly selected and the % OM calculated for both. The average %OM was calculated based on the three samples re-

picked, and represents the standard sorting efficiency for that month (based on only one sample if %OM is less than 5%).

3.4 Data analysis

3.4.1 Sediment chemistry

Sediment concentrations of the various chemical parameters measured in both the cores and the surficial sediments were compared, where applicable, to the Provincial Sediment Quality Guidelines (PSQG) Lowest Effect Level (LEL) and Severe Effect Level (SEL) criteria (MOE, 1993a).

Multivariate analyses, such as clustering and ordination were also considered. The primary purpose of clustering is to create groups or 'clusters' in such a way that the sediment chemistry relationship varies most between groups and least within groups. The sites were clustered using agglomerative clustering techniques, in which clustering analysis starts with a single object (site) and agglomerates into larger clusters based on the Bray-Curtis dissimilarity measures. Multivariate methods of analysis allow all of the sediment chemistry data to be considered simultaneously, and the relationships between the sites based on their sediment chemistry can then be graphically represented in two or more axes.

3.4.2 Bioaccumulation in biota

Benthic macroinvertebrates

PCB levels in Lyons Creek benthic macroinvertebrates were compared to those in reference creeks. Sites in which concentrations of total PCBs in invertebrates ([PCB]_{inv}) were significantly elevated above background levels for the study area were identified by comparing [PCB]_{inv} for the test sites to the upper 99th % percentile (\cong maximum) for the reference sites. This was done separately each invertebrate taxon.

Using test and reference sites, the relationships between sediment and invertebrate PCB levels were determined using regression analysis, separately for each invertebrate taxon. The approach was used to estimate the degree to which PCBs in invertebrates is predictable from PCBs in sediment, with and without environmental covariables. Simple linear regression (ordinary least squares) was used for the single predictor ([PCB]_{sed}) model. "Best subset" multiple linear regression (Draper and Smith, 1998; Minitab, 2000) was used for the fitting of multiple predictor models. Environmental variables expected to potentially influence uptake of PCB from sediment by biota such as sediment concentrations of total organic C, total P, total N, Fe, and Mn; sediment particle size fractions of sand, silt and clay; overlying water conductivity, dissolved O₂, pH, temperature and nutrients (TKN, total N, total P, NO₃NO₂) were included in the models. To increase normality of data distributions and linearity of relations between variables, some data were transformed: log(x) for PCBs in sediment and invertebrates; log(x) for nutrients, Fe and Mn in sediment; and arcsine-square root(x) for the particle

size fractions. Normality and linearity of the water column data were not generally improved by transformations, so these were analyzed untransformed.

All models fitted to the data included $[PCB]_{sed}$ as a free predictor (i.e., it was not forced to be in the model). The specific null hypothesis of interest was that "the effect of $[PCB]_{sed}$ on $[PCB]_{inv} = 0$, after accounting for effects of other predictors". For the best subset regressions, models were fitted for all combinations of predictors. Determination of the "best" model was based on several criteria (in roughly decreasing order of importance):

- Maximum $R^2_{adjusted}$
- Significance of partial *F*-tests (= *t*-tests) for predictors (especially [PCB]_{sed})
- Significance of *F*-test for regression
- Variance inflation factors (VIFs) for predictors < 10
- Homoscadastic and normally distributed residuals
- Mallow's C_p statistic not >> number of predictors

Lack-of-fit tests for curvature in response-predictor relationships and interactions between predictors were performed and examined for nonsignificance. Observations having large standardized residuals or large influence on the regression were also considered in model evaluations. The best model was identified based on the overall meeting of these criteria. Both single and multiple predictor models were then examined for the degree to which [PCB]_{sed} predicts [PCB]_{inv}, as indicated by the significance of the *t*-test of the coefficient for [PCB]_{sed}.

Caged mussels

Total PCB concentrations in the mussels were statistically analysed using a one-way ANOVA. If the ANOVA indicated a significant difference among stations (p<0.05), then the differences between sites were compares using a *post hoc* Tukey test.

Several co-planar (dioxin-like) PCB congeners have been shown to cause a number of toxic responses similar to the most toxic dioxin (2,3,7,8-TCDD) (Van den Berg et al., 1998). Using a toxic equivalency factor (TEF, Table 5) concept, the toxicity of the different co-planar PCB congeners relative to the toxicity of 2,3,7,8-TCDD can be determined. The TEF's, in combination with the chemical residue data of each co-planar PCB congener can be used to calculate toxic equivalent (TEQ) concentrations in various media (e.g. fish or mussel tissue). The TEQ concentrations for the co-planar PCB congeners in samples are calculated using the following equation:

$$\mathsf{TEQ} = \sum_{i=1}^{n} ([\mathsf{PCB}]_i \times \mathsf{TEF}_i)_n$$

Within a sample, the individual co-planar PCB congener concentrations are multiplied by their respective mammalian TEFs (Table 5), and all products are summed to give a TEQ value. This takes into consideration the unique concentrations and toxicities of the individual components within the PCB mixture. The summed TEQ values for each site are compared to the appropriate Canadian tissue residue guideline (TRG) for the protection of wildlife consuming aquatic biota (CCME, 2001). The TRG of 0.79ng TEQ/kg diet wet weight provides a benchmark for PCBs in aquatic life, above which their mammalian predators may be at risk of consuming PCB concentrations known to result in adverse affects.

Forage fish

The concentration of total PCBs in the different forage fish species collected from each location were first compared to the IJC PCB guideline (100ng/g) for the protection of fish-eating wildlife (IJC, 1988). As a variety of forage fish species were collected at each location, which differed between sites, the most common species collected (creek chub) were compared using a one-way analysis of variance (ANOVA). As with the mussel analyses, if the ANOVA indicated a significant difference among the stations (p<0.05), the differences between sites were compared using a *post hoc* Tukey test.

Toxic equivalency values for the selected co-planar PCB congeners (Table 5) were also calculated for the forage fish data. These values were compared to the Canadian TRG (0.79ng TEQ/kg diet wet weight; CCME, 2001).

Sport fish

Total PCB concentrations from sport fish collected in 2002 were compared to historical data (1991-2000). These data were also compared to the consumption restriction guidelines outlined in the *Guide to Eating Ontario Sport Fish, 2005-2006* (MOE, 2005).

In addition to comparing the total PCB concentrations observed in the sport fish collected in 2003 to the consumption guidelines (MOE, 2005), toxic equivalency values, based on co-planar PCB concentrations were calculated for the sport fish collected in 2003. These values were compared to Canadian tissue residue guideline (TRG) for the protection of wildlife consuming aquatic biota (CCME, 2001), as outlined above.

3.4.3 Whole sediment toxicity tests

BEAST assessment of toxicological responses were assessed by "Semi-strong" Hybrid multidimensional scaling (HMDS, Belbin, 1993) using the Euclidean distance on standardized data. Principal axis correlation (Belbin, 1993) was used to identify relationships between habitat attributes and toxicity responses. Significant toxicity test endpoints and environmental attributes were identified using Monte-Carlo permutation tests. Test sites were assessed by comparison to confidence bands (90, 99 and 99.9% probability ellipses) derived from Great Lakes reference sites. HMDS was performed using the software PATN.

The relationships between sediment toxicity and sediment contaminants were also assessed graphically (HMDS) and by regression analysis. Initially, to examine general and dominant patterns in the data, comparisons between the toxicity responses and contaminant conditions were made based on integrative, compound variables (from either summation or multivariate ordination of measurement variables). Euclidean distances were calculated for all pairs of the 21 sites based on the 10 toxicity variables, and HMDS performed on the matrix for a 2-dimension solution. The concentrations of various metals were ordinated by principal components analysis (PCA) on log(x)transformed data. The eigenanalysis was performed on the correlation matrix. Total PCB and PAH variables were integrated by summing the concentrations of the individual congeners. To better detect less dominant (though significant) relationships between two or a few variables, regression analyses were also conducted using the original measurement variables (i.e., individual toxicity endpoints and concentrations of individual compounds).

3.4.4 Benthic community

Using the mean values of abundance counts for macroinvertebrate taxon, the biological structure of the data was examined using ordination (HMDS) applied to a Bray-Curtis distance matrix. Analyses were performed at the family level, as this taxonomic detail is shown to be sensitive for the determination of stress (Reynoldson et al., 2000). Principal axis correlation (Belbin, 1993) was used to identify significant families and habitat attributes. Using the ordination axes scores from the HMDS, sites were also compared by Analysis of Variance with adjustments for covariates (ANCOVA) using general linear model (Minitab, 2000). Comparisons to control using the ordination axes scores were made using Bonferroni's and Dunnett's simultaneous test. Pairwise comparisons of the means from all sites were performed using Tukey's test. Site comparisons were also made using taxon richness as well as log(x)-transformed abundances of the following major groups found in Lyons Creek: Tubificidae, Chironomidae, Hyalellidae, Gammaridae, Caenidae and Coenagrionidae.

4 Step 3: Potential risks based on contaminant concentrations

4.1 Overview

Step 3 determines whether the concentration of PCBs observed in the sediment, which exceed their respective guidelines and/or the concentrations of the substances that can biomagnify are significantly elevated. This is determined by statistically assessing which contaminants significantly exceed the reference concentrations (Chapman, 2005).

Two fundamental points are addressed in this step (Chapman, 2005):

- i) Whether the concentrations in the sediments of the contaminants of concern, identified in the previous steps, are above the minimal levels shown to be toxic to the biota living in the sediments, and whether these concentrations are not statistically different from the concentrations identified in the reference sites, and;
- ii) Whether the contaminants of concern that biomagnify are present in the sediments at concentrations that do not significantly differ from the reference sites.

In establishing these points, the direction in which to proceed is determined (Chapman, 2005):

Comparison	Decision
Concentrations of all sediments COPC are greater than the SQG-low <u>and</u> substances that can biomagnify are less than or equal to reference conditions and do not differ significantly from the reference	No further assessment or remediation is required
Concentrations of one or more sediments COPC which are greater than the SQG-low <u>and/or</u> on or more substances are present that can biomagnify which are greater than reference conditions is significantly higher than the reference	Potential risk: further assessment is required

COPC – contaminants of potential concern

SQG-low guideline levels resulting in toxicity in less than 5% of the fauna

4.2 Comparison with existing objectives and guidelines

4.2.1 Sediment grab samples

Surficial sediment samples collected from Lyons Creek and the four reference streams in 2002 and 2003 were clustered and ordinated based on their sediment chemistry (Table 6, Figures 6 & 7). Cluster analysis grouped the sediment samples into six groups (Table 6). Group 1 contained seven samples, all of which were from sites below Ridge Road and above Highway 140; five locations were represented (LC06, LC08, LC10, LC12 and LC14), only one of these samples (LC14) were collected from 2002 Group 2 and Group 4 contained one sample each (LC01 and LC03 (Table 6). respectively), both samples were collected in 2002 from above Ridge Road. Group 3 contained 6 samples, two from 2002 and four from 2003; this group represented three Lyons Creek locations from the vicinity of Highway 140 (LC14, LC17 (2002 & 2003) & LC18), and two reference locations (Usshers Creek and Black Creek). Group 5 contained five samples, all from the lower portion of the creek and all collected in 2003; this group represented four sample locations (LC19, LC22, LC23 and LC38). The final group, Group 6, was the largest group and contained 11 samples; six of the 11 samples were collected from the reference streams in 2002 and 2003, the remaining five samples were all collected in 2002 and represent three Lyons Creek location (LC16, LC29 and LC38).

Ordination of the sediment samples, based on sediment chemistry, best explained the cluster groupings with respect to chemical parameters observed in the sediment over three axis (Figures 6 & 7, Stress = 0.052). The ordination plots (Figures 6 & 7) show a strong separation in the site groupings along NMDS Axis1, which correspond to elevated concentrations of PCBs, PAHs and OCs in the upper portion of Lyons Creek (Table 6, Figures 6a,b,c & 7a,b,c). PCBs, PAHs and OCs were generally highest at the

site downstream of the Welland Pipe discharge (LC03), often exceeding the PSQG LEL criteria by an order of magnitude (Table 6). Group 1 sites, which represented an area of the creek between Ridge Road and Highway 140 were also elevated in PCBs and many of the PAHs and OCs, although not to the same degree as LC03; only two of the OCs (Dieldrin and DDE), four PAHs (Benzo(a)pyrene, Benzo(g,h,i)perylene, chrysene and Indeno(1,2,3-c,d)pyrene) and PCBs exceeded their respective LEL criteria. Copper, nickel and zinc all exceeded the PSQG SEL criteria at LC03 (Figure 8), zinc exceeded the SEL by almost an order of magnitude and appeared to be associated with NMDS Axis1. The average concentration of zinc from the Group 2 sites also exceeded the PSQG SEL criteria (Table 6). The remaining metals tended to influence the position of the sites in ordination space along NMDS Axes2 and 3. Beryllium, barium, cobalt and vanadium generally were high at the Group 5 sites, and lowest at the most upstream location (Group 2, LC01) which was reflected in the position of these groups in ordination space along axis 2 with respect to these parameters (Figure 6a & e). Calcium, strontium and to some extent titanium were represented by axis 3, and tended to be higher in the upstream location (Figure 7a & e).

5 Step 4: Potential for biomagnification

5.1 Overview

As PCBs have the potential to biomagnify, and remain a concern after the initial three steps, the concentrations observed in the sediments are conservatively modeled (see below). Concentrations of PCBs are modeled in the sediment-dwelling organisms and the predators of these organisms, through to the top predators to determine whether or not there is a potential risk. Modeling the concentrations through to the top predators includes the identification of biomagnification factors (BMFs); the assumption is made that fish feeding is limited to the area under investigation (Chapman, 2005).

Whether or not PCB biomagnification is a potential concern is then determined (Chapman, 2005):

Comparison	Decision
There is no potential for contaminant biomagnification from the sediments through the aquatic food chains	No further assessment or remediation is required relative to biomagnification
There is potential for contaminant biomagnification from the sediments through the aquatic food chains	Potential risk: further assessment of biomagnification is required

5.2 Bioaccumulation in biota

5.2.1 Benthic macroinvertebrates *PCBs*

Total [PCB]_{inv} is ~1 to up to ~2 orders of magnitude higher at Lyons Creek sites than at reference sites. Benthos collected from LC12 have the highest [PCBs], ranging from 1000 to 52580ng/g (mean 17400ng/g), followed by sites LC03 (range: 200 to 7230ng/g; mean: 2700ng/g) and LC17 (range: 300 to 5170ng/g; mean: 3460ng/g). Not all four taxa were analysed at each site due to insufficient tissue quantity. On a whole-body, uncleared-gut basis, amphipods accumulate more PCBs at 7 of the 11 Lyons Creek sites (most sites between the pumping station and the railway), while oligochaetes accumulate the most at 3 sites including LC12. Lowest [PCBs] are found in the reference creek benthos (range: 50 to 400ng/g; mean: 150ng/g), followed by benthos collected from site LC01 (range: 230 to 720ng/g; mean: 430ng/g) (Table 6, Figure 9). The isomeric composition of taxa is provided in Milani and Grapentine (2005). Overall, taxa collected from reference creek sites consist primarily of the lower chlorinated biphenyls, whereas the higher chlorinated biphenyls occur in taxa collected between LC08 to LC29.

Comparison of [PCB] to guideline value and reference

Total [PCB] in each invertebrate taxon, converted to a wet weight basis, is shown in Figure 10. The green dotted line represents the 99th percentile for the reference site concentrations and the red line is the IJC tissue objective for the protection of birds and animals which consume fish (100ng/g ww, IJC 1988).

<u>Chironomid</u>

Six sites are above the IJC tissue objective for PCBs (sites LC12 through LC19) and all sites are above the maximum reference site concentration (no data are available for sites LC01 and LC03). Highest PCB accumulation occurs at sites LC12 and LC17, which show very similar chironomid concentrations. Reference and Lyons Creek site [PCB] range from 12 to 24ng/g and from 72 to 465 ng/g ww, respectively.

<u>Amphipod</u>

Eight sites are above the IJC objective (sites LC03 through LC19) and all Lyons Creek sites except LC38 are above the maximum reference concentration. Highest PCB accumulation occurs at site LC12, followed by LC17 and LC03, where amphipods show similar concentrations. Reference and Lyons Creek concentrations range from 6 to 25ng/g ww and from 10 to 1386ng/g ww, respectively.

<u>Oligochaete</u>

Six sites are above the IJC objective (sites LC03, LC12, LC16 to LC18, LC29) and all sites are above the maximum reference concentration except LC01 and LC08. Oligochaetes accumulated the highest concentration of PCBs at site LC12. Reference and Lyons Creek concentrations range from 8 to 43ng/g ww and from 33 to 6149ng/g ww, respectively.

<u>Odonate</u>

One site (LC12) is above the tissue objective and sites LC12 and LC16 are above the maximum reference concentration. Reference and Lyons Creek concentrations are similar, ranging from 12 to 36ng/g ww at reference sites and from 3 to 55ng/g ww at Lyons Creek sites. Odonates accumulate the least amount of PCBs of the four taxa at almost all Lyons Creek sites.

Coplanar PCBs

Concentrations of PCBs in invertebrates, expressed in toxic equivalent units (TEQ), are shown in Figure 11. The red line is the CCME avian tissue residue guideline (TRG), which in the current study would only apply to the diving duck receptor (the only wildlife receptor in the study that would feed directly on benthic invertebrates), and refers to the concentration of total PCBs in the diets of avian that consume aquatic biota. The TRG for avian, derived by Environment Canada, is 2.4 ng TEQ kg⁻¹ diet ww (CCME, 2001). The mammalian TRG of 0.79 ng TEQ kg⁻¹ diet ww, while lower, was not used in this case as there is not a direct feeding relationship from invertebrates to mammals (mink). The TEQ is the summation of each of the 12 co-planar PCB congener's toxic equivalency factor for avian (TEF) \times [coplanar PCB]_{inv}. The TEFs were developed to compare toxicities of various PCB congeners relative to the most potent PCB inducer in the cytochrome enzyme system (2,3,7,8-TCDD) (CCME, 2001), and for avian range from 0.00001 to 0.1. All Lyons Creek sites except LC01 and LC03 have at least one taxon with a [TEQ] above the avian TRG (Figure 11). Sites where all four taxa have [TEQ] above the TRG include LC14, LC16, LC18 and LC38. The high [TEQ] observed at sites LC14, LC16, LC18, LC29 and LC38 are due to the high concentration of PCB 126 in the benthos samples. PCB 126 (as well as PCB 81) has the highest TEF (0.1). The high [TEQ] for site LC12 is due primarily to the high concentration of PCB 105 and PCB 118 in the amphipod and oligochaete samples. No reference site [TEQ] is above the TRG. The percentage of coplanar to total PCBs varies among taxa and sites, with an overall range in biota from 0 to 17% at Lyons Creek sites and from 0 to 12% at reference sites. The pattern observed for sediment (overall increase in percentage of coplanar PCBs with distance downstream) is not seen in the biota. The highest percentage of coplanar PCBs to total PCBs is at site LC14 (chironomids – 17%), and for reference sites is BLC01 (odonates - 12%). The highest coplanar PCBs are found in the odonates at 45% of Lyons Creek sites followed by the chironomids at 36% of Lyons Creek sites. (The odonates have the lowest total PCBs at all Lyons Creek sites; Figures 9 & 10.) Coplanar PCBs are very significantly related to total PCBs for all taxa $(r^2 = 0.853 - 0.999, p = \le 0.001).$

5.2.2 Relationships between PCB concentrations in tissue and sediment

Concentrations of total PCBs in each invertebrate taxon vs. total PCBs in sediment are plotted in Figure 12, with fitted regression lines using sediment [PCB] alone as the predictor. For the chironomid and amphipod, the slopes are significant ($P \le 0.05$) and the adjusted r^2 values are 0.625 (chironomid) and 0.874 (amphipod) (Table 7). Predictions of [PCB]_{inv} are moderately improved for both taxa with pH in the model, bringing the R^2_{adj} values to 0.749 and 0.918 for the chironomid and amphipod,

respectively (Table 7). In both cases [PCB]_{sed} is the strongest predictor (P \leq 0.001) and the coefficients for pH are positive. For the oligochaete, the addition of pH (positive coefficient), TP in the overlying water (positive coefficient) and sand (negative coefficient) result in a significant slope, with an adjusted r² value of 0.783. For the odonate, the slope is not significant, and no additional predictors improve the model.

5.2.3 Calculation of receptor tissue PCB concentrations

Obtaining the information required to estimate PCB concentrations in receptors involved reviewing published literature, unpublished reports, databases, web pages and any other sources of data on BMFs relevant to the benthic invertebrate taxa and receptors; assessing the quality of the BMF data; and tabulating BMFs and estimates of their variability, together with information on the BMF's determination (e.g., location of study, organisms involved, proportion of receptor's diet that is invertebrates, effects of cofactors (if any), assumed ingestion rates and home ranges). Complete results of the PCB literature review and the details and methods used in predicting PCB concentrations in receptor species are provided in Milani and Grapentine (2005). PCB measurements in invertebrates and (b) total PCB BMF values. Receptors relevant to Lyons Creek included benthivorous fish (catfish, carp), small benthivorous/piscivorous fish (sunfish), large piscivorous fish (bass), diving ducks (goldeneye), and mammals (mink) (Milani and Grapentine, 2005).

Invertebrate PCB concentrations used in the predictions of PCB in receptors were the observed [PCB]_{inv} values for taxa collected from the site. These were used to obtain minimum and maximum observed [PCB]_{inv} for the taxa collected from the site. "Medium" [PCB]_{inv} for the site was calculated as the mean of the values. Since fish contaminant data are reported for the most part on a wet weight basis, and the guidelines used in this study are also based on wet weights, PCB concentrations in invertebrates were converted to a wet weight basis (see Milani and Grapentine, 2005) for details). For each site, minimum, intermediate and maximum concentrations of PCBs for each receptor were predicted by:

$$[PCB]_{rec} = FCM \times [PCB]_{inv}$$

Corresponding low, medium and high [PCB]_{inv} and FCMs are used. From the available values, the lowest and the highest BMFs were used for the minimum and maximum prediction, the mean of the values was used for the intermediate prediction. The predicted PCB concentrations in receptors are generic in that they are not specific to particular tissues.

Presentation of model outcomes

Assumptions for model predictions are provided in Milani and Grapentine (2005). Predicted concentrations of PCBs in each receptor species at each sampling site, are shown in Table 8 and Figure 13. Receptor PCB concentrations are presented for "minimum", "intermediate" and "maximum" levels of PCB exposure and uptake

scenarios. In each subfigure, predicted $[PCB]_{rec}$ for the six receptors are presented in bar charts comparing reference and test sites. In the bar charts, which have the same logarithmic scales in all subfigures, two criteria concentrations are marked: (1) the maximum (= 99th percentile) of the predicted $[PCB]_{rec}$ for the reference sites, and (2) the IJC tissue objective for the protection of birds and animals which consume fish (100 ng/g ww).

Exceedences of criteria

<u> PCBs – minimum</u>

Under the minimum uptake and exposure scenario, sites LC12 and LC16 (just slightly) are above the IJC tissue objective for the bullhead and carp whereas only LC12 is slightly above the objective for the bluegill and bass (the "low" FCM estimates for bass and bluegill are lower than those for the carp and bullhead; Table 8 and Figure 13). Site LC03 is below the tissue objective and reference maximum as the minimum invertebrate tissue value used in the calculation is very low (0.003 μ g/g ww for the odonate). All reference sites are below the tissue objective. All Lyons Creek sites except LC03 and LC38 are above the predicted reference maximum for each receptor. (Most sites are just slightly above the reference maximum with the exception of LC12 and LC16.)

PCBs - intermediate

Under the intermediate uptake and exposure scenario, all Lyons Creek sites exceed the tissue objective for all receptors, whereas reference site exceedences are predicted at 0 sites for the bullhead and the bluegill, and at all sites for the carp and bass (Figure 13). All Lyons Creek sites are above the predicted reference maximum for each receptor.

PCBs - maximum

The maximum predictions of $[PCB]_{rec}$ result in all Lyons Creek sites exceeding the tissue objective and the reference sites maximum for all fish receptors (Figure 13). Reference sites also exceed the tissue objective for all fish receptors.

5.2.4 Mussels

No significant difference in the mussel tissue contaminant concentrations between locations is observed in any of the parameters measured, with the exception of PCBs (Table 9).

Ordination of the mussel data, based on chemical concentrations in the tissue, group together the reference creeks (BC, TC & UC), the Balsam Lake reference mussels, the most downstream Lyons Creek location (LC38) and the mussels deployed at most upstream Lyons Creek locations in 2002 (Figure 14). The upstream locations sit on the periphery of this group. These locations do not significantly differ from each other in PCB concentration. PCB concentrations are strongly correlated with Axis1 (Figure 14b) and explain much of the movement in ordination space of the remaining groups along this axis. PCB concentrations at each site within each group do not significantly differ in PCB concentration from each other. With the exception of group 4, which is found to be similar to both groups 3 and 6, PCB concentrations between the groups are generally significantly different from each other (ANOVA, p<0.001).

The highest PCB concentrations are observed in the mussels from Group 7, which range from 220ng/g to 510ng/g (Table 9, Figure 15). Tissue concentrations in this group as well as Group 5 (mean PCB = 269ng/g) are all above the IJC guideline for the protection of fish-eating wildlife (IJC, 1988) of 100ng/g and are all significantly higher than any other sample (ANOVA, p<0.001). The IJC guideline in these two groups is exceeded by 1.8 to 5 times. All of the samples in Groups 5 and 7 were collected in 2003, and are all located in an area between downstream of Ridge Road (LC08) and of Highway 140 (LC17). Members from Group 6 also exceed the IJC guideline (mean PCB = 122ng/g, range 75-159ng/g), and members from this group are located from Highway 140 (LC16) to the CN railway (LC19).

Based on the toxic equivalency factors for the co-planar (dioxin-like) PCB congeners (CCME, 2001), an over all Toxic Equivalency Value (TEQ) was calculated for the mussel tissue deployed in both 2002 and 2003. The CCME have TEQ guidelines for mammalian and avian species (CCME, 2001), which aims to protect mammals and birds which consume aquatic organisms; the mammalian TEQ value is 0.79ng TEQ/kg. The TEQs calculated for these sites range from zero to 2.54ng TEQ/kg collected in 2002 from LC17 (over three times the tissue residue guideline, Figure 16). Mussels from the reference streams, Balsam Lake and the upstream and downstream locations sampled in both 2002 and 2003 are all below this criterion and are significantly lower than TEQ values observed at the other locations (ANOVA, p<0.001).

5.2.5 Fish

Forage fish

In 2002, total PCB concentrations in forage fish samples vary greatly from each location (Figure 17). At LC03, bluntnose minnows have a mean concentration of 3560ng/g wet weight and differ significantly (ANOVA, p<0.007) from the other locations. Upstream of Highway 140 at LC16, the same species of forage fish has a mean PCB concentration of 7857ng/g wet weight, which is significantly higher (ANOVA, p<0.001) than all other locations, including LC03. At LC38, downstream of the QEW, the only replicate of bluntnose minnow has a total PCB concentration of 48ng/g, golden shiners at this location have an average PCB concentration of 19ng/g. Forage fish at this location do not differ significantly from the reference locations or the Welland River.

Bluntnose minnows from the Welland River have a mean PCB concentration of 35ng/g, and spottail shiners from the same location have a PCB concentration of 7ng/g (Table 10). Common shiners from Beaver Creek have an average PCB concentration of 11ng/g. Golden shiners from Black Creek average 26ng/g total PCBs.

Forage fish from Lyons Creek below the QEW, the Welland River, Beaver Creek and Black Creek all have PCB concentrations that are considered relatively low and are all under the IJC guideline (IJC, 1988) for the protection of fish eating wildlife of 100ng/g (Figure 17a). Forage fish collected from the more upstream locations (LC03 and LC16) have total PCB concentrations which exceed the IJC guideline by up to more than 90 times, and on average 35 times at LC03 and 78 times at LC16 (Figure 17a). These

data suggest that there is an upstream source of PCBs that may result in potential harm to biota that may consume the fish from these locations.

The forage fish samples were also analysed for dioxin-like PCBs. Seven dioxin-like PCB congeners were identified in the samples. From these seven congeners, Toxic Equivalency values (TEQs) were calculated (Figure 17b). A similar trend to that observed for the total PCB data was observed in the TEQ data, with the TEQ values for LC03 and LC16 significantly higher than all other sites (ANOVA, p>0.001). Lyons Creek below the QEW, the Welland River, Beaver Creek and Black Creek all had relatively low TEQ values, below the CCME guideline (CCME, 2001) for mammals of 0.79ng/kg TEQ. At LC03 and above Highway 140 (LC16) the fish collected exceeded the TEQ guideline (33.6ng/kg TEQ and 56.8ng/kg TEQ respectively). These concentrations are extremely high and pose a threat to mammals that may consume the fish from these locations.

In 2003, total PCB concentrations are highest at LC03 (2525ng/g ww). The next highest concentration is observed at LC17 (mean: 1760ng/g ww). PCB concentrations at these two locations did not differ significantly from each other, although LC03 is significantly higher than all other sites (ANOVA, p>0.001). An overall downstream trend in PCB concentrations is observed in the PCB concentrations of bluntnose minnow in Lyons Creek (Figure 18a). Golden shiner PCB concentrations increase downstream to LC16 (1700ng/g ww), after which a steady decrease was observed along a downstream gradient (Table 10, Figure 18a).

Unlike the relationships between total PCB concentrations and TEQ values observed in 2002, no such relationship exists in 2003 (Figure 18b). TEQ values do not appear to be linked to the total PCB concentrations, but rather show a similar pattern to those observed in 2002 in which the highest TEQ values are observed at Highway 140 (LC17, 318ng TEQ/kg) and are significantly higher than all other sites (ANOVA, p>0.001). PCB concentrations are second highest at LC03 (mean: 126ng TEQ/kg). An overall downstream is observed in the TEQ values of both bluntnose minnow and golden shiner.

Bluntnose minnows collected in 2002 and 2003 were compared to assess differences between years and within Lyons Creek. The length and lipid concentrations were compared (Figure 19c & d). Although the fish collected in 2002 from LC16 were larger than at the other locations, there were generally no significant differences in the overall size of the fish collected from Lyons Creek or Usshers Creek. Lipid concentrations in Lyons Creek do not significantly differ from each other, either between locations of year. The fish collected from Usshers Creek, however, have significantly more lipid than any of the Lyons Creek sites (ANOVA, p<0.001), suggesting that these fish are healthier than those from Lyons Creek.

PCB concentrations (Figure 19a) in the upper portion of Lyons Creek are considerably higher in 2002 than in 2003; concentrations observed at LC16 in 2002 are significantly higher than any other site sampled (ANOVA, p<0.002), and concentrations at LC03 in 2002 are significantly higher than Usshers Creek (ANOVA, p<0.001). Tissue PCB

concentrations at all other sites do not differ significantly from each other, but a general downstream reduction in PCB concentrations is observed (Figure 19). PCB concentrations exceed the IJC guideline in both years and at all sites from LC03 to LC24, ranging from 340ng/g in 2003 at LC24 to 7857ng/g in 2002 at LC16. PCB concentrations downstream of the QEW, at the mouth of Lyons Creek and in Usshers Creek are all well below the IJC criteria for the protection of fish-eating wildlife (mean range: 34.8-46ng/g).

Despite the elevated concentrations of PCBs observed in 2002, the overall TEQ concentrations calculated from the 12 co-planar congeners listed in the CCME guidelines (CCME, 2001) are generally higher in 2003. TEQ concentrations collected from all other sites, in both 2002 and 2003 do not differ significantly. TEQ concentrations exceed the CCME tissue residue criteria at all sites from LC03 to LC24; a similar trend to that observed in total PCB concentrations. Samples collected in 2002 downstream of LC24 are below the CCME criteria. TEQ concentrations from the 2003 collections at Usshers Creek exeed the CCME criteria. These differences in the 2002 and 2003 TEC concentrations can be explained by the presence of PCB congener 126, which is present in the 2003 samples, but not in the 2002 samples, and has the highest TEF value (0.1) of all 12 co-planar PCB congeners considered in the TEQ calculations (Table 10).

Sport fish

Sport fish were collected from two locations in 2002; upstream of Highway 140 at LC16, and downstream of the QEW (LC38). Bowfin (*Amia calva*), white sucker (*Catostomus commersoni*), carp (*Cyprinus carpo*), brown bullhead (*Ictalurus nebulosus*), pumpkinseed (*Lepomis gibbosus*), bluegill (*Lapomis macrochirus*), largemouth bass (*Micropterus salmoides*) and black crappie (*Pomoxis nigromaculatus*) were all collected from LC16. Downstream of the QEW, all of these fish, with the exception of white sucker, were collected, as well as northern pike (*Exos lucius*), rock bass (*Ambloplites rupestris*), white crappie (*Pomoxis ammularis*) and yellow perch (*Perca flavescens*). In 2003, sport fish were only collected from Highway 140 (LC16). At this time, only black crappie, bowfin, carp, largemouth bass, pumpkinseed, rock bass and white sucker were collected. The fish collected in 2003 were analysed for congener specific PCBs as well as total PCBs.

Sport fish have been collected from Lyons Creek at Highway 140 and at the QEW since 1991. The historical total PCB concentrations in the fish collected from 1991 onwards were compared to the 2002 and 2003 data in Figure 20. The mean values have also been compared to the consumption guidelines outlined in the *Guide to Eating Ontario Sport Fish* (MOE, 2005). Fish collected from the QEW (LC38) in 2000 and 2002 were compared (Figure 20b), and although PCB concentrations in the carp are the overall highest for both years, only the carp collected in 2000 (mean: 170ng/g) has any restrictions; these fish are restricted to 4 meals/month. All other fish, for both 2000 and 2002, are below the first level of restrictions (153ng/g: MOE, 2005).

PCB concentrations in the fish collected from Highway 140 (LC16) are considerably higher than those observed at the QEW. Although carp show no statistically significant change in PCB concentrations over the past years (regression, r^2 >0.03), PCB concentrations in the fish from Highway 140 appear to have generally declined since 1991. All fish collected have consumption restrictions, with only bowfin from 1991 and brown bullhead from 1992 and 2002 being unrestricted.

Two-tailed t-tests were used to compare the 2002 PCB concentrations between the two locations sampled. The mean concentrations of PCBs in the fillets of the fish collected from Highway 140 are significantly higher than those in the same species of fish (bowfin, carp, brown bullhead, pumpkinseed, bluegill, largemouth bass and black crappie) observed downstream of the QEW at LC38 (Table 11). When the mean concentrations observed in fish from Highway 140 are compared to the *Guide to Eating Ontario Sport Fish* (MOE, 2005) concentrations for restrictions on consumption, there is a complete consumption restriction, with the exception of brown bullhead (140ng/g) for the sensitive population, which includes children under the age of 15 and women of child-bearing age. For the general population, bluegill, bowfin and largemouth bass are restricted to four meals per month (188, 190 and 278ng/g respectively), black crappie, pumpkinseed and white sucker are all restricted to two meals per month (1164ng/g; Figure 20).

In 2003, all of the fish collected at Highway 140 have a complete consumption restriction for the sensitive population, with PCB concentrations in the fish ranging from a mean of 313n/g in black crappie and rock bass to 1157ng/g inn white sucker. For the general population, all of the fish, with the exception of carp and white sucker are restricted to two meals per month (PCB concentrations for this category ranging from 305-610ng/g). Carp and white sucker are restricted to one meal per month (PCB concentrations 610-1220ng/g).

When regressions are run on all the existing data to assess the concentrations which would likely be observed in fish from different size classes, other fish are also restricted for consumption (Table 12). The Guide to Eating Ontario Sport Fish advises no more than 8 meals per month should be consumed; hence advisories of '8' in Table 12 suggest that there are no restrictions on the fish of that size category. Upstream of Highway 140 (LC16), all fish listed, with the exception of bluegill, have a complete restriction for the sensitive population (women of childbearing age and children under 15) in the larger size ranges. Carp, brown bullhead, rock bass, black crappie and pumpkinseed are completely restricted at all sizes. Downstream of the QEW, only carp (55cm and greater), largemouth bass (>30cm) and yellow perch (<25cm) have complete restrictions for the most sensitive populations.

For the general population, complete restrictions are observed for carp (<50cm) and white sucker (<35cm). Brown bullhead (30-35cm), largemouth bass (30-40cm) and pumpkinseed (<15cm) are restricted to 1 meal/month, and rock bass (>15cm) and black crappie (20-25cm) are restricted to 2 meals/month. All restrictions are a result of

elevated PCBs (Table 12). Bluegills are restricted to 4 meals/month. Downstream of the QEW carp, brown bullhead, largemouth bass and yellow perch are the only fish restricted; carp (<55cm) is restricted to 1 meal/month, and brown bullhead (30-35cm), largemouth bass (35-40cm) and yellow perch (25-30cm) are all restricted to 4 meals/month. There are no restrictions downstream of the QEW due to PCBs for any of these fish.

TEQ values were calculated from the concentrations of the 12 co-planar PCBs observed in the fish collected from Highway 140 in 2003. All of the fish species collected exceed the CCME criteria (0.79ng TEQ/kg) by up to 500 times (white sucker: Table 13, Figure 21). The lowest mean TEQ values are observed in carp (76.2ng TEQ/kg), which have the highest mean PCB concentration (mean: 1116ng/g; Table 11, Figure 21). The co-planar PCB concentrations driving the TEQ values are primarily congener IUPAC number 126 (3,3',4,4',5 pentachlorobiphenyl), followed by congener 118 (2,3',4,4',5 pentachlorobiphenyl) which mirrors the congeners driving the TEQ values in the forage fish from 2003. Carp TEQ values are the only values that differ significantly from those from any of the other species; TEQ values in carp are significantly lower than those observed in largemouth bass (mean: 76.2ng TEQ/kg and 181ng TEQ/kg respectively, p=0.015).

5.3 Modeled versus actual values

Comparisons of the predicted fish receptor [PCB] with actual [PCB] in fishes collected from Lyons Creek are a means of qualitatively ground truthing the prediction model. Measured [PCB] in fish receptors (sampled at the same time as the benthos) are indications of actual bioaccumulation of PCBs which is thought to occur primarily through dietary sources at the higher trophic levels. Sport fish, such as Brown Bullhead, Carp, Bluegill and Largemouth Bass, were collected just upstream of Highway 140 (LC16) and downstream of the QEW (near site LC38) (see above). Mean [PCB] in all fish fillets collected in 2002 range from 140 to 1164ng/g ww at Highway 140 and from 24 to 76 ng/g ww downstream of the QEW (Fletcher and Petro, 2005). Fish collected in 2003 at Highway 140 are all above the IJC tissue objective of 100ng/g, and the highest [PCB] is observed for carp. Actual values for all sport fish receptors (collected at Highway 140) fall between the minimum and intermediate predicted values. The minimum exposure and uptake scenario underestimates biomagnification while the intermediate and maximum scenarios are from 4 to 30 times and from about 14 to 622 times higher than actual mean concentrations, respectively (BMFs derived for the models are based on both whole fish as well as dorsal muscle [PCB] concentrations, whereas actual fish concentrations are based solely on skinless boneless fillets).

6 Step 5: Sediment toxicity

6.1 Overview

In this step, toxicity of the sediments along Lyons Creek (from the Welland Canal to downstream of the QEW), as well as the reference areas is determined. Laboratory toxicity tests were conducted with four appropriately sensitive, standardized sediment-dwelling and/or sediment associated test organisms and acute and chronic end-points (survival, growth and reproduction) considered (Chapman, 2005).

Comparison	Decision
All sediment end-points are less than or equal to 20% difference from the reference <u>and</u> does not statistically differ from the reference	No further assessment or remediation is required relative to laboratory toxicity
One or more of the sediment end- point are greater than 20% different from the reference	Potential risk: further assessment is required

6.2 Whole sediment toxicity tests

Mean species survival, growth, and reproduction in Lyons Creek and reference creek sediments are shown in Table 14. The established criteria for each category (non-toxic, potentially toxic and toxic) based on Reynoldson and Day (1998) for each species are also included. The Great Lakes (GL) reference means for each endpoint are also included. (All sites were compared to GL reference sites.)

Toxicity is evident at three sites: LC03, LC08 and LC12. At site LC03, there is acute toxicity to *Hyalella* (40% survival), *Hexagenia* (2% survival) and *Chironomus* (39% survival); and low *Tubifex* cocoon and young production. At site LC08, there is acute toxicity to *Hyalella* (35% survival), *Hexagenia* (4% survival) and *Tubifex* (35% survival). At site LC12, there is acute and chronic toxicity to *Hexagenia* (46% survival, negative growth) and potential toxicity to *Chironomus* (reduced survival and growth).

Results of the BEAST toxicity assessment (overall toxicity) are summarized in Table 15. Most Lyons Creek sites (11 of 15) are non-toxic, one site is potentially toxic (LC14) and three are severely toxic (LC03, LC08, LC12). The toxic sites (as well as the potentially toxic site) are all located upstream of Highway 140. Reference sites are non-toxic, with the exception of BLC02 (potentially toxic). The ordinations, summarized on two of three axes, are provided in Milani and Grapentine (2005). The relationship between the habitat variables and toxicity is also shown in these ordinations. Habitat variables are not highly correlated to ordination axes scores in any ordination (highest correlation is seen for Zn, $r^2 = 0.51$, and remaining correlations have $r^2 \le 0.16$). The departure of LC03 and LC08 from reference is most severe, and these sites are oriented along a gradient of increasing Zn. Zinc is elevated at both sites (LC03: 7969 μ g/g, LC08: 1080 μ g/g).

6.3 Sediment toxicity and contaminant concentrations

The BEAST assessment does not incorporate any information on organic contaminants in the sediment because organic contaminant concentrations were not measured in Great Lakes reference sediment samples. Therefore, examination of relationships between sediment toxicity and sediment contaminants both graphically and by regression analysis may aid in identifying possible causes of toxicity attributable to organic contaminants (as well as inorganic compounds, sediment nutrients and sediment grain size). The ordination of the multiple measurements of sediment toxicity by HMDS for the Lyons Creek and reference sites produced two descriptors of sediment toxicity (Figure 22). The resultant axes represent the original 10-dimensional amongsite resemblances well (stress = 0.07). Principal axis correlation produces a vector for each toxicity endpoint along which the projections of sites in ordination space are maximally correlated. With the exception of Hyalella growth, all endpoints are significant at (r^2 range: 0.41 – 0.95, P \leq 0.05), with *Hexagenia* survival being the most significant endpoint. The most significant environmental variables include total PCBs, total PAHs and Zn (r² range: 0.73 - 0.84, P ≤ 0.001). Most toxicity endpoints are positively correlated with both axes; therefore, the greater the toxicity of a site, the lower its score for Axis 1 and 2 generally. Site LC08 is distinctly separated from the other sites along Axis 1 and LC03 and LC12 are separated from the other sites on both axes and are oriented along a gradient of increasing PCBs, PAHs and Zn (Figure 22).

Integrated toxicity descriptors (ordination axes scores from the HMDS) and individual measurement variables (sensitive endpoints such as survival/growth of Hexagenia, Hyalella survival and Tubifex young production) were plotted against concentrations of coplanar and total PCBs, total PAHs, an integrated metal toxicity descriptor (nine metals ordinated by Principal Components Analysis) as well as the individual concentrations of metals (As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Zn), sediment nutrients (TP, TN, TOC) and particle size (percents clay, sand, silt, and mean particle size). Complete results with plots are provided in Milani and Grapentine (2005). The most significant relationships are shown below. Generally, dependent on the toxicity descriptor, toxicity is related to a combination of metals, or to total PAHs and PCBs, with individual toxicity variables and contaminant concentrations showing the strongest relationships. Survival endpoints were arsine square root(x) transformed and growth and reproduction endpoints were log(x) transformed. The degree to which sediment contaminants account for toxicity was assessed by fitting regression models using best subset procedures. Models were fitted for all combinations of (a) individual metals (b) nutrients and particle size (c) total PCBs, PAHs and then (d) all combinations of the best predictors from the three groups. (This procedure was used to avoid computational difficulties arising from working with 18 predictors simultaneously.) The best models were those having maximum explanatory power, based on $R^2_{adjusted}$. Predictor coefficients that are negative indicate that decreased survival, growth or reproduction is related to increased contaminant concentrations.

HMDS Axis 1

Axis 1 is graphically related to total PAHs ("logPAHs"). This contaminant descriptor accounts for 56% of the variance in the Axis 1 toxicity descriptor.

Tox Axis1 = $0.123 - 1.28 \log PAHs (p \le 0.001)$

HMDS Axis 2

Axis 2 is graphically related to total PAHs and PCBs and accounts for 63% of the variance in the Axis 2 toxicity descriptor.

Tox Axis2 = $0.278 - 1.19 \log PAHs + 0.244 \log PCBs (p \le 0.001)$

Hyalella survival

For *Hyalella* survival (Hasu), 25.0% of the variability is explained by total PCBs, 30.9% is explained by PCB 105, and 55.6% of the variability is explained by Pb alone:

Hasu = $1.09 - 0.0909 \log \text{ total PCBs}$ (p = 0.012) Hasu = $1.17 - 0.100 \log \text{PCB} 105$ (p = 0.005). Lack of fit test not significant (p = 0.073). Hasu = $2.26 - 0.706 \log \text{Pb}$ (p = ≤ 0.001)

Hexagenia survival and growth

For *Hexagenia* survival (HIsu), 30.0% of the variability is explained by total PCBs, while 76.0% of the variability is explained by Pb, Cd and Fe. All predictors are significant ($p \le 0.002$):

Hlsu = $1.18 - 0.215 \log \text{ total PCBs}$ (p = 0.006) Hlsu = $2.87 - 1.90 \log \text{Pb} - 1.15 \log \text{Cd} + 2.72 \log \text{Fe}$ (p = ≤ 0.001)

For *Hexagenia* growth (Hlgw), 25.6% of the variability is explained by total PAHs and total PCBs and both predictors are significant (P = 0.021, 0.017):

HIgw = $0.641 - 0.912 \log \text{ total PAHs} + 0.246 \log \text{ total PCBs} (p = 0.043)$

Tubifex young production

For *Tubifex* young production (Ttyg), 40.4% of the variability is explained by total PAHs while 60.4% of the variability is explained by Pb, Cd and Zn. All predictors are significant ($p \le 0.002$):

Ttyg = 1.18 - 0.327 log total PAHs (p = 0.002). Lack of fit test not significant (p = 0.110). Ttyg = 1.69 - 1.34 log Pb - 1.10 log Cd + 0.543 log Zn (p = 0.001)

7 Step 6: Benthic community composition

7.1 Overview

In shallow areas of high traffic, dredged areas or other habitats of high disturbance, assessments of the sediment-dwelling communities may not be possible, as these types of areas are highly disturbed and will have altered community structures (Chapman, 2005). It was deemed that the assessment of benthic community structure in Lyons Creek was possible and that this line of evidence would be included in the decision-making framework. Lyons Creek communities were compared to reference creek communities.

7.2 Community structure

Benthic communities at reference and Lyons Creek sites consist predominantly of Chironomidae and Tubificidae, which are present at all sites. At Lyons Creek sites, tubificids range from 543 to 40712/m² and are generally in lower numbers at downstream sites, and chironomids range from 3076 to 92400/m² (Figure 23). At reference sites, tubificids range from 446 to 11037/m², and chironomids from 1210 to 27322/m². Other taxon groups present at the majority of Lyons Creek sites include hyalellid (0 - 2654/ m²) and gammarid amphipods (0 - 1930/m²), naidid worms (0 - $6031/m^2$), ceratopogonid dipterans (0 - $4825/m^2$), caenidae mayflies (0 - $6152/m^2$), leptocerid caddisflies $(0 - 23703/m^2)$, and coenagrionid odonates $(0 - 1870/m^2)$ (Figure 23). Lyons Creek sites have similar or slightly higher abundances of the major taxa than the reference sites, with some notable absences. Leptocerids are absent at five sites between the Welland pipe outfall and Highway 140 (sites LC03 to LC12), and caenids are absent at two of these sites (LC10 and LC12) (Figure 23). Site LC12, which has the second highest sediment [PCB] (7.4 µg/g) and which is acutely toxic to mayflies (see Table 14) is void of caddisflies, mayflies and amphipods. The total number of all taxa (including micro-benthos) are similar for the reference sites and most Lyons Creek sites, ranging from 23 to 33 (mean 27.8) for the reference sites and from 14 to 37 for Lyons Creek sites (Figure 23). Site LC12 has the lowest number of taxa (13) followed by LC29 (15). Another notable difference between Lyons Creek and reference site is the presence of zebra mussels (Dreissenidae) at site LC01 (2823/m²). Dreissenids are mostly absent from all other Lyons Creek sites and are present at two reference sites in much lower abundance $(36 - 121/m^2)$. Complete invertebrate counts are provided in Milani and Grapentine (2005).

The HMDS (using invertebrate family data) reveals that three axes define the structure in the data (stress = 0.130, Figure 24). The degree of similarity among sites is indicated by the spatial proximity of sites in ordination space. Sites close to each are similar in community structure. Families maximally correlated with the ordination axes scores are shown as vectors. The most maximally correlated families are Tubificidae ($r^2 = 0.713$), Chironomidae ($r^2 = 0.656$) and Hyalellidae ($r^2 = 0.511$) and are shown as vectors in Figure 24. Abundances of Tubificidae and Chironomidae are associated with sites along Axes 1 and 3, respectively, and generally with sites from the Welland pipe (LCO3) outfall to Highway 140. Abundances of the amphipod taxa are associated with sites along Axes 2 and 3, and generally are associated with sites downstream of LC16. Site LC12 is associated with decreased amphipod taxa (site is oriented along the same vector in the opposite direction of amphipod taxa along Axis 2). Black Creek reference site BLC02 is most different from the rest of the reference sites, separated from the other reference sites along the first axis and is oriented along a gradient of increasing NO_3NO_2 . Environmental variable such as Ca, Cu, Cd, are associated with sites along the first axis.

Using the ordination axes scores to compare Lyons Creek sites to reference (control) sites, ANOVA F tests and Bonferroni's test show no significant differences between control and test sites. Pairwise comparisons using Tukey's test also reveal no significant differences between any sites. Site comparisons made using log(x)transformed abundances of six major taxon groups found in Lyons Creek (Tubificidae, Chironomidae, Hyalellidae, Gammaridae, Caenidae and Coenagrionidae) reveals a significant difference (ANOVA p < 0.001) in abundance of coenagrionids (odonates) at control and Lyons Creek sites. Bonferroni's simultaneous tests found a significant decrease in abundance of odonates at site LC12 (no odonates present) (p < 0.001), and a significant increase in abundance of odonates at site LC03 (p = 0.047). Dunnett's simultaneous tests reveals similar results for sites LC12 and LC03 and also found sites LC17 and LC19 to have a significantly greater abundance of odonates than controls (p = 0.047). Site comparisons made using log(x)-transformed taxa richness reveals a significant difference (ANOVA, p = 0.047). Dunnett's simultaneous tests reveals significant decrease (p = 0.035) in the number of taxa present at LC12 compared to reference creek controls.

8 Step 7: Decision matrix

8.1 Overview

The decision matrix is based on ranking data from the available sediment chemistry, toxicity, benthos and biomagnification potential data collected in the previous steps. At this point in the framework, a weight-of-evidence approach is taken; the sediment chemistry is given the least weight and the benthic community data are given the most weight (Chapman, 2005).

The overall assessment of each Lyons Creek site (detailed study) is achieved by the integration of the multiple lines of evidence. Table 16 depicts results of the bulk sediment chemistry, benthic community, toxicity and biomagnification components, shown in a separate columns. A decision is achieved by integration of all lines of evidence. A " \bullet " denotes that adverse effects are likely, a " \bullet " denotes that adverse effects are unlikely and a dash (e.g., \bullet - \bullet) means "or" (Chapman, 2005).

8.2 Sediment PCBs

A "●" in the contaminant column indicates an elevation of contaminants above a SQG and greater (> 99th percentile) than reference sediment. One or more exceedences of
the PCB SEL or PEL (0.277 μ g/g) constitute a "●", one or more exceedences of the LEL or TEL constitute a "O", and contaminant concentrations below the LEL or TEL constitute a "O". The SEL for PCBs is not exceeded at any site (LC03 is very close), however, the PEL and the 99th percentile for the reference sites are exceeded at 12 of the 15 Lyons Creek sites (●). One Lyons Creek site (LC29) is above the LEL (as well as the 99th percentile reference sites) (O), and the remaining two Lyons Creek sites (LC01 and LC38) are below the LEL (0.07 μ g/g) (O). (For LC03, the SEL is exceeded for metals as well - As, Cu, Ni and Zn.)

8.3 Overall toxicity

A "●" in this column occurs when there is <u>strong</u> evidence of toxicity overall (i.e., a test site falls in Bands 3 or 4 from the BEAST analysis, and where multiple endpoints exhibit major toxicological effects). Sites LC03, LC08 and LC12 fall into this category. These three sites show significant survival, growth and reproduction effects. The remaining sites are designated by "O", as they have toxicological effects are either minor or sites are equivalent to reference.

8.4 Benthos alteration

A "•" in this column occurs when communities are "different" or "very different" than reference. Differences in biological structure between reference creek sites (control) and Lyons Creek sites were determined using pattern analysis (ordination) and ANOVAs. Bonferroni's simultaneous tests detect a significant difference ($p \le 0.05$) between the reference creek sites and LC12 with respect to abundance of odonates and species richness. Site LC12 is the only site where odonates are absent in the creek (amphipods, mayflies and caddisflies are also absent from LC12) and the number of taxa present at site LC12 is also below 2 SD of the reference mean.

8.5 Biomagnification potential

A " \bullet " in the column is determined by (a) a significant positive relationship between [PCB] in the sediment and [PCB] in the biota for the study area (three of the four taxa show significant relationships), (b) using the *minimum and intermediate* uptake and exposure scenarios (actual sport fish concentrations fall somewhere between these two scenarios), predicted receptor PCB values are > IJC tissue objective and > the predicted maximum reference concentration.

Under the minimum scenario, all fish receptors exceed the tissue objective at LC12, and two of the four fish receptors exceed the objective at LC16, and the predicted maximum reference concentration are exceeded at these sites (\bullet). Under the intermediate scenario, predicted total PCBs in all receptors at all Lyons Creek sites are above the IJC tissue objective and above the reference maximum. However, since actual PCB concentrations in fish collected at Highway 140 and downstream of the QEW fall between the minimum and intermediate scenarios, adverse effects due to biomagnification at remaining Lyons Creek sites may or may not occur at the remaining

sites (**O**). It is noted, however, that total PCBs in at least 1 of 4 invertebrate taxa are > the IJC tissue objective at sites LC03 – LC29, and 3 of 4 invertebrate taxa are > the tissue objective at sites LC12, LC16, LC17 and LC18 without applying BMFs. Benthic tissue samples were not collected at sites LC06, LC10, LC22, and LC23; therefore, these sites could not be categorized with respect to biomagnification potential.

9 Step 8: Further assessments

9.1 Overview

The Decision matrix, developed in Step 7 provides 16 possible scenarios, 10 of these result in the determination that the contaminated sediments may pose an environmental risk. In these cases, further assessment is required before a definitive decision can be made (Chapman, 2005).

9.2 Identification of additional work

Studies are currently being conducted to address both human health and ecological concerns, and a human health risk assessment is currently underway for Lyons Creek (East and West). Consultants have been retained to identify gaps and gather the necessary information required to conduct a full human-health risk assessment. Remedial options are also being considered based on the available information which will be appropriate for the risks identified.

10 Step 9: Deeper sediments

10.1 Overview

The previous steps of the framework have focused predominantly on the surficial (top 10cm) sediments. The deeper sediments may, in well mixed sediments, or those with a long-term on-going source, have chemistry similar to that of the top 10cm, or the chemistry of these deeper sediments may differ considerably from that on the surface. There is therefore a need to determine whether, under unusual but possible natural or human-related circumstances, these deeper sediments may be uncovered and therefore pose a potential threat to the resident fauna (Chapman, 2005).

10.2 Collection of sediment cores

Six locations along Lyons Creek (Table 4, Figure 5) were selected in 2002 for a more indepth study of ecosystem health. Cores were collected from the most upstream location of Lyons Creek (LC01), downstream of the Welland Pipe property (LC03), immediately upstream and downstream of Highway 140 (LC16 and LC17 respectively), downstream of McKenny Road (LC29) and Downstream of the QEW (LC38). Three sediment cores were collected from each location using a KB-corer. The cores were sectioned into 0-10cm, 10-25cm and >25cm sections, and a composite of each section from each of the three cores was homogenized and sent to the MOE laboratory at Resources Road for analysis of PCBs, metals, OCs, PAHs, particle size, and nutrient content (MOE, 1993a).

10.3 Analysis and interpretation

Ordination of the data by multivariate analysis show the sediment cores from the more downstream locations (LC17, LC29 and LC38) all grouping together (Figure 25), suggesting that the chemistry of the sediments, even at depth, are relatively homogeneous and have a similar composition. The more surficial sediments at LC16, located upstream of Highway 140, also have similar sediment chemistry composition to the downstream locations, but at depth move away from the more downstream locations in ordination space (Figure 25). Deeper sediment at this location has a similar sediment composition to LC03 (downstream of Welland Pipe). The upstream location (LC01) has a different composition from all of the other sites (Figure 25a). The observed difference in sediment composition at this location is primarily driven by particle size, and elevated levels of manganese, magnesium and cobalt (Figure 25b). Sediment from LC03 and from the deeper sediments of LC16 (>25cm) are characterized by elevated levels of OCs, metals and PCBs. The PCB concentrations at these three sites (LC03<10cm, LC03 10-25cm, and LC16>25cm) all exceed the PSQG SEL, suggesting that these sediments may effect the health of sediment dwelling-organisms (Table 17).

Ordinations of the sediment samples based on their PCB congener composition (Figure 26a) groups together the sediments from LC01, LC17, LC29 (at all depths), and the surficial sediments (<10cm) of LC16, indicating that PCB levels and their congener composition are similar. Five PCB congeners are associated with Axis1 (Figure 26b). These 5 congeners explain the separation of the downstream location (LC38) at all core profiles, the upstream location LC03 (0-25cm) and the deeper sediment at LC16 (>25cm); PCB congener patterns are similar at these locations (Figure 27), but concentrations are generally higher in the surficial sediments at LC03. The most downstream location (LC38) has lower levels of PCBs than the other sites (Figure 27), which is indicated by the separation in ordination space of these samples from the rest of the locations (Figure 26a), and its position away from the direction indicated by the congener vectors (Figure 26b). Generally higher levels of the 'tri' homologues are observed in the more contaminated samples of Lyons Creek. The tetra and penta homologues also tend to be higher at LC03 and LC16 >25cm (Table 17, Figure 27).

11 Discussion

11.1 PCBs in sediment

The primary contaminants of concern in Lyons Creek are PCBs. Sediment concentrations are elevated above reference and above the PSQG LEL criteria throughout most of Lyons Creek, from the vicinity of the Welland-pipe property, where

concentrations at Ridge Road (LC03) are almost at the PSQG SEL, to as far down as McKenny Road (LC29). At the most upstream location (LC01), sediment PCB levels are significantly lower, and are below the PSQG LEL criteria. The prominent congener pattern in the sediment of Lyons Creek East closely resembles that of aroclor 1248 (more details provided in Fletcher and Petro, 2005). No obvious source of PCBs in this area is identified. Similar homologue patterns in the sediment at the most upstream location (LC01) compared to those observed downstream indicate that, although PCB contamination is primarily downstream of Welland-pipe, the contamination may originate from a previous upstream source. A Stelco rolling mill and a Hydro transformer station are located in the West portion of Lyons Creek. A spill from the transformer station did occur prior to the construction of the Welland Canal. Either of the two properties located on the west portion of the creek may potentially be the source of PCB contamination observed in Lyons Creek East. Some metals (primarily nickel, zinc and copper) are also elevated above the PSQG SEL criteria in the upper portion of the creek (upstream of Highway 140).

11.2 PCBs in biota

Total [PCB] in benthic invertebrates at the majority of Lyons Creek sites are elevated above those for the reference sites for 3 of the 4 benthic invertebrate taxa collected, and benthos from sites LC12 and LC17 are consistently highest in [PCB]. For the odonates, the [PCB] are consistently the lowest. The odonates (samples contained a mixture of dragonflies and damselflies) are predacious invertebrates and will feed on invertebrates as well as small vertebrates such as tadpoles and fish fry. They likely have less direct contact with sediment than the other taxa analyzed which may explain the lower PCB Total [PCBs] in amphipods and chironomids are significantly influenced by levels. sediment [PCBs] (Table 7, Figure 12), and the log-log relationship for [PCB]_{sed} and [PCB]_{inv} across sites is strongest for the amphipods. The amphipods accumulated more PCBs than the other three taxa at 64% of Lyons Creek sites; therefore, it is not surprising that the [PCB]_{sed} - [PCB]_{inv} relationship is strongest for the amphipod. With the addition of pH (positively correlated to total PCB concentration), the amount of variance explained increases by ~4% and ~12% for the amphipods and chironomids, respectively, and [PCB]_{sed} is the most significant predictor. With the addition of pH, total P in the water and %sand, the oligochaete model becomes significant, and the amount of variance explained increases greatly (~60%). There is no significant relationship between [PCB]_{inv} – [PCB]_{sed} for the odonates.

Because concentrations of PCB in the benthic invertebrates were measured without clearing their guts, a fraction of the observed [PCB]_{inv} could include sediment-bound PCB in the gut. This is relevant for assessing uptake of PCBs by predators of invertebrates, which consume whole organisms, but likely contributes to the strength of the [PCB]_{sed} - [PCB]_{inv} relationship. For the amphipod and chironomid models, the fact that (a) the model that best predicts [PCB]_{inv} includes [PCB]_{sed} as the most significant term and that (b) the magnitude and direction of the regression coefficient is stable across both models suggests a real relationships between [PCB]_{inv} and [PCB]_{sed}. Results from this assessment indicate that [PCB] for the amphipods and chironomids is

largely determined by [PCB]_{sed}. Observing positive relationships between sediment and invertebrate PCB concentrations is evidence that PCB transfers from sediment into the food web.

The results of multivariate analysis suggest that uptake of PCBs by mussels in the portion of the creek from Ridge Road to Highway 140, closely resemble aroclor 1248 (Fletcher and Petro, 2005). Mussels from the most upstream and downstream portions of the creek fall within the 90% confidence ellipse plotted around the reference data, suggesting that these locations are similar in PCB concentration and pattern to that observed in the reference creeks. Mussels from between Ridge Road and Highway 140 all fall outside of the 99%-99.9% ellipses, suggesting that these mussels are considerably different in PCB concentration and congener pattern to the reference.

Mussels deployed downstream of Highway 140 (LC17) in 2002 have the highest PCB concentrations; in 2003 the highest concentrations are observed further upstream of LC12. The PCB concentrations at these sites, as well as the other locations between downstream of Ridge Road (LC08) and Highway 140 all exceed the IJC guideline for the protection of fish-eating wildlife; consumption of these mussels may therefore pose a potential threat to the resident wildlife. The homologue patterns in the clam tissue from the upper portion of the creek closely resemble aroclor 1248. Studies on aroclor 1248 (e.g. Barsotti et al. 1976) have shown that ingestion of 0.1-0.2mg/kg body weight/day of this aroclor over a 2 month period resulted in hair loss, acne and swelling eyelids of Rhesus monkeys. Adverse effects of PCBs on avian wildlife most commonly result in reduced egg productivity and hatchability, as well as reduced chick growth rates. Lillie and co-workers (Lillie et al. 1974) recorded reduced egg productivity and hatchability in white leghorns fed a diet if 1.2mg/kg aroclor 1248. The concentrations observed in the mussels from Lyons Creek were in the region of three times less than the doses reported by Lillie et al. (1974).

Toxic equivalent (TEQ) concentrations allow us to assess the toxicity of the co-planar (dioxin-like) PCB congeners. These values can then be compared to the Environment Canada tissue residue guideline (TRG) (CCME, 2001); calculated TEQ concentrations above this TRG value puts wildlife consuming these organisms at risk of adverse effects. The calculated TEQ values are most elevated in 2002 at Highway 140. Levels observed in 2003 are similar to those in 2002, with the highest concentrations being recorded at LC12. Mussels located between LC08 and Highway 140 exceed the CCME TEQ criteria (CCME, 2001). These data suggest bioavailable PCBs upstream of Highway 140 at concentrations which may pose an adverse effect to wildlife.

Total PCB concentrations in forage fish collected in 2002 are elevated to concentrations exceeding the IJC criteria for the protection of fish-eating wildlife by as much as 100 times. The highest concentrations in 2003 are observed immediately at Ridge Road, and at the next highest at Highway 140. While PCB tissue concentrations are considerably lower in 2003, concentrations are still elevated over the IJC criteria at Highway 140 by as much as 25 times. PCB concentrations recorded in the fish tissue

above the IJC criteria pose a threat to organisms eating fish from Lyons Creek, as well as from bioaccumulation in higher organisms in the food web.

In 2002, only fish collected from upstream of Highway 140 exceed the CCME TRG (2001: 0.79ng TEQ/kg), in 2003 all the fish collected from Lyons Creek, as well as from Usshers Creek, exceed the CCME TRG by in excess of 63 to 400 times. The high levels observed in 2003 are primarily driven by congener 126 (3,3',4,4',5 pentachlorobiphenyl) which has an extremely high toxic equivalency factor (TEF = 0.1), followed by congener 118 (2,3',4,4',5 pentachlorobiphenyl). In 2002, congener 126 is not observed and the TEQs are primarily driven by congener 118. In both years fish were collected, the most downstream location (LC38) has the lowest TEQ values. The distinct downstream trend in TEQ values further supports the evidence suggesting that the source of PCBs to the system originate from the upper portion of the creek and that these concentrations are at levels which can adversely impact the aquatic organisms in the system and the wildlife feeding on these organisms.

PCB concentrations in the sport fish fillets collected from Highway 140 are significantly higher than those collected from downstream of the QEW; a trend which has been observed in the past. Sport fish have historically been elevated in the vicinity of Highway 140 such that restrictions of as little as 1 meal/month (pumpkinseed, 1994), based on the consumption advice of that time (MOE 1995), have been advised. Carp and white sucker recorded during this study (2002 and 2003) are both observed at concentrations that would result in consumptions restrictions of one to two meals per month. The highest concentrations observed during the study are in the carp from 2002, which have as much as 3000ng/g PCBs in the tissue. However, when regressions are run on the data to assess the concentrations likely to be observed in fish of different size classes, all fish have some degree of restriction for their consumption. Minks fed on diets containing perch (0.69mg PCB/kg diet), white sucker (0.63mg PCB/kg diet) and whitefish (0.48mg PCB/kg diet) for seven months exhibited impaired reproduction (Hornshaw et al. 1986). Leghorn chicks fed diets of contaminated carp with PCB residues as high as 6.6mg PCB/kg diet showed a 40% deformity rate (Summer et al. 1996). The concentrations observed in the fish collected from some of the sites in Sinister Creek have the potential to exceed these doses. Although the carp concentrations collected from Highway 140 are all below the concentrations reported by Summer et al. (1996), white sucker concentrations are elevated above those considered by Hornshaw et al. (1986) at which minks exhibited impaired reproduction.

TEQ concentrations in the fillets collected from Highway 140 in 2003 exceed both the mammalian (0.79ng TEQ/kg) and avian (2.4ng TEQ/kg) TRG (CCME, 2001). As in forage fish, the congener driving these elevated TEQ concentrations is congener 126.

11.3 Sediment toxicity

Laboratory sediment toxicity tests reveal that the mayfly, *Hexagenia* spp. is most sensitive to Lyons Creek sediments, showing an acutely toxic response at three sites

(LC03, LC08, LC12), followed by the amphipod Hyalella, showing an acutely toxic response at two sites (LC03, LC08). The three toxic sites have the highest total sediment [PCB] (4700 to 12500ng/g dw). Hexagenia and Hyalella survival-PCB contaminant relationships reveal that about 30% of the variability in survival of both these organisms is explained by sediment total PCBs alone. More variability in Hyalella and Hexagenia survival is explained by metal contamination (Pb, Cd, Fe), although these individual metal concentrations are below the SELs. Greatest toxicity is observed at site LC03, approximately 4m downstream of the former Welland Pipe outfall, where acute and/or chronic toxicity are evident to all 4 lab organisms. Toxicity to *Tubifex* is observed at two sites (LC03 and LC08), and the modes of toxicity differ. At LC03, the effect is chronic, with low number of cocoons produced per adult, indicating an effect primarily on gametogenesis (cocoon production), whereas at LC08, the effect on *Tubifex* is acute (35% survival). This suggests possibly different cause(s) of toxicity at the different sites. Site LC03 has the highest [PCB]_{sed}, and the SELs are also exceeded for As, Cu, Ni, and Zn, whereas at LC08, only Zn is above the SEL. Toxicity is observed to about 750m downstream (LC12) of the pumping station at the Welland Canal, and no toxicity is observed from about 1450m downstream (LC14) on. The three toxic sites, LC03, LC08, and LC12, had an oily residue present on the surface water and the sediment had a distinct strong odour of hydrocarbons that was not observed at other Lyons Creek sites at the time of sampling.

11.4 Benthic community

Lyons creek communities were compared to the reference creek communities. Reference creeks used in the assessment were deemed appropriate for comparison to Lyons Creek based on five parameters: watershed area, stream order, wetland percentage, flow type and sediment type (NPCA 2003).

Overall, abundance and diversity of invertebrate families at Lyons Creek sites are similar or higher to that observed in neighbouring reference creeks. However, taxa richness and abundance of odonates are significantly lower at site LC12, and there is concordance between community structure and toxicity at this site. Site LC12 is severely toxic, has the lowest taxa diversity (less than 2 SD of the reference creek mean) and is void of amphipods (which are present at all other Lyons Creek sites) as well as caenid mayflies (present at most other sites) and coenagrionids (odonates) (present at all other sites including reference). Additionally, the highest PCB accumulation occurs at LC12, and this site has the second highest [PCB]_{sed}, (after LC03). There is lack of concordance, however, between toxicity and community structure at sites LC03 and LC08. Both these sites show severe toxicity, and while taxon diversity is lower than the reference creek mean, abundances are similar (or slightly lower) to those at reference sites. Communities may be acclimated or adapted or there may be insufficient stress to cause population level responses at these sites.

11.5 Biomagnification potential

Models involving a range of biomagnification conditions were used to predict potential [PCB] in receptors of concern for Lyons Creek. The receptor species are considered important to the Lyons Creek study area and encompass the trophic levels linking sediments to the top predators, where biomagnification is expected to be greatest. Three levels of dietary exposure and trophic transfer of PCB were assumed: minimum and maximum scenarios to bracket the range of potential outcomes, and an intermediate scenario to characterize "average" conditions. The critical outcome of the evaluation is whether or not the predicted [PCB]_{rec} values for exposed sites exceed the appropriate tissue guideline (IJC objective) and exceed the reference site maximum [PCB]_{rec}. For the minimum scenario, 2 of the 11 Lyons Creek sites exceed the IJC tissue objective and maximum reference concentration, and for the intermediate and maximum scenarios, all 11 of sites exceed this criteria.

The likelihood of realizing this degree of PCB biomagnification is not clear due to uncertainties associated with predicting receptor [PCB] values and conservative assumptions of the assessment. Reducing uncertainty in the predictions of PCB biomagnification in Lyons Creek would be best achieved by identifying a more narrow range of appropriate BMFs, and by quantifying the actual exposures of receptors to dietary PCB. However, actual PCBs in sport fish collected at highway 140 clearly show that PCBs accumulate in higher trophic organisms above the IJC guideline and above sport fish consumption advisories (for carp). Comparison of predicted [PCB]_{rec} to actual [PCB]_{rec} and the intermediate uptake and exposure scenario underestimates the [PCB]_{rec} (Actual concentrations fall between the minimum and intermediate uptake and exposure scenarios).

The IJC tissue objective applies to concentrations of PCBs in fish, and is for the protection of wildlife consumers of fish. Data are available for direct evaluation of the predicted tissue PCB levels for mink and the diving duck, and a discussion of this is provided in Milani and Grapentine (2005). Generally, for mink, predicted [PCBs] under the intermediate to maximum exposure and uptake scenarios are similar to concentrations observed in wild mink collected from the Great Lakes region. Under the maximum scenario, predicted mink receptor concentrations could be at levels associated with adverse effects at site LC12, based on toxicity benchmarks provided in the literature (see Milani and Grapentine, 2005).

12 Conclusion

12.1 PCBs

[PCB] in sediment is most significantly elevated in the upper reaches of Lyons Creek (upstream of Highway 140) and total PCBs in sediment at the majority of Lyons Creek sites are elevated above those at reference sites. The highest [PCB] is found just downstream of the former Welland Pipe outfall (LC03) and [PCB] decreases overall with

distance downstream of the pipe. Total [PCB] at the site farthest downstream (downstream of the QEW) (LC38) is similar to that at the upstream site (LC01). The SEL is not exceeded at any site (LC03 is very close to the SEL), while 12 of the 15 Lyons Creek sites (from LC03 to LC23) exceed the PEL.

Highest PCBs occur in invertebrates collected from LC12, which does not coincide with the highest [PCB] in the sediment. Total [PCB] in the midges are elevated above reference at all Lyons Creek sites, amphipods at 10 of the 11 sites, oligochaetes at 9 of the 11 sites, and odonates at 2 of the 11 sites. Overall, total [PCB]_{inv} decreases downstream of LC12 with levels at the site furthest downstream is similar to that seen at the upstream Lyons Creek site, but is about three to four times higher than at reference sites for two of the four taxa. Total [PCB] are above the IJC PCB objective of 100 ng/g for all four taxa at LC12 and for at least one taxon at eight other Lyons Creek sites.

12.2 Metals

Some metals (primarily nickel, zinc and copper) are elevated above the PSQG SEL criteria in the upper portion of the creek (upstream of Highway 140). Copper, nickel and zinc all exceed the PSQG SEL criteria at LC03; zinc exceeds the SEL by almost an order of magnitude. Metals in the sediments at these concentrations may pose potential threat to the health of the resident benthic fauna at these sites.

12.3 Toxicity

There is evidence of severe toxicity at three sites: LC03, LC08 and LC12. Acute toxicity is evident at these sites for one to three laboratory organisms, and toxicity is most severe for LC03. Toxicity is related to one or a combination of several metals or to PCBs and PAHs.

12.4 Benthic alteration

Overall, Lyons Creek communities are similar to those at reference. There is a significant difference in taxa richness and number of Coenagrionidae (odonates) between controls and site LC12, which is void of odonates. Site LC12 is the most depauperate of all Lyons Creek sites, having the lowest diversity of taxa, and being void of key groups of odonates, mayflies, amphipods and caddisflies. Results for LC12 show concordance with toxicity results.

12.5 Biomagnification potential

Total PCBs in biota (except odonates) at most sites exposed to historical industrial discharges are elevated above those at reference sites. This suggests that historic effluent discharges are linked to elevated invertebrate PCB concentrations.

Concentrations of total PCBs in sediment are significantly predictive of concentrations in amphipods and chironomids, indicating that sediment PCBs affects invertebrate PCB

concentrations. (Adjusting for effects of covariates for the oligochaetes also results in a significant positive relationship.)

For the minimum exposure and uptake scenario, two sites (LC12, LC16) are predicted to have [PCB]_{rec} higher than the IJC tissue objective and the maximum reference site [PCB]_{rec}. For intermediate and maximum exposure and uptake scenarios, all Lyons Creek sites are predicted to have [PCB]_{rec} higher than the criteria. Thus, under all PCB-exposure and uptake assumptions, PCBs could bioaccumulate in receptors to levels that are not protective of adverse effects at 2 to all 11 Lyons Creek sites where tissue was collected. Sites LC12 and LC16 are most severe.

Using the rule-based, weight of evidence approach described in Grapentine et al. (2002), and recently revised by Chapman (2005) (where all 4 information components are available), further management actions are required for LC12 and the risk of biomagnification needs to be fully assessed for LC16 (minimum scenario). Under the intermediate scenario, all 11 Lyons Creek sites require that the risk of biomagnification be fully assessed. Sites LC03, LC08 and LC12 require monitoring of change in benthic communities due to observed laboratory toxicity at these sites.

The area from LC03 to LC16/LC17 (Highway 140) is the most critical area of the creek. The highest sediment, invertebrate, mussel and fish PCB concentrations occur in this area, and laboratory toxicity, altered communities and potentially adverse effects due to biomagnification are all observed within this area.

Acknowledgements

This project was supported by the Great Lakes Basin 2020 Action Plan, the Great Lakes Sustainability Fund (GLSF), the Ontario Ministry of the Environment (MOE), and the Niagara Peninsula Conservation Authority (NPCA).

The GLSF, a component of the Great Lakes program, provides resources to demonstrate and implement technologies and techniques to assist in the remediation of Areas of Concern and other priority area in the Great Lakes. The report that follows addresses sediment quality issues in Lyons Creek East, Welland, Ontario (Niagara Area of Concern). Although the report was subject to technical review, it does not necessarily reflect the views of the Sustainability Fund or Environment Canada (EC).

Advice on the study design was provided by Roger Santiago and Janette Anderson (EC-OR), Cheriene Vieira (MOE) and Jocelyn Baker (NPCA). Field technical support was provided by Craig Logan, Sherri Thompson, Jennifer Webber, Jesse Baillargeon and Corrine Siefker (EC-NWRI), Steve Petro (MOE), and Al Vieira, Josh Diamond, Annie Michaud, and Stephanie Chase (NPCA). The organic analysis was performed by Eric Reiner (Dioxins laboratory, MOE, Rexdale, ON). Station positioning and site maps were provided by the NPCA. Community structure sorting was completed by Sherri Thompson, benthic invertebrate identification by Craig Logan, and toxicity tests by Jennifer Webber. The Niagara Seaway Authority provided land access for sample collection and processing purposes.

References

- Acres, 1978. Environmental and Preliminary Engineering Study for Lyon's Creek. Prepared for the Niagara Peninsula Conservation Authority by Acres Consulting Services Ltd.
- Barsotti, D.A., R.J. Marlar, and J.R. Allen. 1976. Reproductive dysfunction in rhesus monkeys exposed to low levels of polychlorinated biphenyls (Aroclor 1248). Food Cosmet. Toxicol. 14(2):99–103.
- Belbin, L., 1993. *PATN, pattern analysis package.* Division of Wildlife Ecology, CSIRO, Canberra, Australia
- Binelli, A., S. Galassi and A. Provini. 2001. Factors affecting the use of *Dreissina polymorpha* as a bioindicator: the PCB pollution in Lake Como (N. Italy). Water, Air and Soil Pollution, 125: 19-32.
- Boyd, T., D. Bedard, A. Hayton, R. Jaagumagi, C. Kinch & S. Piesanen, Unpublished. A Sediment/Biological Assessment of Lyons Creek East. Prepared for the Ministry of the Environment.
- CCME, 2001. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg, MB, Canada.
- Chapman, P.M. 1996. Presentation and interpretation of sediment quality triad data. Ecotoxicology 5: 327-339.
- Chapman, P.M. 2005. Development of a Canada-Ontario decision-making framework for contaminated sediments in the Great Lakes (and elsewhere). Final report. EVS Environment consultants – Golder Associates, North Vancouver, BC, Canada.
- Draper, N.R., and H. Smith. 1998. Applied regression analysis, 3^d Ed. John Wiley & Sons, Inc., New York, NY.
- Environmental Strategies Ltd., 1992. Investigation and remediation of PCB contamination Lyons Creel area, west of the Welland Canal. Welland Ontario Phase I study report. Prepared for the City of Welland, Ontario Hydro and the St. Lawrence Seaway Authority.
- Fletcher, R., and S. Petro. 2005. Biomonitoring study of Lyons Creek East, Welland Ontario. 2002-2003. Technical Memorandum to West Central Region. Monistry of the Environment, ON, Canada. March 2005. 79 pp.

- Grapentine, L., J. Anderson, D. Boyd, G. A. Buron, C. DeBarros, G. Johnson, C. Marvin, D. Milani, S. Painter, T. Pasco, T. Reynoldson, L. Richman, K. Solomon, & P.M. Chapman. 2002. A decision making framework for sediment assessment for the Great Lakes. Hum. Ecol. Risk Assess. 8: 1641-1655.
- Hornshaw, T.C., J. Safronoff, R.K. Ringer and R.J. Aulerich, 1986. LC₅₀ test results in polychlorinated biphenyl-fed munk: age, season, and diet comparisons, Arch Env. Contam. Toxicol. 15: 717-723.
- IJC, 1988. Revised Great Lakes Water Quality Agreement of 1978, as amended by protocol signed November 18, 1987. 130pp. International Joint Commission.
- Jongman, R.H.G., C.J.F. Ter Braak and O.F.R. Van Tongeren, 1995. *Data analysis in community and landscape ecology.* Cambridge University Press, UK. pp. 299.
- Krantzberg, G, J.H. Hartig, and M.A. Zarull. 2000. Sediment management: Deciding when to intervene. Environmental Science and Technology / News, 1 January 2000, Pp. 22A-27A.
- Lillie, R.J., H.C. Cecil, J. Bitman, and G.F. Fries. 1974. Differences in response of caged white leghorn layers to various polychlorinated biphenyls (PCBs) in the diet. Poult. Sci. 53:726–732.
- Long, E.R., and P.M. Chapman. 1985. A sediment quality triad: measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Marine Pollution Bulletin 16: 405-415.
- Milani, D., and L.C. Grapentine. 2005. The assessment of PCB contamination and biological impact in Lyons Creek East. Final Draft Report. National Water Research Institute Burlington, ON, Canada. 83 pp + Appendices.
- Minitab, 2000. MINITAB User's Guide 2: Data analysis and quality tools. Minitab Inc., State College, PA. [ISBN 0-925636-44-4]
- MOE, 1993a. Handbook of analytical methods for environmental samples. Ministry of the Environment, Toronto, Ontario.
- MOE, 1993b. Guidelines for the protection and management of aquatic sediments in Ontario. Ministry of the Environment, Toronto, Ontario.
- MOE, 1995. Guide to Eating Ontario Sport Fish, 1995-1996. Twenty-second Edition, Revised. Ministry of the Environment.

- MOE, 1996. An Integrated Approach to the Evaluation and Management of Contaminated Sediments. Minstry of the Envitronment. iSBN 0-7778-3845-1. February 1996, reprinted March 1998.
- MOE, 1997. Lyons Creek Juvenile Fish Monitoring Report. Ministry of the Environment Memorandum to West Central.
- MOE. 1998. Laboratory sediment bioassay report on Lyons Creek sediments 1992 & 1996. Prepared by D. Bedard and S. Petro. Standards Development Branch. ISBN 0-7778-7195-5. April 1998.
- MOE, 2003. Method PFAOC-E3136. The determination of Polychlorinated Biphenyls (PCBs), Organochlorines (OCs) and Chlorobenzenes (CBs) in fish, clams and mussels by Gas Liquid Chromatography – Electron Capture Detection (GLC-ECD). Ministry of the Environment, Toronto, Ontario
- MOE, 2005. Guide to Eating Ontario Sport Fish, 2005-2006. Twenty-second Edition, Revised. Ministry of the Environment.
- NPCA (Niagara Peninsula Conservation Authority). 2003. Lyons Creek reference site selection. Prepared by Al Vieira, NPCA. 2003.
- Reynoldson, T.B., R.C. Bailey, K.E. Day, and R.H. Norris. 1995. Biological guidelines for freshwater sediment based on benthic assessment of sediment (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20: 198-219.
- Reynoldson, T.B., and K.E. Day. 1998. Biological guidelines for the assessment of sediment quality in the Laurentian Great Lakes. National Water Research Institute, Burlington, Ontario, Canada. NWRI Report No. 98-232.
- Reynoldson, T.B., K.E. Day, and T. Pascoe. 2000. The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. In: Assessing the biological quality of fresh waters. RIVPACS and other techniques. J.F. Wright, D.W. Sutcliffe, and M.T. Furse (Eds). Freshwater Biological Association, UK. pp. 165 180.
- Reynoldson, T.B., S.P. Thompson, and D. Milani. 2002. Integrating multiple toxicological endpoints in a decision-making framework for contaminated sediments. Hum. Ecol. Risk Assess. 8: 1569-1584.
- Summer, C.L., J.P. Giesy, S. J. Bursian, J.A. Render, T.J. Kubiak, P.D. Jones, D.A. Verbrugge, and R.J. Aulerich. 1996. Effects induced by feeding organochlorine-contaminated carp from Saginaw Bay, Lake Huron, to laying white leghorn hens. II. Embryotoxic and teratogenic effects. J. Toxicol. Environ. Health 49:409–438.

Van den Berg, M., L. Birnbaum, A.T.C. Bosveld., B. Brunström, P. Cook, M. Feeley, J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X. Rolaf van Leeuwen, A.K.D. Liem, C. Nolt, R.E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106(12):775–792.

TABLES

Group	Aluminum	Barium E	3eryllium	Cadmium	Calcium C	hromium	Cobalt	Copper	Iron	Lead Ma	gnesium Ma	nganese Mo	olybdenum	Nickel	Strontium	litanium Vi	anadium	Zinc
1 LC02	16000 16000	150 150	ug/g 0.8 <t< th=""><th>1.8 1.8</th><th>57000</th><th>10/9 57</th><th>ug/g 13</th><th>86 6/6n</th><th>ug/g 34000</th><th>ug/g 81</th><th>0026 6/6n</th><th>086 380</th><th>ug/g 4.4</th><th>08 6/6n</th><th>170 ug/g</th><th>160 160</th><th>66 6/6n</th><th>ug/g 2400</th></t<>	1.8 1.8	57000	10/9 57	ug/g 13	86 6/6n	ug/g 34000	ug/g 81	0026 6/6n	086 380	ug/g 4.4	08 6/6n	170 ug/g	160 160	66 6/6n	ug/g 2400
2 LC01	13000	06	0.6 <t< td=""><td>0.9 <t< td=""><td>70000</td><td>22</td><td>10</td><td>30</td><td>20000</td><td>14</td><td>14000</td><td>450</td><td>0.5 <=W</td><td>31</td><td>130</td><td>220</td><td>28</td><td>110</td></t<></td></t<>	0.9 <t< td=""><td>70000</td><td>22</td><td>10</td><td>30</td><td>20000</td><td>14</td><td>14000</td><td>450</td><td>0.5 <=W</td><td>31</td><td>130</td><td>220</td><td>28</td><td>110</td></t<>	70000	22	10	30	20000	14	14000	450	0.5 <=W	31	130	220	28	110
3 LC03	15000	110	0.7 <t< td=""><td>1.2</td><td>51000</td><td>46</td><td>5</td><td>22</td><td>29000</td><td>42</td><td>12000</td><td>430</td><td>1.6 <t< td=""><td>48</td><td>120</td><td>190</td><td>35</td><td>200</td></t<></td></t<>	1.2	51000	46	5	22	29000	42	12000	430	1.6 <t< td=""><td>48</td><td>120</td><td>190</td><td>35</td><td>200</td></t<>	48	120	190	35	200
3 LC04	12000	84	0.6 <t< td=""><td>F</td><td>52000</td><td>38</td><td>=</td><td>64</td><td>22000</td><td>33</td><td>14000</td><td>420</td><td>1.4 <t< td=""><td>8</td><td>110</td><td>210</td><td>58</td><td>440</td></t<></td></t<>	F	52000	38	=	64	22000	33	14000	420	1.4 <t< td=""><td>8</td><td>110</td><td>210</td><td>58</td><td>440</td></t<>	8	110	210	58	440
3 LC05	14000	94	0.7 <t< td=""><td>1.4</td><td>55000</td><td>38</td><td>1</td><td>49</td><td>24000</td><td>30</td><td>15000</td><td>450</td><td>0.6 <t< td=""><td>41</td><td>120</td><td>230</td><td>32</td><td>450</td></t<></td></t<>	1.4	55000	38	1	49	24000	30	15000	450	0.6 <t< td=""><td>41</td><td>120</td><td>230</td><td>32</td><td>450</td></t<>	41	120	230	32	450
3 LC06	13000	86	0.6 <t< td=""><td>1</td><td>48000</td><td>35</td><td>1</td><td>45</td><td>24000</td><td>36</td><td>14000</td><td>410</td><td>1.3 <t< td=""><td>4</td><td>96</td><td>240</td><td>30</td><td>380</td></t<></td></t<>	1	48000	35	1	45	24000	36	14000	410	1.3 <t< td=""><td>4</td><td>96</td><td>240</td><td>30</td><td>380</td></t<>	4	96	240	30	380
3 LC07	16000	110	0.7 <t< td=""><td>1.1</td><td>59000</td><td>37</td><td>5</td><td>52</td><td>26000</td><td>37</td><td>13000</td><td>390</td><td>0.8 <t< td=""><td>4</td><td>140</td><td>210</td><td>34</td><td>570</td></t<></td></t<>	1.1	59000	37	5	52	26000	37	13000	390	0.8 <t< td=""><td>4</td><td>140</td><td>210</td><td>34</td><td>570</td></t<>	4	140	210	34	570
3 LC08	16000	140	0.8 <t< td=""><td>1.8</td><td>48000</td><td>44</td><td>12</td><td>22</td><td>36000</td><td>63</td><td>9700</td><td>380</td><td>0.8 <t< td=""><td>58</td><td>150</td><td>170</td><td>36</td><td>1400</td></t<></td></t<>	1.8	48000	44	12	22	36000	63	9700	380	0.8 <t< td=""><td>58</td><td>150</td><td>170</td><td>36</td><td>1400</td></t<>	58	150	170	36	1400
3 LC09	18000	130	0.8 <t< td=""><td>1.3</td><td>48000</td><td>42</td><td>12</td><td>56</td><td>30000</td><td>48</td><td>12000</td><td>400</td><td>1.1 <t< td=""><td>54</td><td>140</td><td>220</td><td>39</td><td>920</td></t<></td></t<>	1.3	48000	42	12	56	30000	48	12000	400	1.1 <t< td=""><td>54</td><td>140</td><td>220</td><td>39</td><td>920</td></t<>	54	140	220	39	920
3 LC10	20000	140	0.9 <t< td=""><td>1.5</td><td>43000</td><td>47</td><td>13</td><td>67</td><td>33000</td><td>60</td><td>13000</td><td>400</td><td>1 < T</td><td>60</td><td>120</td><td>220</td><td>42</td><td>1200</td></t<>	1.5	43000	47	13	67	33000	60	13000	400	1 < T	60	120	220	42	1200
3 LC11	20000	140	0.9 <t< td=""><td>1.5</td><td>42000</td><td>47</td><td>13</td><td>89</td><td>33000</td><td>59</td><td>13000</td><td>380</td><td>0.9 <t< td=""><td>60</td><td>120</td><td>210</td><td>41</td><td>1200</td></t<></td></t<>	1.5	42000	47	13	89	33000	59	13000	380	0.9 <t< td=""><td>60</td><td>120</td><td>210</td><td>41</td><td>1200</td></t<>	60	120	210	41	1200
3 LC12	19000	130	0.8 <t< td=""><td>1.4</td><td>65000</td><td>37</td><td>12</td><td>53</td><td>28000</td><td>38</td><td>11000</td><td>360</td><td>0.5 <=W</td><td>47</td><td>180</td><td>170</td><td>38</td><td>580</td></t<>	1.4	65000	37	12	53	28000	38	11000	360	0.5 <=W	47	180	170	38	580
3 LC13	21000	130	0.9 <t< td=""><td>1.2</td><td>43000</td><td>39</td><td>13</td><td>51</td><td>30000</td><td>38</td><td>10000</td><td>380</td><td>0.5 <=W</td><td>50</td><td>150</td><td>170</td><td>40</td><td>530</td></t<>	1.2	43000	39	13	51	30000	38	10000	380	0.5 <=W	50	150	170	40	530
3 LC17	17000	130	0.8 <t< td=""><td>0.9 <t< td=""><td>41000</td><td>28</td><td>1</td><td>33</td><td>26000</td><td>21</td><td>14000</td><td>600</td><td>0.5 <=W</td><td>35</td><td>89</td><td>200</td><td>36</td><td>330</td></t<></td></t<>	0.9 <t< td=""><td>41000</td><td>28</td><td>1</td><td>33</td><td>26000</td><td>21</td><td>14000</td><td>600</td><td>0.5 <=W</td><td>35</td><td>89</td><td>200</td><td>36</td><td>330</td></t<>	41000	28	1	33	26000	21	14000	600	0.5 <=W	35	89	200	36	330
3 LC38	27000	130	1 ≺T	1.4	39000	36	14	29	32000	53	14000	590	0.5 <=W	4	100	250	47	150
MEAN	17538.5	119.5	0.8	1.3	48769.2	39.5	11.9	52.5	28692.3	40.6	12669.2	430.0	0.0	47.6	125.8	206.9	36.8	680.8
4 LC15	24000	140	1 <t< td=""><td>1.2</td><td>30000</td><td>41</td><td>14</td><td>49</td><td>32000</td><td>39</td><td>11000</td><td>410</td><td>0.5 <=W</td><td>53</td><td>94</td><td>180</td><td>43</td><td>500</td></t<>	1.2	30000	41	14	49	32000	39	11000	410	0.5 <=W	53	94	180	43	500
5 LC18	24000	140	1 <t< td=""><td>1.1</td><td>15000</td><td>40</td><td>14</td><td>45</td><td>36000</td><td>33</td><td>10000</td><td>420</td><td>0.5 <=W</td><td>52</td><td>65</td><td>150</td><td>46</td><td>670</td></t<>	1.1	15000	40	14	45	36000	33	10000	420	0.5 <=W	52	65	150	46	670
5 LC19	20000	130	0.9 <t< td=""><td>1.2</td><td>21000</td><td>57</td><td>13</td><td>46</td><td>31000</td><td>120</td><td>10000</td><td>450</td><td>5.9</td><td>50</td><td>72</td><td>160</td><td>40</td><td>570</td></t<>	1.2	21000	57	13	46	31000	120	10000	450	5.9	50	72	160	40	570
5 LC20	21000	120	0.9 <t< td=""><td>1.4</td><td>17000</td><td>36</td><td>14</td><td>4</td><td>32000</td><td>27</td><td>9500</td><td>450</td><td>0.5 <=W</td><td>49</td><td>62</td><td>200</td><td>42</td><td>570</td></t<>	1.4	17000	36	14	4	32000	27	9500	450	0.5 <=W	49	62	200	42	570
5 LC21	24000	130	1 ⊲T	1.5	6900	37	13	37	34000	27	0006	460	0.5 <=W	23	41	210	46	430
5 LC22	24000	140	1 ⊲T	1.3	8300	40	15	6	38000	34	0006	530	0.5 <=W	65	50	180	47	740
5 LC23	25000	140	1.1 <t< td=""><td>1.6</td><td>7500</td><td>41</td><td>16</td><td>43</td><td>38000</td><td>40</td><td>9800</td><td>470</td><td>0.5 <=W</td><td><u>66</u></td><td>43</td><td>200</td><td>50</td><td>970</td></t<>	1.6	7500	41	16	43	38000	40	9800	470	0.5 <=W	<u>66</u>	43	200	50	970
5 LC24	22000	120	0.9 <t< td=""><td>1.3</td><td>0069</td><td>33</td><td>14</td><td>R</td><td>31000</td><td>26</td><td>8300</td><td>720</td><td>0.5 <=W</td><td>49</td><td>41</td><td>140</td><td>42</td><td>340</td></t<>	1.3	0069	33	14	R	31000	26	8300	720	0.5 <=W	49	41	140	42	340
5 LC25	26000	150	1 √1	1.4	2000	40	14	40	38000	40	8000	620	0.5 <=W	63	53	130	49	680
5 LC26	24000	130		0.9 <t< td=""><td>5800</td><td>36</td><td>13</td><td>8</td><td>34000</td><td>58</td><td>7900</td><td>500</td><td>0.5 <=W</td><td>23</td><td>46</td><td>160</td><td>45</td><td>490</td></t<>	5800	36	13	8	34000	58	7900	500	0.5 <=W	23	46	160	45	490
5 LC27	21000	110	0.8 <t< td=""><td>1.6</td><td>6000</td><td>33</td><td>14</td><td>8</td><td>36000</td><td>37</td><td>7300</td><td>520</td><td>0.6 <t< td=""><td><u>ہ</u></td><td>41</td><td>170</td><td>43</td><td>1000</td></t<></td></t<>	1.6	6000	33	14	8	36000	37	7300	520	0.6 <t< td=""><td><u>ہ</u></td><td>41</td><td>170</td><td>43</td><td>1000</td></t<>	<u>ہ</u>	41	170	43	1000
5 LC28	20000	110	0.8 <t< td=""><td>1.2</td><td>7400</td><td>31</td><td>12</td><td>29</td><td>30000</td><td>31</td><td>1700</td><td>500</td><td>0.5 <=W</td><td>47</td><td>43</td><td>220</td><td>6 [</td><td>520</td></t<>	1.2	7400	31	12	29	30000	31	1700	500	0.5 <=W	47	43	220	6 [520
5 LC29	18000	100	0.8 <1	1.3	/600	30	17	207	21000	97	6/00	430	M=> 0.0	49	09	200	37	420
5 LC30	22000	120	0.9 <1	1.7	6600	38	5	ខ្ល	34000	39	8900	520	0.5 <=W	20	38	160	4 :	720
5 LC31	25000	140		0.1	6100	95 5	4	8	34000	25	8200	4/0	0.5 <=W	20	48	180	8 1	430
5 LC32	31000	160		1.1	1000	31	10	8 8	3/000	500	00//	400	1.2<1 T < R O	00 K	001	160	2 6	040 850
5 I C34	29000	190	1.1	7.1	6800	40	16	5 98	44000	39	8200	2000	T> 0.0	2 P	60	190	52	870
5 1035	20000	26	0.8 <t< td=""><td>12</td><td>6200</td><td>2.8</td><td>10</td><td>50</td><td>00062</td><td>08</td><td>5500</td><td>450</td><td>1 2 < T</td><td>52</td><td>99</td><td>110</td><td>37</td><td>520</td></t<>	12	6200	2.8	10	50	00062	08	5500	450	1 2 < T	52	99	110	37	520
5 LC39	22000	130	T> 0.0	1.5	7100	31	19	26	34000	22	6800	950	0.5 <=W	50	64	130	4	300
5 LC40	24000	120	1 <t< td=""><td>0.9 <t< td=""><td>6400</td><td>31</td><td>15</td><td>19</td><td>29000</td><td>87</td><td>6800</td><td>510</td><td>0.5 <=W</td><td>50</td><td>40</td><td>140</td><td>45</td><td>110</td></t<></td></t<>	0.9 <t< td=""><td>6400</td><td>31</td><td>15</td><td>19</td><td>29000</td><td>87</td><td>6800</td><td>510</td><td>0.5 <=W</td><td>50</td><td>40</td><td>140</td><td>45</td><td>110</td></t<>	6400	31	15	19	29000	87	6800	510	0.5 <=W	50	40	140	45	110
5 LC36	20000	120	0.9 <t< td=""><td>0,6 <t< td=""><td>12000</td><td>29</td><td>17</td><td>35</td><td>30000</td><td>67</td><td>8700</td><td>440</td><td>0.6 < T</td><td>45</td><td>57</td><td>200</td><td>41</td><td>170</td></t<></td></t<>	0,6 <t< td=""><td>12000</td><td>29</td><td>17</td><td>35</td><td>30000</td><td>67</td><td>8700</td><td>440</td><td>0.6 < T</td><td>45</td><td>57</td><td>200</td><td>41</td><td>170</td></t<>	12000	29	17	35	30000	67	8700	440	0.6 < T	45	57	200	41	170
MEAN	23285.7	131.8	0.9	1.4	8509.5	36.4	14.5	34.7	34047.6	40.4	8185.7	595.7	0.9	58.0	54.4	170.5	45.0	571.9
6 LC14	23000	150	1 <t< td=""><td>2</td><td>34000</td><td>58</td><td>14</td><td>23</td><td>54000</td><td>97</td><td>11000</td><td>420</td><td>0.9 <t< td=""><td>64</td><td>110</td><td>200</td><td>48</td><td>3200</td></t<></td></t<>	2	34000	58	14	23	54000	97	11000	420	0.9 <t< td=""><td>64</td><td>110</td><td>200</td><td>48</td><td>3200</td></t<>	64	110	200	48	3200
7 LC16	23000	140	0.9 <t< td=""><td>1.5</td><td>15000</td><td>52</td><td>14</td><td>62</td><td>57000</td><td>51</td><td>9400</td><td>490</td><td>1.5 <t< td=""><td>85</td><td>59</td><td>180</td><td>46</td><td>1800</td></t<></td></t<>	1.5	15000	52	14	62	57000	51	9400	490	1.5 <t< td=""><td>85</td><td>59</td><td>180</td><td>46</td><td>1800</td></t<>	85	59	180	46	1800
				c c		G		4	00000	2		007		5				007
PSQG LEL SEL				0.6 10		26 110		110 110	20000 40000	31 250		460 1100		91 22				820
<t a="" measurable="" t<="" td=""><td>race amount</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td></t>	race amount																	ļ
<=W no measurad	ale response (zero)																	

Table 1: Surficial sediment chemistry metal concentrations from the initial screening survey of Lyons Creek East.

		a-BHC (hexachlorocy-			g-BHC (hexachlor- ocyclohex-				
Group		clohexane) ng/g	Dieldrin ng/g	Endrin ng/g	ane) ng/g	g-Chlordane ng/g	pp-DDD ng/g	pp-DDE ng/g	pp-DDT ng/g
1	LC02	1 <=W	4 <t< td=""><td>8 <t< td=""><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>750</td><td>15 <t< td=""></t<></td></t<></td></t<>	8 <t< td=""><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>750</td><td>15 <t< td=""></t<></td></t<>	1 <=W	2 <=W	5 <=W	750	15 <t< td=""></t<>
2	LC01	1 <=W	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	5 <t< td=""><td>5 <=W</td></t<>	5 <=W
3	LC03	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>400</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	400	5 <=W
3	LC04	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>120</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	120	5 <=W
3	LC05	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>160</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	160	5 <=W
3	LC06	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>100</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	100	5 <=W
3	LC07	1 <=W	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	140	5 <=W
3	LC08	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>460</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	460	5 <=W
3	LC09	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>10 <t< td=""><td>240</td><td>5 <=W</td></t<></td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	10 <t< td=""><td>240</td><td>5 <=W</td></t<>	240	5 <=W
3	LC10	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>290</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	290	5 <=W
3	LC11	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>210</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	210	5 <=W
3	LC12	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>77</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	77	5 <=W
3	LC13	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>90</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	90	5 <=W
3	LC17	1 <=W	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	120	5 <=W
3	LC38	1 <=W	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	1 <=W	5 <=W
3	MEAN	1.8	2.0 <=VV	4.0 <=VV	1.0	2.0	5.4	185.2	5.0
4	LC15	1 <=W	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	61	5 <=W
5	LC18	2 <t< td=""><td>4 <t< td=""><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>81</td><td>5 <=W</td></t<></td></t<>	4 <t< td=""><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>81</td><td>5 <=W</td></t<>	4 <=W	1 <=W	2 <=W	5 <=W	81	5 <=W
5	LC19	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>91</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	91	5 <=W
5	LC20	3 <t< td=""><td>4 <t< td=""><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>48</td><td>5 <=W</td></t<></td></t<>	4 <t< td=""><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>48</td><td>5 <=W</td></t<>	4 <=W	1 <=W	2 <=W	5 <=W	48	5 <=W
5	LC21	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>2 <t< td=""><td>2 <=W</td><td>5 <=W</td><td>33</td><td>5 <=W</td></t<></td></t<>	2 <=W	4 <=W	2 <t< td=""><td>2 <=W</td><td>5 <=W</td><td>33</td><td>5 <=W</td></t<>	2 <=W	5 <=W	33	5 <=W
5	LC22	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>64</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	64	5 <=W
5	LC23	3 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>51</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	51	5 <=W
5	LC24	1 <=W	8 <1	4 <=VV	1 <=VV	2 <=VV	5 <=W	12	5 <=W
5	LC25	1 <=W	6 <t< td=""><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>46</td><td>5 <=W</td></t<>	4 <=W	1 <=W	2 <=W	5 <=W	46	5 <=W
5	LC26	1 <=W	2 <=VV	4 <=VV	1 <=VV	2 <=W	5 <=W	20	5 <=W
5	LC27	1 <=W	2 <=VV	4 <=W	1 <=W	2 <=VV	5 <=W	38	5 <=W
5	LC28	1 <=W	2 <=VV	4 <=VV	1 <=W	2 <=VV	5 <=W	18	5 <=VV
5	LC29	1 <=VV	2 <=VV	4 <=VV	1 <=VV	2 <=VV	5 <=VV	17	5 <=VV
5	LC30	1 <=VV	10 <1 C .T	4 <=VV	1 <= VV	2 <=VV	5 <=>V	30	5 <= VV
5	LC31	1 <= ٧٧	0 < 1	4 <=VV	1 <= VV	2 <= VV	5 <=VV	12	5 <= VV
5	LC32	1 <=VV 1 <=\V/	2 <=vv	4 <=VV	1 <=VV 1 <=\V/	0<1 4 -T	5 <=VV	12	5 <=VV
5	LC34	1 <= \\/	4 <1 2 <=\\\/	4 <=VV 4 <=\N/	1 <= \/	4 < 1 2 <=\\\/	5 <=W	10	5 <=W
5	1.025	1 <= \\/	2 <= W	4 <=VV 4 <=\N/	1 <= \/	2 <= 10/	5 <=W	10 4 -T	5 <=W
5	LC30	1 <= W	2 <= W	4 <=VV	1 <= W	2 <= W	5<=W	4 <1 4 -T	5<=W
5	LC40	1 <= \\/	2 <= W	4 <=VV 4 <=\N/	1 <= \/	2 <= 10/	5 <=W	4 < 1	5 <=W
5	LC36	1 <=W	2 <=VV 2 <=W	4 <=VV 4 <-W	1 <=W	2 <= W	5 <=W	1 <=W	5 <=W
5	MEAN	1.4 <=W	3.6	4.0 <=W	1.0	2.4	5.0	28.7	5.0
6	LC14	4 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>5 <t< td=""><td>2 <=W</td><td>5 <=W</td><td>240</td><td>5 <=W</td></t<></td></t<>	2 <=W	4 <=W	5 <t< td=""><td>2 <=W</td><td>5 <=W</td><td>240</td><td>5 <=W</td></t<>	2 <=W	5 <=W	240	5 <=W
7	LC16	2 <t< td=""><td>2 <=W</td><td>4 <=W</td><td>1 <=W</td><td>2 <=W</td><td>5 <=W</td><td>800</td><td>5 <=W</td></t<>	2 <=W	4 <=W	1 <=W	2 <=W	5 <=W	800	5 <=W
PSQG	LEL SEL*	6 10000	2 91000	3 130000	3 1000		8 6000	5 19000	

 SEL*
 10000
 9

 SEL* corrected for TOC

<W for all sites:

a-Chlordane Aldrin b-BHC (hexachlorocyclohexane) Endosulphan I Endosulphan II Endosulphan sulphate

Heptachlor Heptachlor epoxide Methoxychlor Mirex op-DDT Oxychlordane

; total	15000 PS1	100 PS1	6900 PS1	2500 PS1	3100 PS1	1900 PS1	2300 PS1	8200 PS1	4700 PS1	5700 PS1	4100 PS1	1600 PS1	1800 PS1	2800 PS1	20 <=W 509.2	1200 PS1	2000 PS1	2000 001	1600 DS1	840 PS1	1700 PS1	1300 PS1	260 PS1	740 PS1	460 PS1	960 PS1	460 PS1	640 PS1	260 P40	340 PS1	260 PS1	124 025	40 PS1	60 PS1	20 <=W	750.5	5700 PS1	19000 PS1	R	30000		
PCB	0	02	0	a	0	0	0	0	0	2	0	06	06	9	20 <=W 3	Q	ç	3 5	2 5	2,9	9	6	0	02	8	8	89	3 5	30 < T	06	8	2 9	2 5	2 9	20 <=W	Q	10	a	0	0 5		
Pyrene	830	12	160	130	88	100	8	190	R	12.0	192	R	8	4	863.	22	5	38	14	- 12	. 8	8.	10	22	ų	2	₹ \$	- 8	^س ا	28	ų.	≓ :	- 1	. ¢		161	84	250	\$	85000		
henanthrene	420 <t< td=""><td>80 <t< td=""><td>600</td><td>800</td><td>360</td><td>560</td><td>340</td><td>380</td><td>240</td><td>360</td><td>240</td><td>180</td><td>120</td><td>220</td><td>20 <≓W 340.0</td><td>100</td><td>01</td><td>8 5</td><td>1/ 19</td><td>1 08 1 08</td><td>1, 09</td><td>80 <t< td=""><td>40 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>600</td><td>800</td><td>360</td><td>560</td><td>340</td><td>380</td><td>240</td><td>360</td><td>240</td><td>180</td><td>120</td><td>220</td><td>20 <≓W 340.0</td><td>100</td><td>01</td><td>8 5</td><td>1/ 19</td><td>1 08 1 08</td><td>1, 09</td><td>80 <t< td=""><td>40 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	600	800	360	560	340	380	240	360	240	180	120	220	20 <≓W 340.0	100	01	8 5	1/ 19	1 08 1 08	1, 09	80 <t< td=""><td>40 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	60 <t< td=""><td>40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <t< td=""><td>40 <t I</t </td><td>4 1 1</td><td>1.04</td><td>40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	40 <t I</t 	4 1 1	1.04	40 <t< td=""><td>280</td><td>40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<></td></t<>	280	40 <t< td=""><td>€ 8 - F</td><td>- F</td><td>40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<></td></t<>	€ 8 - F	- F	40 <t< td=""><td>20 <=W</td><td>66.7</td><td>120</td><td>820</td><td>560</td><td>950000</td><td></td><td></td></t<>	20 <=W	66.7	120	820	560	950000		
sphthalene F	20 <=W	20 <=W	60 < T	40 < T	60 < T	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W 27.7	20 <=W	W-~00	M->02	M202	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	M	20 <=W	20 <=W	20 <=W	M=> 07	20 - = W	20 <=W	20 <=W	20.0	20 <=W	20 <=W				
ndeno(1,2, 3- 3.d)pyrene N.	800 ⇔W	40 ≪W	480	560	320	440	360	480	280	360	280	200	160 ⊲⊺	120 ⊲⊺	40 ⇔W 313.8	120 ⊲⊺	120 J	180 -1	7 F 08	7 I 80 ≪I	120 4	120 ⊲⊺	80 ⊲⊺	120 ⊲⊺	80 ⊲⊺	80 ⊲⊺	40 <=W	20 F	40 <=V	120 ⊲T	40 <=W	40 ≙V	80 A	80 4	40 ≪V	81.9	160 ⊲T	200	200	320000		
Ir Fluorene c	20 <=W	20 <=W	60 < T	80 < T	40 < T	40 < T	20 <=W	40 < T	60 <t< td=""><td>40 <t< td=""><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W 36.9</td><td>20 <=W</td><td>M/06</td><td>M02</td><td>M02</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>M02</td><td>20 <=W</td><td>40 < T</td><td>20 <=W</td><td>M=> 07</td><td>20 -= W</td><td>20 <=W</td><td>20 <=W</td><td>21.0</td><td>60 < T</td><td>140</td><td>190</td><td>16000</td><td></td><td></td></t<></td></t<>	40 <t< td=""><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W 36.9</td><td>20 <=W</td><td>M/06</td><td>M02</td><td>M02</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>20 <=W</td><td>M02</td><td>20 <=W</td><td>40 < T</td><td>20 <=W</td><td>M=> 07</td><td>20 -= W</td><td>20 <=W</td><td>20 <=W</td><td>21.0</td><td>60 < T</td><td>140</td><td>190</td><td>16000</td><td></td><td></td></t<>	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W 36.9	20 <=W	M/06	M02	M02	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	M02	20 <=W	40 < T	20 <=W	M=> 07	20 -= W	20 <=W	20 <=W	21.0	60 < T	140	190	16000		
Tuoranthene	3600	140	1100	1500	860	1200	760	1400	840	1200	680	460	280	520	40 <t 833.8</t 	260	340	000	160	140	280	240	120	180	100	160	100	240	80 < T	380	120	0.01	180	140	20 <=W	170.5	006	2500	750	1020000		
benzo(a, anthrace ne	800 <=W	40 <=W	160 <t< td=""><td>120 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	120 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>80 <t< td=""><td>160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	160 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W 83.1</td><td>40 <=W</td><td>40 ~-W</td><td>M04</td><td>M04</td><td>40 <=W</td><td>80 cT</td><td>40 <=W</td><td>40 <=W</td><td>80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<></td></t<>	40 <=W	40 <=W	40 <=W	40 <=W 83.1	40 <=W	40 ~-W	M04	M04	40 <=W	80 cT	40 <=W	40 <=W	80 <t< td=""><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40~-W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 <=W</td><td>40 -=W</td><td>40 <=W</td><td>40 <=W</td><td>43.8 <=W</td><td>40 <=W</td><td>160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<></td></t<>	40 <=W	40 <=W	40 <=W	40~-W	40 <=W	40 <=W	40 <=W	40 <=W	40 -=W	40 <=W	40 <=W	43.8 <=W	40 <=W	160 <t< td=""><td>60</td><td>130000</td><td></td><td></td></t<>	60	130000		
d8- h); thalene	65	8	29	62	99	14	67	61	25	- 19	8	52	29	67	76 64.5	99	5	84	8	34	47	3	69	8	61	R	888	8 8	6	12	8	3 6	2 12	4	89	64.1	42	50				
12- sene naph	130	25	120	110	26	96	96	130	110	120	10	56	100	110	81 104.9	100	110	10	2 8	8 Q	110	3	11	80	62	f2 i	5 6	t fi	92	8	12	₹ 2	5 &	; R	2 82	84.9	120	140				
d 10- d1 enanthrene chry	100	140	100	98	95	130	100	100	66	100	130	92	90	93	84 100.8	130	ų	120	20	78	76	94	130	97	71	100	88	8 8	8	110	110	011	74	110	92	96.0	100	130				
Chrysene ph	6000	80 <t< td=""><td>090</td><td>006</td><td>520</td><td>640</td><td>520</td><td>2000</td><td>660</td><td>960</td><td>580</td><td>300</td><td>280</td><td>460</td><td>20 <=W 646.2</td><td>240</td><td>090</td><td>OF C</td><td>000</td><td>160</td><td>540</td><td>320</td><td>100</td><td>320</td><td>100</td><td>120</td><td>00</td><td>00 (P</td><td>80 < T</td><td>160</td><td>80 <t< td=""><td>80 <</td><td><u>8</u> 5</td><td>80 < T</td><td>20 <=W</td><td>173.3</td><td>099</td><td>2500</td><td>340</td><td>460000</td><td></td><td></td></t<></td></t<>	090	006	520	640	520	2000	660	960	580	300	280	460	20 <=W 646.2	240	090	OF C	000	160	540	320	100	320	100	120	00	00 (P	80 < T	160	80 <t< td=""><td>80 <</td><td><u>8</u> 5</td><td>80 < T</td><td>20 <=W</td><td>173.3</td><td>099</td><td>2500</td><td>340</td><td>460000</td><td></td><td></td></t<>	80 <	<u>8</u> 5	80 < T	20 <=W	173.3	099	2500	340	460000		
Ben zo (k)flu- oranthene	640 <t< td=""><td>40 <t< td=""><td>280</td><td>320</td><td>180</td><td>240</td><td>200</td><td>240</td><td>160</td><td>220</td><td>160</td><td>100</td><td>80 < T</td><td>80 < T</td><td>20 <=W 175.4</td><td>60 <t< td=""><td>R0.7</td><td>T-00</td><td>1200</td><td>40 <t< td=""><td>80 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <t< td=""><td>280</td><td>320</td><td>180</td><td>240</td><td>200</td><td>240</td><td>160</td><td>220</td><td>160</td><td>100</td><td>80 < T</td><td>80 < T</td><td>20 <=W 175.4</td><td>60 <t< td=""><td>R0.7</td><td>T-00</td><td>1200</td><td>40 <t< td=""><td>80 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	280	320	180	240	200	240	160	220	160	100	80 < T	80 < T	20 <=W 175.4	60 <t< td=""><td>R0.7</td><td>T-00</td><td>1200</td><td>40 <t< td=""><td>80 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	R0.7	T-00	1200	40 <t< td=""><td>80 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	60 <t< td=""><td>40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <t< td=""><td>40 < T</td><td>20 <=W</td><td>40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	40 < T	20 <=W	40 <t< td=""><td>40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<></td></t<>	40 <t< td=""><td>40 - T</td><td>20 <=W</td><td>60 < T</td><td>40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<></td></t<>	40 - T	20 <=W	60 < T	40 <t< td=""><td>40 4</td><td>40×1</td><td>40 < T</td><td>20 <=W</td><td>43.8</td><td>140</td><td>200</td><td>240</td><td>1340000</td><td></td><td></td></t<>	40 4	40×1	40 < T	20 <=W	43.8	140	200	240	1340000		
Benzo(g,h,i)peryle ne	1800 <t< td=""><td>80 <t< td=""><td>800</td><td>560</td><td>360</td><td>400</td><td>32.0</td><td>840</td><td>360</td><td>360</td><td>360</td><td>200</td><td>160<t< td=""><td>160<t< td=""><td>40 <=W 378.5</td><td>120<t< td=""><td>200</td><td>007</td><td>120-T</td><td>120<t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>800</td><td>560</td><td>360</td><td>400</td><td>32.0</td><td>840</td><td>360</td><td>360</td><td>360</td><td>200</td><td>160<t< td=""><td>160<t< td=""><td>40 <=W 378.5</td><td>120<t< td=""><td>200</td><td>007</td><td>120-T</td><td>120<t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	800	560	360	400	32.0	840	360	360	360	200	160 <t< td=""><td>160<t< td=""><td>40 <=W 378.5</td><td>120<t< td=""><td>200</td><td>007</td><td>120-T</td><td>120<t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	160 <t< td=""><td>40 <=W 378.5</td><td>120<t< td=""><td>200</td><td>007</td><td>120-T</td><td>120<t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <=W 378.5	120 <t< td=""><td>200</td><td>007</td><td>120-T</td><td>120<t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	200	007	120-T	120 <t< td=""><td>280</td><td>160<t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	280	160 <t< td=""><td>80 < T</td><td>240</td><td>80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 < T	240	80 <t< td=""><td>120<t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	120 <t< td=""><td>80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>12021</td><td>80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	12021	80 <t< td=""><td>80 < T</td><td>40 <=W</td><td>80 <1</td><td>80.<t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<></td></t<>	80 < T	40 <=W	80 <1	80. <t< td=""><td>80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<></td></t<>	80 <t< td=""><td>40 <=W</td><td>118.1<=T</td><td>200</td><td>440</td><td>170</td><td>320000</td><td></td><td></td></t<>	40 <=W	118.1<=T	200	440	170	320000		
Benzo(b)flu- oranthene	1800 <t< td=""><td>100</td><td>1100</td><td>1100</td><td>640</td><td>820</td><td>680</td><td>1100</td><td>580</td><td>820</td><td>620</td><td>360</td><td>300</td><td>280</td><td>40 <t 649.2</t </td><td>240</td><td>260</td><td>002</td><td>180</td><td>160</td><td>360</td><td>260</td><td>120</td><td>260</td><td>120</td><td>180</td><td>120</td><td>006</td><td>80 <t< td=""><td>220</td><td>120</td><td>071</td><td>140</td><td>140</td><td>20 <=W</td><td>172.4</td><td>400</td><td>780</td><td></td><td></td><td></td><td></td></t<></td></t<>	100	1100	1100	640	820	680	1100	580	820	620	360	300	280	40 <t 649.2</t 	240	260	002	180	160	360	260	120	260	120	180	120	006	80 <t< td=""><td>220</td><td>120</td><td>071</td><td>140</td><td>140</td><td>20 <=W</td><td>172.4</td><td>400</td><td>780</td><td></td><td></td><td></td><td></td></t<>	220	120	071	140	140	20 <=W	172.4	400	780				
Benzo(a)p yrene	1800 <t< td=""><td>80 <t< td=""><td>640</td><td>520</td><td>320</td><td>400</td><td>280</td><td>560</td><td>280</td><td>360</td><td>240</td><td>160 <t< td=""><td>120 <t< td=""><td>160 <t< td=""><td>40 <=W 313.8</td><td>120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>640</td><td>520</td><td>320</td><td>400</td><td>280</td><td>560</td><td>280</td><td>360</td><td>240</td><td>160 <t< td=""><td>120 <t< td=""><td>160 <t< td=""><td>40 <=W 313.8</td><td>120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	640	520	320	400	280	560	280	360	240	160 <t< td=""><td>120 <t< td=""><td>160 <t< td=""><td>40 <=W 313.8</td><td>120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	120 <t< td=""><td>160 <t< td=""><td>40 <=W 313.8</td><td>120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	160 <t< td=""><td>40 <=W 313.8</td><td>120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	40 <=W 313.8	120 <t< td=""><td>160 JT</td><td>1001</td><td>5 5</td><td>5 08</td><td>240</td><td>160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	160 JT	1001	5 5	5 08	240	160 <t< td=""><td>80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>200</td><td>80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	200	80 <t< td=""><td>80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>40 <=V</td><td>2 G</td><td>40 <=V</td><td>120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<></td></t<>	40 <=V	2 G	40 <=V	120 <t< td=""><td>40 <=W</td><td>M=> 06</td><td>17 G</td><td>80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<></td></t<>	40 <=W	M=> 06	17 G	80 <t< td=""><td>40 <=W</td><td>93.3</td><td>160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<></td></t<>	40 <=W	93.3	160 <t< td=""><td>480</td><td>370</td><td>1440000</td><td>da filo don o</td><td>DIDATINE</td></t<>	480	370	1440000	da filo don o	DIDATINE
Benzo(a)a- nfhracene	2600	60 <t< td=""><td>800</td><td>680</td><td>360</td><td>420</td><td>320</td><td>096</td><td>360</td><td>500</td><td>300</td><td>160</td><td>140</td><td>280</td><td>20 <=W 407.7</td><td>120</td><td>062</td><td>140</td><td><u>6</u></td><td>12 08</td><td>280</td><td>160</td><td>60 <t< td=""><td>160</td><td>40 <t< td=""><td>80 <t< td=""><td>₩ 1 1</td><td>9 Q</td><td>20 <=W</td><td>140</td><td>40 <t< td=""><td>88</td><td>8 5</td><td>60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	800	680	360	420	320	096	360	500	300	160	140	280	20 <=W 407.7	120	062	140	<u>6</u>	12 08	280	160	60 <t< td=""><td>160</td><td>40 <t< td=""><td>80 <t< td=""><td>₩ 1 1</td><td>9 Q</td><td>20 <=W</td><td>140</td><td>40 <t< td=""><td>88</td><td>8 5</td><td>60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	160	40 <t< td=""><td>80 <t< td=""><td>₩ 1 1</td><td>9 Q</td><td>20 <=W</td><td>140</td><td>40 <t< td=""><td>88</td><td>8 5</td><td>60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<></td></t<></td></t<></td></t<>	80 <t< td=""><td>₩ 1 1</td><td>9 Q</td><td>20 <=W</td><td>140</td><td>40 <t< td=""><td>88</td><td>8 5</td><td>60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<></td></t<></td></t<>	₩ 1 1	9 Q	20 <=W	140	40 <t< td=""><td>88</td><td>8 5</td><td>60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<></td></t<>	88	8 5	60 <t< td=""><td>20 <=V</td><td>95.2</td><td>320</td><td>1400</td><td>320</td><td>1480000</td><td>Il citae</td><td></td></t<>	20 <=V	95.2	320	1400	320	1480000	Il citae	
Anthracene	400 ⇔W	20 ≪W	160	240	80 ⊲⊺	80 ⊲⊺	40 ⊲⊺	80 ⊲⊺	20 ⇔W	40 ⊲⊺	40 ⊲⊺	40 ⊲⊺	20 <i>⇔</i> W	60 ⊲⊺	20 ⇔W 70.8	20 ⇔W	M-~ 00	M 00	M 00	20 ≪W	20 -=W	20 ⇔W	20 ≪W	20 ≪W	20 ≪W	20 ≪W	20 ∉W	W-~ 02	20 <=V	60 ⊲⊺	20 <i>⇐</i> W	M⇒ 07	20 -W	20 ~ W	20 ⇔W	21.9 ⇔ W	20 ≪W	60 ⊲⊺	220	37000	is with the	
ena phthen e	20 <=W	20 <=W	40 < T	40 < T	20 <=W	20 <=W	20 <=W	20 <=W	40 < T	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <⊒W 24.6 <⊒W	20 <=W	MH-2 0.0	M 00	M 00	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	20 <=W	M 02	20 <=W	20 <=W	20 <=W	M=> 0.7	M=> 02	20 <=W	20 <=W	20.0 <=W	20 <=W	60 <t< td=""><td></td><td></td><td>(Zero)</td><td></td></t<>			(Zero)	
Ac	LC02	LC01	LC03	LC04	LC05	LC06	LC07	LC08	LC09	LC10	LC11	LC12	LC13	LC17	LC38 MEAN	LC15	1018		10.00	LC21	10.22	LC23	LC24	LC25	LC26	LC27	LC28	1030	LC31	LC32	LC33	LC34	1039	LC40	LC36	MEAN	LC14	LC16	ГB	SEL*	tation resource	and the second
Group	-	2	e	9	e	e	. 00	c				e	е	e	ი ი	4	ų) ч	с u	о un	о ur.	o ua	ŝ	2	2	ŝ	in i	n ư	9	\$	ŝ	<i>ი</i> 1	ņч	о ча	о с о	9	9	7	PSQG	DEI 1 DORGONI	SEL WINW SEL WINW	

Table 3. Surficial sedment chemistry PAH and total PCB concentrations from the initial screening survey of Lyons Creek East.

54

	Sedim	nent	Caged	Forage	Sport
Site	Grab	Core	Mussels	Fish	Fish
LC01	2002	2002	2002		
LC03	2002	2002	2002/2003	2002/2003	
LC06	2003				
LC08	2003		2003	2003	
LC10	2003				
LC12	2002/2003		2003		
LC14	2003		2003		
LC16	2002/2003	2002	2003	2002/2003	2002/2003
LC17	2002/2003	2002	2002	2003	
LC18	2003		2003	2003	
LC19	2003		2003		
LC22	2003				
LC23	2003		2003		
LC24				2003	
LC29	2002/2003	2002	2002		
LC38	2002/2003	2002	2002	2002	2002
mouth				2002	
Tee Cr	2003		2003		
Usshers Cr	2003		2003	2003	
Beaver Cr	2002		2003	2002	
Black Cr	2002			2002	

Table 4: Sampling strategy for detailed study: 2002 -	-2003
---	-------

Table 5: Toxic equivalency factors (TEFs) for selected PCB congeners
(Environment Canada, 1998)

IUPAC No.	Structure	TEF (mammalian)*
PCB 77	3,3',4,4'	0.0001
PCB 81	3,4,4',5	0.0001
PCB 126	3,3',4,4',5	0.1
PCB 169	3,3',4,4',5,5'	0.01
PCB 105	2,3,3',4,4'	0.0001
PCB 114	2,3,4,4',5	0.0005
PCB 118	2,3',4,4',5	0.0001
PCB 123	2',3,4,4',5	0.0001
PCB 156	2,3,3',4,4',5	0.0005
PCB 157	2,3,3',4,4',5'	0.0005
PCB 167	2,3',4,4',5,5'	0.00001
PCB 189	2,3,3',4,4',5,5'	0.0001

* 1998 WHO TEF values (Van den Berg et al., 1998)

Month Cantum Cantum Cantum Copport Copport Copport Copport Copport Copport Month Month<	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $						total	1											
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bari	Ę	Beryllium	Cadmium	Calcium	organic carbon (Chromium	Cobalt	Copper	Iron	Lead	Magnesium N	Manganese	Nickel	Strontium	Titanium	Vanadium	Zinc
		na/		ua/a	na/a	na/a	%	ua/a	na/a	ua/a	na/a	na/a	na/a	na/a	na/a	na/a	na/a	na/a	na/a
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	0.6	1 <t 08</t 	65300 70500	4.8	52 33	¢ ¢	59 40	29700	29 C	15700	414 404	50 36	149	227 236	16 <=W	926 444
			8 8	0.9 <t< td=""><td>1.5</td><td>65000</td><td>4.1</td><td>8</td><td><u>5</u> 6</td><td>64</td><td>35000</td><td>63</td><td>14000</td><td>480</td><td>54</td><td>160</td><td>230</td><td>4 4</td><td>820</td></t<>	1.5	65000	4.1	8	<u>5</u> 6	64	35000	63	14000	480	54	160	230	4 4	820
			123	0.5	1	63600	4.3	39	15	65	33200	88	15000	493	51	146	254	29	1080
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_	119	0.4	1.1	68000	6.9	34	τ	58	29600	₽ P	12200	396	43	179	201	22	841
0 iii 10 ⁷ 641571 ii 40 ⁷¹ 3.65 3.66 2.617 ii 4.61 <td></td> <td>~ ~</td> <td>4 1 2 4 6 7 7 6</td> <td>0.8 <t 0.7</t </td> <td>0.9 <t 12</t </td> <td>64000 52700</td> <td>5.1</td> <td>37</td> <td>t 1</td> <td>57 65</td> <td>29000 46000</td> <td>36</td> <td>12400</td> <td>370</td> <td>45 70</td> <td>180</td> <td>170</td> <td>39 36</td> <td>690 2440</td>		~ ~	4 1 2 4 6 7 7 6	0.8 <t 0.7</t 	0.9 <t 12</t 	64000 52700	5.1	37	t 1	57 65	29000 46000	36	12400	370	45 70	180	170	39 36	690 2440
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1 1 1 2 2 2 2 2 2 1 4 5 2 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 1 4 1 4 1 4 3 3 1	12	4.29	0.61	1.07	64157.14	4.81	40.71	13.43	59.57	32814.29	53.71	13383.33	443.86	48.29	157.71	227.00	29.71	1034.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-												-				
		~	84	6.0	1 <=W	90900	1.9	24	7	36	21200	24		503		139	238	14 <=W	126
		~	119	0.8	1 <=W	31400	52	46	13	48	30700	8		492	44	75	200	18 <=W	590
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4	0.9 <t< td=""><td>1.2</td><td>45000</td><td>4.8</td><td>8</td><td>13</td><td>48</td><td>31000</td><td>30</td><td>11000</td><td>380</td><td>49</td><td>140</td><td>160</td><td>42</td><td>530</td></t<>	1.2	45000	4.8	8	13	48	31000	30	11000	380	49	140	160	42	530
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~	110	0.8 <t< td=""><td>0.7 <t< td=""><td>45000</td><td>2.8</td><td>27</td><td>12</td><td>33</td><td>28000</td><td>18</td><td>16000</td><td>600</td><td>33</td><td>91</td><td>220</td><td>36</td><td>310</td></t<></td></t<>	0.7 <t< td=""><td>45000</td><td>2.8</td><td>27</td><td>12</td><td>33</td><td>28000</td><td>18</td><td>16000</td><td>600</td><td>33</td><td>91</td><td>220</td><td>36</td><td>310</td></t<>	45000	2.8	27	12	33	28000	18	16000	600	33	91	220	36	310
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	95 0.7 1 $1 = w$ 54200 64 27 5200 64 27 16 255 16 255 16 255 16 264 37 16 264 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 286 373 186/7 386 373 386/7 373 386/7 373 386/7 373 386/7 373 386/7 373 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386/7 386	~	111	0.5	0.7	28000	6.9	36	12	37	29400	8	15300	489	46	83	161	28	407
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~	95	0.7	1 <=W	54200	4	38	15	23	28200	8		624	35	104	255	19 <=W	81
072 097 399000 523 1350 36,7 287000 27,1 1362500 489.50 97.33 0 07 2 48100 28 56 18 131 39900 117 396 147 131 0 07 2 48100 28 56 18 131 3900 17 396 147 131 0 07 20500 51 35 15 41 3500 23 1000 430 43 56 54 53 56 54 53 56 54 53 56 54 53 56 54 53 56 54 53 56 54 53 54 53 56 54 53 56 54 53 56 54 53 56 54 53 56 54 54 53 56 54 53 56 54 53 56 54		~	120	0.6	12	35800	6.4	27	16	28	24900	18	12200	352	32	91	196	30	166
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 115	.83	0.72	0.97	39900.00	5.02	35.33	13.50	36.17	28700.00	32.17	13625.00	489.50	39.83	97.33	198.67	28.83	347.33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~	135	0.7	2	48100	2.8	56	18	131	39900	117		349	147	131	190	19 <=W	7969
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		120	T> 00		15000	48	8	6 6	41	00068	23	1000	440	48	58	210	45	470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		120	200	0.7	20500	5.1	35	<u>5</u> fc	44	36900	8	11500	525	46	99	262	38	2.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ~	139	0.8	0.9	6920	5	34	9	41	36100	29	9270	532	58	43	201	37	522
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	133	0.8	0.9	10700	9	36	4	43	37900	8	10700	585	54	53	201	39	783
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 0.02		150	1.1 <1	1.3	12000	3.9	36 A	15	26 28 8	37000	14 26.6	9200	/60 F68.4	49 EV 2	74 58.8	0/L 8 80C	50 11 8	388 58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	82 $0.7 < T$ 1.2 2000 3.8 22 14 19 2300 12 100 410 33 45 250 36 104 0.7 0.8 1.4 280 14 100 410 33 45 250 36 133 $0.8 < T$ 1.4 2800 56 37300 47 36 52 173 33 133 0.8 $1.6 < W$ 7900 54 35 310 34 52 173 33 112 0.8 $1.6 < W$ 7900 54 35 3100 47 36 52 173 33 115 0.8 $1.6 < W$ 7900 54 35 2100 47 790 52 173 96 96 147 250 260 44 $19 + 41$ $19 + 40$ $19 + 40$ 110 114 2		1.70	0.9	0.30	13024	4.30	+ ····	7.01	20:02	00100	0.02	<u>to o</u>	200:4	7.00	0.00	200.0	0	00.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	82	0.7 <t< td=""><td>1.2</td><td>20000</td><td>3.8</td><td>22</td><td>14</td><td>19</td><td>23000</td><td>12</td><td>11000</td><td>410</td><td>33</td><td>45</td><td>250</td><td>36</td><td>110</td></t<>	1.2	20000	3.8	22	14	19	23000	12	11000	410	33	45	250	36	110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	104	0.7	0.8	17800	5.3	28	16	22	27100	22	00/6	444	36	52	173	33	112
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	110	0.8 <t< td=""><td>1.4</td><td>26000</td><td>5.8</td><td>25</td><td>4</td><td>26</td><td>23000</td><td><u>4</u> (</td><td>11000</td><td>310</td><td>34</td><td>69</td><td>160</td><td>37</td><td>170</td></t<>	1.4	26000	5.8	25	4	26	23000	<u>4</u> (11000	310	34	69	160	37	170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		225	0.0	1 <=VV	007/1	0.0	40 35	ວ ¢	0C 9C	31300	₹		311	20	70	100	20 <=VV	040 666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4 4		N-~ 1	0067	ι α	24	<u>5</u> 6	35	32100	₽ ₹		466	84	64 74	184	M-> 61	651
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		112	0.8	1 <=W	8000	54	34	2 C	36	32600	2 6		483	20	44	199	19 <=W	664
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		122	- -	1 <=W	2000	10.7	31	5 4	27	27200	2 89		439	46	66	174	23 <=W	172
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ~	14		1 <=W	8400	32	27	െ	30	17100	96		3 <u>8</u>	25	197	137	23 <=W	6
7 0.8 1 <=W 7900 5.6 31 14 25 23900 26 27 72 7 0.84 1.04 13018.18 6.20 30.91 1345 31.09 26945.45 30.18 10566.67 380.18 40.36 91.18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	102	-	1 <=T	14200	10.6	33	15	30	27000	20		402	35	309	170	18 <=W	107
7 0.84 1.04 13018.18 6.20 30.91 13.45 31.09 26945.45 30.18 10566.67 380.18 40.36 91.18	1.27 0.84 1.04 13018.18 6.20 30.91 13.45 31.09 26945.45 30.18 10.36 91.18 189.36 24.18 316 10 10% 110 14% 250 1100 75 1	~	77	0.8	1 <=W	2000	5.6	31	4	25	23900	26		250	37	72	217	19 <=W	109
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.27	0.84	1.04	13018.18	6.20	30.91	13.45	31.09	26945.45	30.18	10566.67	380.18	40.36	91.18	189.36	24.18	316.09
10 10% 110 110 4% 250 1100 75	0.6 1% 26 16 2% 31 460 16				10		10%	110		110	4%	250		1100	55				820
0.6 1% 26 16 2% 31 460 16					0.6		1%	26		16	2%	31		460	16				120

Table 6: General chemistry, OC, PAH and PCB concentrations of surficial sediment groupings (as determined through cluster analysis) collected from Lyons Creek in 2002 and 2003 - General chemistry

÷,	
Des	
8	
200	
10	
2 81	
200	
.⊆	
aek A	
ő	
SUDA	
1	
Ę,	
ted	
llec	
6	
515/	
Jeu	
e le	
luste	
ih ci	
DILO.	ĺ
the second	
Den	
ž	
dete	
as d	į
SD	
nian	
000	
-	
t a	
Jiment	
sediment	
cial sediment	
surficial sediment	
of surficial sediment	
ons of surficial sediment	
rations of surficial sediment	
centrations of surficial sediment	
concentrations of surficial sediment	
B concentrations of surficial sediment	
PCB concentrations of surficial sediment	
and PCB concentrations of surficial sediment	
AH and PCB concentrations of surficial sediment	
 PAH and PCB concentrations of surficial sediment 	
. O.G. PAH and PCB concentrations of surficial sediment	
stry. OC. PAH and PCB concentrations of surficial sediment	
emistry. OC. PAH and PCB concentrations of surficial sediment	
I chemistry: OC. PAH and PCB concentrations of surficial sediment	
eral chemistry. OC: PAH and PCB concentrations of surficial sediment	
General chemistry, OC. PAH and PCB concentrations of surficial sediment	
d: General chemistry. OC. PAH and PCB concentrations of surficial sediment	
wort di- General chemistry. OC. PAH and PCB concentrations of surficial sediment	
6 control: General chemistry: OC: PAH and PCB concentrations of surficial sediment	

$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	tachlo Heptachlo N	Viethoxyc Metrocyc	Oxychk	ord			DDT &
001 CLC2 2 ∞ 4 4 $-\infty$ 4 $-\infty$ 4 $-\infty$ 4 $-\infty$	a/a na/a		na/a na/a	1 na/a	na/a	a/au	
01006* 2 = 0.0 2 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 2 = 0.0 1 = 0.0 01008* 2 = 0.0 2 = 0.0 2 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 2 = 0.0 1 = 0.0 010107* 2 = 0.0 2 = 0.0 2 = 0.0 4 = 0.0 4 = 0.0 2 = 0.0 1 = 0.0 010107* 2 = 0.0 2 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 1 = 0.0 010107* 2 = 0.0 2 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 4 = 0.0 1 = 0.0 010107* 2 = 0.0 2 = 0.0 4 = 0	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 140	5 <=W	140
081008* 2 = w 2 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081036* 2 = w 2 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081037 2 = w 2 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081047 2 = w 2 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081047 2 = w 2 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081047 2 = w 2 = w 4 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081047 2 = w 2 = w 4 = w 4 = w 4 = w 1 = w 2 = w 1 = w 081047 2 = w 2 = w 4 = w 4 = w 4 = w 1 = w 1 = w 1 = w 081047 2 = w 4 = w 4 = w 4 = w 1 = w 1 = w 1 = w 081047 2 = w 4 = w 4 = w 4 = w	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 32	5 <=W	33
001000000 2 4 4 <td>1 <=W 1 <=W</td> <td>5 <=W 5 <=W</td> <td>5 <=W</td> <td>2 <=W</td> <td>5 <=W 94</td> <td>5 <=W</td> <td>94</td>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 94	5 <=W	94
OID Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 110</td><td>5 <=W</td><td>110</td></thcontr<></thcontrol<></thcontrol<>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 110	5 <=W	110
OBIC13 Z = eW Z = eW <thz =="" ew<="" th=""> <thz =="" ew<="" th=""> <thz =="" ew<="" td="" th<=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 74</td><td>5 <=W</td><td>74</td></thz></thz></thz>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 74	5 <=W	74
OBJC14*** Z = eW A =	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 40	5 <=W	40
Group 1 servenge 6.29 Lot 4.00 Mode 100 Mode 200 Mode 100 Mode	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 58	5 <=W	2 8
Option 2 eW 2 eW 4 eW 4 eW 4 eW 1 eW 2 eW 1 eW <	1.00 <=W 1.00 <=W	5.00 <=W 5.00 <=W	5.00 <=W 2.	1.00 <=W 5.0	0 <=W 78.29	5.00 <=W	78.29
OUD District Control C	1	R /-W	5 10	M-~ C	5M 2	5 ~-W	M C
Out DICL/T 4<		M-20 M-20	M->0	11-57	7	M=>0	A=> 7
OILCITA Z ==W Z ==W <thz =="W</th"> Z ==W Z ==W <t< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 43</td><td>5 <=W</td><td>4</td></t<></thz>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 43	5 <=W	4
Objective Constrained Constrain	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 22	5 <=W	22
OBLC1AK Z ==W Z ==W <thz =="W</th"> Z ==W Z ==W <t< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 18</td><td>5 <=W</td><td>18 <t< td=""></t<></td></t<></thz>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 18	5 <=W	18 <t< td=""></t<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 16	5 <=W	16 <t< td=""></t<>
Output Council Council <thcouncil< th=""> <thcouncil< th=""> <thco< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 1 <=</td><td>W 5 <=W</td><td>2 <=V</td></thco<></thcouncil<></thcouncil<>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 1 <=	W 5 <=W	2 <=V
Clock of the control of the	1 <=W 1 <=W	5 <=W 5 <=W	5 <= W	2 <=W	5 <=W 2 <t< td=""><td>5 <=W</td><td>2 <= 0</td></t<>	5 <=W	2 <= 0
Cup, 1 Calcon 2 = with 1 = with <th< td=""><td>1.00 <=W 1.00 <=W</td><td>5.00 <=W 5.00 <=W</td><td>5.00 <=W 2</td><td>2.00 <=W 5.0</td><td>0 <=W 17.00</td><td>5.00 <=W</td><td>17.33 < T</td></th<>	1.00 <=W 1.00 <=W	5.00 <=W 5.00 <=W	5.00 <=W 2	2.00 <=W 5.0	0 <=W 17.00	5.00 <=W	17.33 < T
Out D5 Out C19 Z ==W Z ==W <thz =="W</th"> Z ==W Z ==W <</thz>	1 <=W 2 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 340	5 <=W	340
Out District 2 = 000	1	F /=/// F /=///	5 10	M C	7W 18	5101	T/ 8
Option Control Control <th< td=""><td></td><td></td><td></td><td>M-/ c</td><td>0/ M-> 2</td><td>10</td><td>26</td></th<>				M-/ c	0/ M-> 2	10	26
OILC297 Z = WI Z = WI <thz =="" th="" wi<=""> <thz =="" th="" wi<=""> <thz =="" t<="" td="" wi<=""><td>1 <=W 1 <=W</td><td></td><td>M=>0</td><td>2 <=W</td><td>5 <=W 10</td><td>M=>0</td><td>10 < T</td></thz></thz></thz>	1 <=W 1 <=W		M=>0	2 <=W	5 <=W 10	M=>0	10 < T
Giand Coupe (Carbon Carbon Carbon (Carbon Carbon (Carbon Carbon Carbon (Carbon Carbon (Carbon Carbon (Carbon Carbon (Carbon Carbon (Car	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 20	5 <=W	20
OBLC3 C=W Q = eW	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 8 <t< td=""><td>5 <=W</td><td>8 < T</td></t<>	5 <=W	8 < T
Gloup 5 swenge 200 ew 200 ew 400 ew 400 ew 400 ew 100 ew <th< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 1 <=\</td><td>W 5 <=W</td><td>2 <=V</td></th<>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 1 <=\	W 5 <=W	2 <=V
Opp 6 GTOM 2 ==W 2 ==W 4 ==W 4 ==W 1 ==W	1.00 <=W 1.00 <=W	5.00 <=W 5.00 <=W	5.00 <=W 2.	00 <=W 5.0	0 <=W 13.83	5.00 <=W	14.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	EW EW	5 10	2W	2	M E ~- MI	V C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
CLICIE 6 2 ==W 4 ==W 4 ==W 4 ==W 2 ==W 1 ==W 2 ==W 2 ==W 1 ==W 2 ==W 1 ==W 2 ==W 1 ==W 2 =W 1 ==W 2 =W 1 ==W 2 =W 1 ==W 2 =W 2 =W 1 ==W 2 =W 2 =W 2 =W	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <= M = 1 <= 1	W 5 <=W	2 <=V
CLIC2901 Z =eW	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 49	5 <=W	20
C0LC28002 2 C=W 4 C=W 4 C=W 1 C=W	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 17	5 <=W	
CILC3803 2 =-W 4=-W 4=-W 1=-W 2=-W 1=-W 1=-W <th< td=""><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <=W</td><td>2 <=W</td><td>5 <=W 13</td><td>5 <=W</td><td>14</td></th<>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 13	5 <=W	14
CBLC3B 2 c=W 4=W 4=W 4=W 1=W 1=W <td>1 <=W 1 <=W</td> <td>5 <=W 5 <=W</td> <td>5 <=W</td> <td>2 <=W</td> <td>5 <=W 14</td> <td>5 <=W</td> <td>2 <=V</td>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 14	5 <=W	2 <=V
CREECO1 2 -eW 4=W 4=W 4=W 1=W 2=W 1=W 1=W 2=W 1=W 1=W 2=W 1=W 1=W 2=W 1=W 1=W </td <td>1 <=W 1 <=W</td> <td>5 <=W 5 <=W</td> <td>5 <=W</td> <td>2 <=W</td> <td>5 <=W 3</td> <td>5 <=W</td> <td>4</td>	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 3	5 <=W	4
000 LOU 2 4=W 4=W 4=W 1=W 2=W 1=W 2=W 1=W 2=W	1 <=W 1 <=W	5 <=W 5 <=W	5 <=W	2 <=W	5 <=W 1 <=	W 5 <=W	2 <=V
CHELOR 2 C=W 2 <=W 4 <=W 4 <=W 1 <=W 2 <=W 1 <=W <th1 <="W</th"> <th1 <="W</th"> <th1 <="W<</td"><td>1 <=W 1 <=W</td><td>5 <=W 5 <=W</td><td>5 <= W</td><td>2 <=W</td><td>5 <=W 1 <=</td><td>W 5<=W</td><td>2 <= V</td></th1></th1></th1>	1 <=W 1 <=W	5 <=W 5 <=W	5 <= W	2 <=W	5 <=W 1 <=	W 5<=W	2 <= V
lorado o evenage z/ro zuu <= w 4,00 <= w 4,00 <= w 1,00 <= w 1,00 <= w 2,00 <= w 1,00 <= w 1,000 <= w 1,00	1 <=W 1 <=W	5 <=W 5 <=W	5<=W	2 <=W	5 <=W 1 <=	W 5<=W	2 <=V
PSGG SEL 9100° 000°d 13000° 1000°b 600°d 500 PSGG LEL 2 7c NEL=0.3 5 <u>c</u>	1.00 <= W 1.00 <= W	VV=> UU.G VV=> UU.G	2 W=>UU.G	2.UU <= VV 5.N	U <=VV 3.30	M=> 00.0	1.04
	-0.3 500*b	130000* 7		•0009	ء 19000* ج	12000*d 71 7d 82	000*a
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				~		
T no mesurable amount (zero) b=30% SCL d= chordane b=34 - chordane - chordane b=34 - chordane - cho	p=90% SCL					total	TOD

indeno(1.2.3- Naphthale Phenanthr cathere c.c/pyrene ne	093         093         093         093         093         093         094         094         094         094         094         094         094         094         094         094         094         094         094         094         094         094         094         094         034         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134 <th 134<="" th="" th<=""><th>120         20 eW         40 eW         20 eW         20 eW         110         20 eW         100 eW</th><th>13000         1100         1200         400         121           100         20 eW         120 eT         20 eW         <td< th=""><th>20         -W         20         -W&lt;</th></td<></th></th>	<th>120         20 eW         40 eW         20 eW         20 eW         110         20 eW         100 eW</th> <th>13000         1100         1200         400         121           100         20 eW         120 eT         20 eW         <td< th=""><th>20         -W         20         -W&lt;</th></td<></th>	120         20 eW         40 eW         20 eW         20 eW         110         20 eW         100 eW	13000         1100         1200         400         121           100         20 eW         120 eT         20 eW         20 eW <td< th=""><th>20         -W         20         -W&lt;</th></td<>	20         -W         20         -W<
110. d8- nanthr d12- naphthale Dibenzo(a,h) ane chrysene ne anthracene Fluo	94         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	100         47         68         40 and 40 and 88         40 and 88           93         53         49         40 and 40 and 88         40 and 40 and 88         40 and 40 and 88           100         47         88         40 and 40 and 80	140         140         67         840           88         27         47         40         67           88         27         47         40         67           88         27         47         40         67           89         28         28         43         40         64           88         26         43         40         64         64           81         75         43         40         64         64           81         61         43         40         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64         64	80         88         59         40	
anthene Chrysene e	100 100 100 100 100 100 100 100 100 100	20 e.W 80 40 10 40 10 40 11 40 12 40 1 10 20 e.W 20 20 e.W 20 20 20 e.W 20 20 e.W 20 2	1300 9900 20 cf 120 20 cf 120 20 cf 20 cf	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3enzo(b)fluor Benzo(g.h.i.) B anthene perylene	103 103 103 103 240 240 240 240 240 240 240 240 240 250 250 250 250 250 250 250 250 250 25	80 40 ∞W 120 80 ⊂ 140 80 ⊂ 140 80 ⊂ 140 120 ⊂ 21 ∞W 10 ∞W 21 ∞W 20 ∞W	3800 3100 3800 3105 123 41 23 41 123 41 23 41 133 41 23 41 133 41 41 41 40 41 41 41 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41	2 c=W 40 = W 2 c=W 40 = W 2 c=W 40 = W 120 = W 60 = T 120 = W 40 = W 20 = W 40 = W 40 = W 40 = W 20 = W 40	
enzo(a)anthr Benzo(a)pyren E acene	ng2         ng2         ng2           220         230         200           120         120         700           470         240         240           240         261         120           240         261         120           241         130         49           243         194,29         120	40 40 40 10 41 41 10 40 10 41 41 10 41 10 41 41 10 41 10 41 41 41 20 41 41 41 10 41 41 10 41 41 10 41 41	500         200           600 df         200           80 df         80 df           80 df         80 df           80 df         80 df           80 df         40 df           20 edv         40 df           20 edv         40 df           20 edv         40 df           20 edv         40 edv           20 edv         40 edv           20 edv         73 33 df	20 ee/V 40 ee/V 20 ee/V 40 ee/V 82 d 40 ee/V 40 ee/V 82 d 40 ee/V 40 ee/V 20 ee/V 40 e	
aphth Brithracene Br	20 =	20 c=W         20 c=W	40         40           20 ⊂=W         20 ⊂=W           20 ⊂=W         20 ⊂=W           20 ⊂=W         20 ⊂=W           20 c=W         20 c=W           20 c=W         20 c=W           20 c=W         20 c=W	20 cm	
Acenaphth Acen ere	p1 02LC12 102 01.CD6* 20 ← 102 03LC06* 50 ← 102 03LC08* 60 ← 1 03LC13* 20 ← 102 03LC13* 20 ← 10	p 2 021201 20 - W p 3 02LC17 20 - W 03LC14 20 - M 03LC1A4 20 - M 03LC1A4 20 - W 03LC1A4 20 - W 03LC1A4 20 - W 03LC1A4 20 - W	up 4         02LC02         40           up 5         0.01C.19         20 eVV           0.01C.27         20 eVV         00LC32           0.01C.28         20 eVV         20 eVV           0.01C.38         20 eVV         20 eVV	p 6 6 0100-4 20 cm 0 6 01700-4 20 cm 0 01216 20 cm 0 01216 20 cm 0 01216 20 cm 0 01238 20 cm 0 000 cm 0 0000 cm 0 000 cm 0 0000 cm	

Table6 cortd: General chemistry, OC, PAH and PC8 concentrations of surficial sedment groupings (as determined through cluster analysis) collected from Lyons Creek in 2003 and 2003 - PAHs and PC8s

58

averace	15.7		200	207			9.5	5.5	1.	38.8	1.7	0.4	0.7	00	22	00	23.8	9	000	ž c	12.0	18.7	¥0	22	000	000	5.0	0	0		50	<b>N=</b> ≻	3:	4.	- 22	70	0.6	\		N=>	N=>	b
COBLCOM	M=>					~~~	<=W	<=>	>	0.53	~~~~	 M=>	<=>	>=	M=>	~~~~	0.37	<=>	~=>	M=>	~=>	3.1	<=/V	>=	~=>	M=>	> M=>	<=>	<=N	~=>		<=>	~=>	M=>	~~~~	<=>	<=/V	M=>	~~~~	<=>	W=>	11-4
22BEC02	0.8				Ĩ	j	M=>	N=>	N=>		- 4	4.1	N=>	N=>	¶.	1	0.7	N=>	N=>	N N	0.3	M=>	M=>	N=>	e	4.0	įł	N=>	0.4	N=>	N N	N=>	N,	0.0	0.8	N=>	M=>	N=>	įł	M=>	M=>	S-MI
2BECO1	~=>			10			M=>	<=W	<=>	0.6	9°0	11	<=>	<pre>&gt;</pre>	N=>	N=V	1.3	M=>	~=>	N=>	-	<=W	<=W	- :	12	970 1		<=>	0.8	~=>	N=>	<=W	=>	M=>	0.4	<=>	<=W	N=>	N=>	-	N=>	Sirve S
021.C38 0	1.3			1.0	#:0	Ň	M⇒	M⇒	M=>	0.87 18.0	M⇒ I	M⇒	M=>	M⊪≎	N⇒	N.	0.51	4.1	N⇒	M∎ N	M⇒	6.2	M⇒	M=>	M#P	N ∛	N⇒	M=>	M=>	N⇒	M₽	M⇒	N⇒	N.⇒	M∎ N≣	M⇒	M⇒	M⇒	M∎ N≣	M⇒	M⇒	18
a.C29-3	21	18	87	8	0 0	~=N	15	12	3.4	22	= 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.3	1.6	4 D 2	31:	90	69.0	~=>	0 M=/	16	26	0.5	16	N=>	170	5.3	0.73	~=>	6.1	n 6.	<=M	N=>	12	2.5	<=>	<=>	N=>	2 N=v	<=>	~=> **	10
2LC29-2_0	37	ŝ	8 9		00 F		14	14	43	85	14		0.77	21	24	M=>	88	6.9	N=>	-W	20	33	<=W	13	~=~	~=\ 2	22	<pre>M=&gt;</pre>	<=W	0.81	91	<=W	N=>	21	9 6	<=W	<=W	N=>	5 M=>	M=>	M=>	NG.
C29-1 00	25	3 8	83	5 \$	2 6	~=N	13	10	2.9	64	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.2	1.6	= 8	1.6	28	ŝ	5.3	018	14	23	2.5	4	N=v	N=>	4 KO	0.46	~=>	e	. e	<=W	M=>	0 0	4.6	<=W	<=W	N=>	- ^=	<=M	N=>	4
2LC16_02	120		071	3 8	7		28	21	52	520	8 2	- M=>	25	3.6	10	3 23	160	49	N=>	70 N	8	110	1.4	1	N=>	~=\ 2	53	<ul><li>Max</li></ul>	<=N	0.93	35	~=N	M=>	01	6 4 8 7	29	ŝ	~=N	e Miles	<=W	N=>	R
NCON 0	<=W		M=>		MI-C		<=W	<=W	N=>	1.7		- M=>	<=VV		N=>	N=V	0.9	<=/	-=N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~=N	0.6	<=W	~=/N	N=>	-w		<=W	<=N	×	~~~~	~=N	-=M	-w	M=>	<=W	<=W	N=>	M=>	<=W	N=>	<pre>Amount of the text of the text of the text of the text of text of</pre>
TC04* 00	~=W		A=V	1	M-V	-w=	~=N	2	<=>	1.8	~=W		<=>	M=>	N=>		1.2	<=N	~=>	N =>	~=N	0.8	<=W	~=N	~=×	N=\	0.8	M=>	×=N	N=>	N=>	<=W	N=>	0.7	20	<=W	<=W	×=\	- M=>	<=W	~=N	- AF
TC04 03	~=W		- W		M-V	~=N	<=W	<=W	~=/\	4	N=>		<=V	~=×	~=N	M=v	6'0	<=W	~=N	M= V	~=N	<=W	<=W	~=N	N=>	-1W		<=v	<=W	~=N	M=>	<=W	~=N	-wv	M=>	<=W	<=W	M=>	M=>	<=/	N=>	<pre>&gt;</pre>
ace 03	5.6		1.4	t 0	2.2	~~=	4.9	7.4	4.0	4.3	2.3	2.5	1.5	1.6	4.8	0.5	2.8	92	1.0	11	0.9	7.6	-W	6.1	6.1	2.6	0.5	3.0	~	3.5	6.1	-W	1.0	1.1	1.0	3.6	6.1	1.0	000 M=	0.2	1.4	+
GIOL GLOU	1.5		2 4		. 3	N N	1.3	1.4 2	Ņ	1.9			N	N :	N S	N.	0.8 4	4	× .	- -	-N	.65 2	× M=	0.9	2		0.8	N	× N	0.2	1.0	<ul> <li>M=</li> </ul>	N,	8.0	. >	N=	N.	N 9	×	N	23	
5100 .62	11		0.0	200	2.0	- N	6.3	6.1	0.2	37	° ₽	3.3	1.4	0.8	÷	0.6	18	3.7	1.8 2	4.4	8.1	12 0	s> Na	5.1	5 0.1 0	1	; ; ←	1.9 ~	° N	6.1	0.8.0	=> M:	\$ 5.2	2.0	0.8	2	1.5	0.7	0 V 0 V	N =>	0 N	2
23* 03.0	2	• 1				- N	8	28	63	<del>6</del> [	27	61	0.6	5	2	- 23	66	94	4 00	3 4	52	55	∾ N	58	36	92	52	60	N.	5	2 04	=> M=	57	2 2	γ - 3 σ	24	50	<u></u>		0.4 <=	9.6	
A* 03LC3						: "	=	5	36	8 2 2	0,0	2 (1)	6.	80		W 0.	54	-	> :	_ «	2	8	" ■		0 I I				₹ N		- 62	=> M	<u>0</u>	1 8	1.1		5			~	ۍ <u>،</u>	2
9, 03LC22	41 8		2 1		, -	′ ∛	8	26	17 0.	8	5	2 9	5	e :		0.0	57	7	∜ ≥ 2	4 4	31	49	∜ N	52			° 2		° ∧		20°	∜ N	<u>8</u>	~ <	- 12	9	-1	cri a	°.≥	* *	52 22	ŝ
19 03FC1	0	2 9	2.5		ź r	لة د :	9	22		æ 9		2 01 . 01	6	σ; ·	4 9	0 0 0	8		₹ 	. c	: 23	1	ĭ N		~ ~	- -	19	. 0	N I	9.9	29 1	N	0 9		- 98	3	3	с, с	2 2	í⊽ ∧		
OBLC			., .	, •		, ii		Ű	0			. 01	5	01	50 *	-0	4			* 0			V	Ψ,	~	2 4		9		6	5-	V	0			7	4	- c	b "≣ V	V		
001003	1000	000		007	140	<u>2</u>	140	110	72	1400	240	N=>	25	19	R I	18	1100	510	210	5 4	480	2002	33	110			37	15	<pre>&gt;</pre>	4	÷.	M=>	NT>	53	58 1	13	100	N≣>	S N	N=>	M=>	11100
Group 5 averade	250		212	P-10	36	<=W	8.9	7.5	12	66.7	14.7 26.6	1.4	Ð	12	7.1	90	49.5	10.3	ដុ	7.7C	230	29.7	0.9	62	ឡ :	2:	: C	0.7	<=W	23	36	<=W	N=>	29	21	1.4	25	0.5	000 M=>	<=W	22	200
aucor.	~=//				MI		-	2.8	<=W	1.7	~=>		<=W	<=W	N=>	M=>	0.9	<=/	N=>	A=V	~=>	0.6	<=>	>=	~=>	N=>	>	<=W	<=W	_>	M≡>	<=/	>	0.1	2.2	<=/	<=>	N=>	M=>	<=/	N=>	VEN
2BLC02 0	~=>		M=>		- M(	N=>	~=>	<=W	<=>	N=>	N=>		<=>	N=>	N=>	N=V	<=W	N=>	~=>	N=0	~=>	2.5	<=W	~~~~	~=×	N=>		M=>	N=>	×=\	~~~	<=V	N=>	N=>	N=>	<=W<	<=W	N=>	N=>	<=>	N=>	VII N
LC18A* 0	17		<del>1</del>		11	~=~	8.3	7.4		8	9 9	9 0	1.9	1.7	n ç	0.32	52	62	N=>	07 F C	25	90	<=W	72	32	77	0.46	1.4	<=W	33	51	<=W	~=>	3.1	0.59	2.9	3.3	- ;	N=>	<=W	9 2	ò
03LC17 03	38	3 3	5 :	; ;	2 9	- M=>	7.9	5.3	0.3	8.6	12	5.6	1.8	1.6	4	0.51	47	13	N=>	2	21	27	<=W	5.3	~ ;	+ c	0.8	0.9	<=W	1.9		<=W	N=>	9.L C	3.7	2.5	1.8	1.2	0.7 M=>	M=>	- - -	1.7
03LC14	4.2	1	8 1	101-1		~=>	9	ŧ	1.6	<del>1</del> 9	5	2.2	<=>	0.4	4 0, 4	0.63	67	6.5		N=V	କ୍ଷ	4	<=W	8.6	œ !		0.72	1.2	<=N	~=>	0.5	<=>	N=>	3.7	0.78	0.3	4.9	N=>	N=V	<=>	4.7	4.0
2LC17	100	8	76	<u>8</u> €	7 2	~~~	26	18	4,9	50	8 G	~~~~	24	31	82 F	22	130	8	9.5	24	60	76	4.4	16	~=~	~~~~	5.6	<pre>Mm&gt;</pre>	<=W	5	15	<=W	N=>	= 2	ţ 4	24	4.3		e Miles	<=W	<=W	ò
LC01	2.7		~ - C	2.0	/M	~=V	<=W	<=W	<=W	4.7		N=>	<=W	<=W	56	M=>	2.5	1.3	<=W	~=v	<=W	42	<=W	<=\V	<pre>&gt;</pre>	V=VV		<=W	<=W	~=>	~=×	<=W	<=W	<=VV	~=×	<=W	<=W	<=W	~=×	<=W	<=W	S=VV.
p 1 ade 02	8.1		1.0	- 0	0 5	-N=	6.6	2.1	8.7	7.1	9.9 • •	0.7	4.0	42	6.1	42	2.4	82	8.5	R 1	3.7	4.4	2.3	5.0	83	20	9.1	2.3	02	3.5	4.1	0.9	N=	8.0	9.8	4.6	22	1.6	0.3	0.4	1.7	
14" aver	45 19		17 07		2000	3 N	30	2	5.7	120	8 69	2.5	2.6	2.3	4 5	2.2	34	36 11	8.7	3 2	40 17	22 32	N.	25	-0 0 0	א ת י) ד	6.3	53	Ņ		20.1	11	N of the second	21.3	6.2	2.3	7.3 1	0.6 73	° 3≱	N.	2.6	0
C12 03LC	5	, s	8 9	2 °	0 1-	×	5	18	2.2	2 8	88	3 8.	5.1		e, 6	34	10	6.6	N 5	° ₽≥	4	8	⇒ N=	¥ ;	9.9	4.7	5 er	5	° ∧	52	4 ⁴	M=	× N	4.6	1 80	-	4.9	4.6	v z ž	× N	4.4	
0, 0310	00			38	18	2 2	47	37	8	81	1.00	33	34	28	6.6		30	20	2 2	88	. 8	30	1.3	8:33	23		ន	1.02	× N	0	24	1 ~	v N	83	2 9	17	33	92 02	* * *	.× 30	 ოვ	
B* 03LC1	1		- 4		8 0	° N	2	5	16	. 8 8	000		4	80		0.1-	10 2	0	1	- 4	0	1 1	N	2:	6	n, c	12	4	∾		3.0	4.	∛ ×:	5.	1	2	22	4 2	t 0i	5	×*	0
A* 03LC08	0		6 F		2 0	• 3	12	3 2	Ξ	8:	£.5	2 7) 2 7)	4	9	8 2	24	70	÷ -	- 1	20	2 X 2 X	20	-1↓ 6;	8	<u>N</u> 1	ς α Γ 4	0	ص ص	N N	-		5	∛ ≥	e •	٥ <u>۵</u>	3	13	N 1	~~~	9	" 	2
* 03LC08.	5		5 ÷	÷ ÷	7 °		-	33	>	~			7 4	8 ·		- ~	7 47	8	- `	~~ ~~	6 6	2	~	N 1	- ·	5 T	, . 			4	- 40 2 M	8			+ - - 0	د د	5	- - -	, _	0	2 4	-
2 03LC00					0 7	i		4	8	0 0		· ->	4	0	4	20.0	0	4	₩°	" ~ . «	0	0	2	۳.		- < 2 4	5 N	1-	1	÷.	0.00	°	√ 	0 1 0 1		1=>	4		2 2	1=>	1	2
021C1:	66			101	0 h	. \=>	ď	÷.	-	ę :	15	77 ₩=>	8.	- 1		50	81	35		, é	35	69	÷	\$	1	÷ ř	, <del>4</del>	с,	Am>	~ .	ŧώ	<=V.	1	<i>°</i> 6	ni ←	-	64	ni ^ú	, M=>	<=V.	/=>	1
	DO(	R.A.	5,61	50-	5	5,62	b/du þ	6,6u P	6,6u y	0,6u	b b b		6,6u +	6,6u /	66	7.5 6 7 7 7	6,6u	6,6u	6,60		5,00	6,6u	6,6u jr	6,6u /	560	ы Бори IA	A Digu	5,500 P	vi ngʻg	6,6u	562	6,60	b,6u j∧	660 -		b/du þ	-1 ng/g	6,6u		6,0u F	6,62	141
	3.5'-tetrachlorobiohenvi	A Province and an	A, 0 -tetracritoroopheriy	c, c - rettau ini ou prietty i E trichtorchishon i	California Constraints	6-trichlorobiohenvl	3,445'-hexachlorobip heny.	3,456-hexachlorobip heny	3,5,5'6-hexachlorobipheny	3,5',6-pentachlorobipheny.	4,4',5-pentachlorobipheny.	4,6,6'-pentachlorobiphenyl	3'4,4'5-hexachlorobipheny	.3'4,4'6-hexachlorobipheny	.34,4"-pentachiorobipheny.	4,4,5-pentachlorobiphenyl	A', 5-tetrachlorobiphenyl	4-trichlorobiphenyl	4 -trichlorobiphenyl	4,4, 5-pentachioropipheny 4,4' 6-pentachioropiphenyl	4',5-tetrachlorobiphenyl	4'-trichlorobiphenyl	33',44'-hexachlorobip heny.	44,55'-hexachlorobip heny	44',66'-hexachlorobipheny	33 44 55 5-hona(UJ)bipneni 23 44 55 5-hona(UJ)biphenul	33'44'5-heotachlorobiohenw	33'446-heptachbrobipheny	33'455'66'-nona(Ci)biphen)	33'455'6'-octa(CI)biphenyl	33 45 66 -bestachlorobishenv. 13'4'56-hestachlorobishenv.	33'55'66'-octa(CI)biphenyl	33'556-heptachbrobipheny	344 to -neptachorobipheny	244 3 011eptacinolocipitents 14'556-heptachlorobipheny.	34'566'-heptachlorobipheny.	4,4',5-pentachlorobipheny.	44',55'-hexachlorobip heny	"44'55'-heptachlorobipheny	44'56-heptachbrobipheny.	4,4'-tetrachlorobiphenyl	4 -0.02.0001000000 mm1 v i
	2		40	4 6	10	12	22	22	2,2	22	400	12	2,3	23	200	30	2,3	N	20	2 6	4	2.4	3	2	88	3 8	18	1 S	3	នៅ	18	22	ដ	3 8	18	22	33	88	3 8	23	3.5	4

-	
2,2'3,5',6-pentachlorobiphenyl	2,2'4,4',5-pentachlorobiphenyl

59

PCB and HV g

Table 6 confd:

Table 7. Prediction of whole body concentrations of total PCBs in biota based on sediment total PCB concentration alone ("A" models), and sediment total PCB concentration + other sediment physico-chemical variables ("B" models). The groups of multiple predictors listed are from the models that best predicted [PCB]_{inv} using sediment and water variables. [PCB]_{sed} was retained in all models.

Response	Model	Predictor	Coefficient	P (non distant)	2	Adj.	P
$([PCB]_{inv})$		( [X])		(predictor)	r-	r-	(regression)
Chironomid	A	Total PCBs	0.3382	0.001	0.656	0.625	0.001
	В	Total PCBs	0.3294	< 0.001	0.791	0.749	< 0.001
		pН	0.2726	0.030			
Amphipod	Α	Total PCBs	0.5506	< 0.001	0.883	0.874	< 0.001
	В	Total PCBs	0.5508	< 0.001	0.929	0.918	< 0.001
		pН	4.4520	0.016			
Oligochaete	Α	Total PCBs	0.3081	0.082	0.250	0.182	0.082
	В	Total PCBs	0.4531	0.004	0.855	0.783	0.002
		pН	0.5320	0.004			
		Total P (water)	1.5223	0.007			
		Sand	-2.0258	0.032			
Odonate	Α	Total PCBs	0.0009	0.991	0.000	0.000	0.991
	В	-	-	-	-	-	-

Table 8a. Predicted total PCB concentrations ( $\mu$ g/g wet weight) in fish receptors. Highlighted values exceed the tissue objective (100 ng/g ww, IJC) applicable for fishes.

Recep	Receptor		ullhead / W	hite Sucker		Carp		Blueg	ill / Pumpl	kinseed	Largemouth Bass				
Mean PCBs Hwy	140 (2002/2003) ^a	(0	.140/-)(-/1.1	157)		1.164 / 1.11	6	(0.18	8/-)/(0.390/	0.436)	0.278/0.478				
Mean PCBs D/S	QEW (2002) ^a		0.068			0.076			0.024		0.044				
Area	Site	min	med	max	min	med	max	min	med	max	min	med	max		
Reference	BLC01	0.03	0.08	0.13	0.03	0.41	0.89	0.02	0.06	0.16	0.02	0.68	9.80		
	BLC02	0.04	0.11	0.19	0.04	0.58	1.30	0.02	0.08	0.23	0.02	0.95	14.28		
	UC01	0.02	0.06	0.13	0.02	0.34	0.88	0.01	0.05	0.16	0.01	0.56	9.71		
	TC40	0.01	0.10	0.23	0.01	0.51	1.57	0.01	0.07	0.28	0.01	0.84	17.26		
Lyons Creek	LC01	0.05	0.22	0.48	0.04	1.16	3.26	0.02	0.16	0.58	0.03	1.91	35.84		
	LC03	0.01	1.75	4.67	0.01	9.17	31.79	0.00	1.25	5.63	0.00	15.07	349.72		
	LC08	0.06	1.16	2.97	0.05	6.08	20.22	0.03	0.83	3.58	0.03	9.99	222.45		
	LC12	0.33	12.57	32.85	0.29	65.82	223.59	0.15	8.97	39.59	0.17	108.19	2459.52		
	LC14	0.06	1.02	2.59	0.05	5.36	17.66	0.03	0.73	3.13	0.03	8.82	194.21		
	LC16	0.12	0.97	2.31	0.11	5.10	15.73	0.06	0.70	2.78	0.06	8.39	172.98		
	LC17	0.06	1.76	4.58	0.05	9.22	31.16	0.03	1.26	5.52	0.03	15.16	342.72		
	LC18	0.07	0.63	1.52	0.06	3.32	10.36	0.03	0.45	1.83	0.04	5.45	113.95		
	LC19	0.05	0.68	1.69	0.05	3.56	11.51	0.03	0.49	2.04	0.03	5.85	126.60		
	LC29	0.06	0.67	1.66	0.05	3.52	11.28	0.03	0.48	2.00	0.03	5.79	124.06		
	LC38	0.02	0.22	0.55	0.02	1.17	3.71	0.01	0.16	0.66	0.01	1.93	40.82		
^a MOE 2005															

 Table 8b.
 Predicted total PCB concentrations in wildlife receptors.

		Gold	eneye (µg/g	gww)	Mink (µg/g lipid)					
Area	Site	min	med	max	min	med	max			
Reference	BLC01	0.26	0.43	0.61	0.027	0.115	0.437			
	BLC02	0.34	0.60	0.89	0.036	0.161	0.637			
	UC01	0.14	0.35	0.61	0.015	0.094	0.433			
	<b>TC40</b>	0.10	0.53	1.08	0.011	0.14	0.77			
Lyons Creek	LC01	0.37	1.21	2.24	0.04	0.32	1.598			
	LC03	0.04	9.50	21.86	0.005	2.56	15.598			
	LC08	0.43	6.30	13.90	0.047	1.69	9.921			
	LC12	2.50	68.19	153.72	0.268	18.35	109.69			
	LC14	0.47	5.56	12.14	0.051	1.49	8.66			
	LC16	0.96	5.29	10.81	0.102	1.42	7.72			
	LC17	0.43	9.55	21.42	0.046	2.57	15.285			
	LC18 0.5		3.44	7.12	0.059	0.92	5.082			
	LC19	0.41	3.69	7.91	0.044	0.99	5.647			
	LC29	0.46	3.65	7.75	0.049	0.98	5.533			
	LC38	0.18	1.22	2.55	0.019	0.33	1.821			

4',55'- thorobi	153	0.039 0.039 0.058 0.058 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.008 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.0280 0.0280 0.0280 0.0280000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14'- 22',4 srobi hexac	128 prin	2016 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22',33',4 hexachlo phenvi	e primi		
2,4,4 ⁻ trichlorobipt envl	anyi 21	2010 2010 2010 2010 2010 2010 2010 201	Percent (i) 4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
2,4,4',5- trachlorobi	74	0000 0000 0000 0000 0000 0000 0000 0000 0000	Participant (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (199
.3'4,4',6- itachlorob te ichenvi	119 119	000 000 000 000 000 000 000 000 000 00	Markansa Markansa (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
3'4,4',5- 2 tachlorob per	118	0.10 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.0	<ul> <li>Instanting</li> <li>Instanting</li></ul>
.3.4'- 2, ilorobiph pen	anyi 22	8000 8000 8000 8000 8000 8000 8000 800	Markan Markan 1990 1990 1990 1990 1990 1990 1990 199
.3.4-2 lorobiph trict envl	21	0.013 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.0140000000000	May 1
7,4,5- 2 hlorabi trichi	70	0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.00800000000	944765 944767 9471 9471 9471 9471 9471 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 9472 94
1,4',5- 2,3 Morob tetrac envl ph	114 pi	0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0020	<ul> <li>Analysis (1998)</li> <li>Ana</li></ul>
445'- 2,3, Ilorobi penta	157 ipri	0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04	March 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
1,6- 2,3,3 lorob hexacl	110 prie	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	Ref. 13344 14 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
<li>4'- 2,3,3' arob pentach vi bher</li>	yi prid 105		Markey (1992)     Markey
6- 2,3,34 robi pentachi iphen	158 Iprim	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 0.	5. To the second sec
- 2,3,3'4,4 bi hexachlor	66 priority	84000-85146014-555555600055557000085548601400-88586	
2,3,3'4,4'5 hexachlorot phenvi	15		Montage     M
2,2'4,6,6'- entachlordb ichenvl	104	0.055 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.0520	22.2.2.2.4.0000000000000000000000000000
2,2'4,5,5'- ntachlorob p iohenvl	101	000 001 001 001 001 002 002 002 002 002	
Z4,4',5- 2 Machlorob pe	99 99	008 008 002 002 002 008 008 008 008 110 110 110 110 110 110	<ul> <li>Annu State State</li></ul>
2'3,5',6- 2 tachlorob per	95	0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Market 2000 100 100 100 100 100 100 100 100 10
3,5,56-2; adhlordbi pen	151	0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	2012 100 100 100 100 100 100 100 100 100
3,45'6-2,2 chlorobi hexi	149 149	0.01 0.07 0.07 0.07 0.07 0.07 0.07 0.07	And
,44'5'- 2,2' zhlorobi hexa envl pl	138 p	0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.0180000000000	Millingen Millin
8,4,5'- 2,2'S Shibrob hexa	aiyi pi	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.1 (19) (10) (10) (10) (10) (10) (10) (10) (10
(6 2,2') robiph perta	y 19	012 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1020 1	2015/2016 00 10 10 10 10 10 10 10 10 10 10 10 10
3,6- 2,2 lorobi trichlo nvl er	54 9	00000000000000000000000000000000000000	Market Parallel Paral
5- 2,2',6 biph tetrach	18 pire	0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.	Marker Marke Marker Marker Mar
5'- 2,2', robi trichlorc	52 91		Part 1, 2014 (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (19
2,2',5, bi tetrachlo phem	6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
2,2',4,5'- tetrachlord phenvl	n circuit	00000000000000000000000000000000000000	Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro)
2,2',3,5'- tetrachlorobi phenvl	рлагу. 42	0,010 0,011 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,012 0,0000000000	2014/101/2014/2014/2014/2014/2014/2014/2
	number		100LbBst
	congener	888861A 88861A 8860 A 8860 A 8	Economia (1999)     E

Table 9: PCB congener (ngg) and lipid (%) data for clams collected from Lyons Creek in 2002 and 2003, and from Balsam Lake (reference), PCB congeners

Market in the state of the s
Jeta i kan
Mark with with with with with with with with
7 max 7
M M M M M M M M M M M M M M M M M M M
Mark Mark Mark Mark Mark Mark Mark Mark
Mar
For part of the
N         Perry         Caliny
No.
I         Texade
P. Totadas         Factors
No.
FOTIO         FOTIO <th< td=""></th<>
Peak         Peak <th< td=""></th<>
1         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         10000         1000         1000         1
I. Patteria         Patteria         Patteria           P. Patteria         Patteria         Patteria
PRDIA         PADIA         PADIA <th< td=""></th<>
P 1011-19 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 1400000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 140000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 14000000 14000000 140000000000

TEQ 10 TEQ/ka	30.00	32.26 37.90 28.59	37.74	30.66 37.13	61.60 97.95	0.05	0.00	000	000	0.00	0.05	000	0.00	000	0.00	119.31 138.64 123.73 123.24 106.41	108.51 108.01 107.71 235.82	114.52 10.00 122.13 120.23 8.30	10.30 12.60 14.90	17.40 613.82 222.43 323.33	319.53 114.02 9.42	11.42 109.61 109.41	112.82	111.90 109.20 111.10	5.10 3.40	6.70 105.20 104.30	6.90 101.20 0.20	0.40 100.40 100.10	0.00 0.20 0.70	040
CBTOT na/a r	2400.00	3100.00 4300.00 3000.00	4100.00 3300.00	4400.00 5956.00	9780.00 11292.00	24.00 13.00 16.00	8.00 33.00	6.00	8.00	8.00 36.00	16.00 43.00	25.00 42.00	11.00	16.00 9.00 15.00	9.00 11.00	1400.00 3800.00 2500.00 2400.00 460.00	580.00 580.00 580.00 580.00	1400.00 2500.00 2000.00	1100.00 1600.00 1500.00	2600.00 1200.00 2300.00 2100.00	1900.00 1300.00 920.00	1100.00 850.00 840.00	1100.00 860.00	650.00 970.00	320.00 320.00	820.00 690.00 380.00	<b>820.00</b> 57.00 29.00	33.00 29.00 22.00	13.00 19.00 19.00	100.00
B208 PC	000	8 8 8	8.0	0.00	0.00	0.0.0	8 8 8 8 8 8	8 0 0 0 0 0	0.00	8 8 8	8.8	0.00	0.0 0.0 0.0 0.0	0.0	0.00	2.00 2.00 2.00 2.00 2.00 2.00	8 6 6 6 6 6	0.00	0000	0.00 1.00 1.00 1.00	0.00	0.00	8.6	9 0 0 0 9 0 0 0 9 0 0 0	8 8 8	8 <u>8 8</u>	0.1 0.0 0.0	0 0 0 0 0 0	0.0000	
18206 PC	0	0.60	080	0000	1.80	0.00	0.0	000	0.00	0000	000	000	000	000	0.00	5.00 2.00 2.00 2.00 2.00	100 2 100 2 100 2 100	88888	0.00	0.00	300	0.00	000	50 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 6	0.00	001	0000	000000000000000000000000000000000000000	
CB205 PC	00.0	8 8 8	8.0	0.00	0.00	0.00	8 8 8	8.0 0	0.00	8 8 8	8.0	8.8.8	0.0 0.0 0.0	0.0	0.00	00000000000000000000000000000000000000	88888	888888	0.0 0.0	0.0.0	0000	0.000	0.00	8 8 8 8	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0 0 0	
CB202 Pe	000	888	800	0000	0.00	0.00	8 8 8	000	0.00	8 8 8	000	000	000	000	0.00	0.00 1.00 0.00 0.00	80000	0000000	00000	0.000	0000	0000	000	8888	000	0.00	0.00	0000	00000000	
CB201 P	0000	3.60 3.60 8.40	3.80	3.40 4.40	7.60 8.60	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.00	0.00	8.00 8.00 8.00 2.00	3.00 3.00 4.00 5.00	5.00 10.00 3.00	3.00 2.00 4.00	5.00 4.00 13.00	9.00 7.00 2.00	3.00	9.00	1.00	4.00 1.00	3.00 2.00 4.00	3.00 1.00 0.00	0.00 0.00 0.00	0.00	
CB199 P nata	00	5.80 7.20 5.40	8.80	4.60 6.20	17.00 14.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	4.00 1.00 1.00	5 0 0 0 0	3.00	2.00	3.00 3.00 7.00	3.00	2.00	3.00	5.00	2:00 1.00	1.00 2.00	1.00 0.00 0.00	0.000	0.0	
CB194 P na/a	0000	6.60 7.80 6.20	9.40	5.00	15.00 13.00	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.0	0.00	0.00	5.00 2.00 2.00 2.00	2:00 2:00 2:00 2:00	3.00	3.00	2.00 7.00 7.00	3.00 5.00	2.00	3.00	3.00	3.00 2.00 1.00	1.00 2.00 2.00	1.00 0.00 0.00	0.0	0.00	
CB191 F na/a	0000	888	888	00.0	0.0	0000	888	000	000	8 8 8	800	000	000	0000	0.00	000 001 001 000 000 000 000	000000000000000000000000000000000000000	500000 0000000000000000000000000000000	000000	000 5000 5000	300	000000	888	80000	800	0.00	000 000 000	0 0 0 0 0 0	000000000000000000000000000000000000000	
PCB189 F na/a	000	888	888	0.0	0.0	0.00	0.0	888	0.00	888	888	0.00	00.0	0.0	0.00	000 1000 000 000 000 000 000 000 000 00	0.000	888888	0.00	0.0 2,000 2,000	0 0 0 0 0 0 0 0	0.000	000	8888	0.0	0.00	0.00	0.000	0.0000000000000000000000000000000000000	
CB188 F na/a	00.01	12.00 13.00	14.00	13.00	32.00 31.00	0000	888	888	0.00	888	888	000	000	0.0	0.00	10.00 8.00 5.00 4.00	00000 20000 20000	500 500 400 500 500 500 500 500 500 500	3.00 5.00	6.00 5.00 11.00	7.00 3.00	3.00	5.00	30.00	00.8 00.9	3.00 2.00 4.00	0.00 0.00 0.00	0.000	0.0 0.0 0.0 0.0 0.0	
PCB187 F na/a	00.01	19.00 20.00	24.00 18.00	17.00 19.00	54.00 43.00	000	0.00	000	0.00	0.00	0.00	000	0.00	0.00	0.00	9.00 9.00 9.00 9.00 4.00	4,00 5,00 6,00 6,00 6,00 6,00 6,00 6,00 6	6.00 9.00 13.00 5.00	4.00 6.00	8.00 7.00 20.00	12.00 6.00 3.00	5.00 5.00	7.00	11.00 4.00 6.00	6.00 2.00	6.00 5.00	5.00 2.00 1.00	1.00	0.00 1.00 1.00	
PCB183 na/a	0000	10.00	11.00	9.60 11.00	27.00 21.00	0.0	8 8 8	80.0	0.00	8 8 8	888	0.00	800	0.0	0.00	8.00 3.00 3.00 3.00 3.00	8 8 8 8 8 8 8 8 8 8	900 900 900 900 900 900 900 900 900 900	3 00 0	4.00 2.00 10.00	6.00 2,00 2,00	1.00	4 4 8 8	3, 9, 6, 6 3, 6, 6, 6 4, 6, 6, 6 4, 6, 6, 6 5, 6, 6, 6 5, 6, 6, 6 5, 6, 6, 6, 6, 6, 6 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	0.4 0.0 1.00	1.00 2.00 4.00	3.00 0.00 0.00	8 8 8 8 8 8 8 8 8	1.00 0.00 0.00	
PCB180 na/a	0000	30.00 31.00 31.00	39.00	32.00 39.00	100.00 84.00	000	000	888	0.00	8 8 8	8 E E	0.00	3000	0.00	0.00	7.00 36.00 25.00 25.00 25.00	200 300 5 40 0 300 0 0 0	11.00 7.00 19.00 7.00	6.00 10.00 12.00	14.00 14.00 37.00	19.00 5.00	00'9 00'6	13.00	25.00 7.00 8.00 7.00	13.00 13.00	14.00 9.00	12.00 2.00	5 0 0 5 5 0	0.00 2.00 2.00 2.00	
PCB178 na/a	000	8 8 8	000	0000	0000	0.00	888	000	000	8 8 8	000	888	000	000	000	30.00 100.00 72.00 13.00	21.00 14.00 19.00 72.00	25.00 70.00 64.00 77.00 77.00	27.00 28.00 35.00	52.00 33.00 71.00	61.00 20.00	27.00 26.00 24.00	38.00	23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.000 20.000 20.000 20.00000000	19.00 15.00	37.00 31.00 19.00	34.00 3.00 2.00	200 200	000000000000000000000000000000000000000	
PCB177 nata	co r	7.80 8.70 6.10	10.00 7.60	6.90 9.50	24.00 19.00	0.00	8.8.8	8.0	0.0	0.00	8.0	0.00	0.0	0.00	0.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	88888	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2 00 0 2 00 0	0 0 0 0 8 7 0 0	5.00 1.00	2 0 0 0 2 5 0 0	0.00	3.00	2.00 1.00	3 0 0 0 3 5 5 5	0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	
PCB171 na/a	00.0	3.20 4.00 2.80	3.40	2.60 3.60	11.00 8.80	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.00	0.00	0.00	2.00 5.00 3.00 1.00	0.00	3.00	2.00 0.00 1.00	2:00 4:00 5:00	3.00	1.00	2.00	0.00	2.00 1.00 0.00	1.00	1.00 0.00 0.00	0.00	0.00	
PCB170 na/a	00	17.00 18.00	19.00 20.00	17.00 20.00	46.00 40.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.00 13.00 8.00 12.00	2.00 5.00 5.00 5.00	6.00 8.00 8.00	3.00 4.00 5.00	7.00 5.00 15.00	7.00 6.00 2.00	3.00 3.00	5.00	3.00	6:00 2:00	5.00 3.00 2.00	4.00 1.00 0.00	0.00	1.00 0.00 0.00	
PCB169 na/a	0000	0 0 0	000	0.00	0.00	0.00	0.00	0.0	0.00	0 0 0	0.0	0.00	0.00	0.00	0.00	0.0000000000000000000000000000000000000	00000	0000000	0.00	0.000	0.00	0.00	0.00	00000	0.00	0.00 0.00 0.00	0.0 0.0 0.0	0.0	0.0000000000000000000000000000000000000	
PCB168 na/a	00.00	61.00 74.00 62.00	60.00 64.00	63.00 46.00	140.00 160.00	0.00	0.00	000	000	0.00	0.00	800	0.00	0000	0.00	52.00 64.00 45.00 1.00	5.00 5.00	25.00 17.00 19.00	10.00 18.00 19.00	32.00 16.00 53.00 45.00	42.00 17.00	12.00 17.00 16.00	14.00	11.00 15.00 17.00	26.00 26.00	29.00 24.00 13.00	25.00 0.00 0.00	0000	000000000000000000000000000000000000000	
PCB167 na/a	0	8 8 8 8 8 9	8 <del>7</del> 8 8	0.00 3.00	6.40 9.00	0.0	8 8 8	80.0	0.00	8 8 8	888	8.8.8	0.0	0.00	0.00	1.00 3.00 1.00 1.00	8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00	0.00 3.00 9.00 9.00 9.00 9.00 9.00 9.00	300 5 5 3 00 5 5 3 00	2.00 1.00 1.00	500	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0.00	
PCB158 na/a	000	9.80 10.00 7.20	11.0	9.60 12.00	21.00 23.00	0.00	0.00	0000	000	0.90	1.10	000	000	0000	0.00	300 300 300 300 300 300 300 300 300 300	300 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	6.00 6.00	6.00 8.00 7.00	6.00 7.00 4.00	5.00 5.00	500	200 200 200	3.00	200 200 200	300 000 000	0000	000000000000000000000000000000000000000	
PCB157 na/a	00 0	8 8 8 8 8 8	8.00	0.00	0.00	0.00	0.0	8 0 0 0 0 0	0.0	0.00	8.0	0.00	0.0	0.00	0.00	5.00 9.00 7.00 2.00	4 7 7 8 9 8 8 8 9 9 8 9 8 9	6.00	1.00	2.00 3.00 13.00	5.00 6.00	7.00	8.00	5 8 8	2.00 2.00 2.00	5 0 0 5 0 0	3.00 0.00 0.00	0 0 0 0 0 0	0.00	
PCB156 na/a	00 1	7.00 8.40 6.20	9.40 7.40	6.20	14.00	0000	0.00	800	0.00	8.8	0.0	000	000	000	0.00	3.00 5.00 3.00 1.00	50000 50000 50000	200 200 200 200 200 200 200 200 200 200	300	5.00 5.00 6.01	500 200	300	4,00	300 300	000	001 001 001 001	0.00 0.00 0.00	0000	000000000000000000000000000000000000000	
PCB155 na/a	000	000	0000	000	0.00	000	0.00	000	0.00	000	000	000	000	0.00	0.00	0.00 2.00 2.00 1.00	200 200 200	61.00 140.00 28.00 48.00	1.00 4.00 3.00	6.00 110.00 96.00	100.00 18.00 2.00	0.00	0.00		0.00	0.00	0.00	0.00	0000	
PCB153 na/a	00.00	61.00 76.00	86.00 64.00	63.00 74.00	190.00	0000	0.00	000	0.00	520	0.50	0.00	350	0.00	00.0	19.00 73.00 46.00 8.00	13.00 9.00 5.00	28.00 18.00 44.00 19.00 19.00	20.00 18.00 22.00	34.00 52.00 67.00	42.00 24.00 13.00	18.00 18.00 18.00	29.00	35.00 16.00	4.00 22.00	43.00 34.00 21.00	32.00 3.00 2.00	3.00 3.00 4.00	3.00 3.00 2.00 2.00	
PCB151	00.01	12:00	14.00	14.00	34.00 41.00	0.00	0.20	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	6:00 2:00 2:00 2:00 2:00 2:00 2:00 2:00	00000 00000 00000	4 N 8 8 6	3.00	7.00 8.00 12.00	7.00	3,000	3.00	9000 9000 90000	3.00	0.00	2.00 1.00 0.00	1.00 0.00	000000	
PCB149 no/a	0005	59.00 63.00 44.00	72.00	59.00 71.00	140.00	0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.00	0.00	38.00 57.00 81.00 39.00 8.00	6.00 8.00 8.00	22.00 22.00 38.00 38.00	15.00 17.00	28.00 20.00 41.00 51.00	39.00 25.00 11.00	13.00 14.00 13.00	21.00	20.00 9.00 10.00	11.00	17.00 16.00 11.00	17.00 2.00 1.00	1.00	00.1	
PCB138 na/a	0010	84.00 95.00 63.00	110.00	85.00	210.00 230.00	0.00	2.40	0.60	0.40	1.60	1.60	3.20	0.60	0.00 0.00	0.60	26.00 89.00 59.00 10.00	13.00 17.00 12.00 16.00	26.00 30.00 38.00 38.00	15.00 22.00 27.00	42.00 23.00 55.00 51.00	35.00 20.00 9.00	12.00 16.00 14.00	21.00	27.00 12.00 15.00	4.00 17.00	36.00 27.00 16.00	24.00 5.00 2.00	2.00	2.00 2.00 2.00 2.00	
PCB128 na/a	00.01	13.00 16.00	14.00	11.00 9.20	25.00 38.00	0.0	8.8.8	888	0.00	888	888	8.8	0.0	0.0	0.00	6.00 7.00 3.00	80000 50000 50000	888888 88888	0.00 0.00 0.00	5.00 3.00 6.00 7.00	5 5 0 2 5 0 2 5	0.000	000	8888	2 00 7 00 1 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.00 0.00	8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	
PCB126 ng/g	000	888	888	0.0	0.0	000	0.0	000	0.00	8 8 8	88	000	000	000	000	001 001 001 001 001 001 001 001	8 8 8 8 8	000 000	0000	000 500 300	300	0.00	001	8888	000	0001	0.0 0.0 0.0	000	000000000000000000000000000000000000000	
PCB123 na/a	00.01	18.00 24.00	28.00 18.00	21.00 28.00	44.00 62.00	000	0.00	000	0.00	0.00	0.00	0000	0000	000	000	50.00 57.00 37.00 31.00	8.00 3.00 3.00 3.00	10.00 15.00 14.00 7.00	8.00 9.00 10.00	13.00 9.00 13.00	13.00 5.00	7.00 6.00 6.00	8.00	600 600	300 200 300	3.00 2.00 3.00	3.00 3.00 1.00	2.00 3.00 1.00	000 000 100	
PCB119 na/a	00 0	8 8 8	220	3.70 6.90	10.00 0.00	0.0	8 8 8	0.0	0.00	8 8 8	8.0	0.00	8 0 0 0 0 0	0.0	0.00	3.00 2.00 2.00 2.00 2.00	7.00 7.00 7.00 7.00 7.00	2 5 00 00 00 00 00 00 00 00 00 00 00 00 0	1.00 1.00 1.00	2.00 3.00 2.00 2.00 2.00	3.00	0.00	0,01	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	1.00 3.00 3.00	0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0.0.0.0	
	2002	LC01		LC16		L38		mouth				BLC		BEC	5005	LC03		LC08 LC16		LC17		LC18		100	LU24		nc			
																		64												

Table 11: PCB concentrations, length, weight and species of sport fish collected from Lyons Creek, 1991-2	2002
-----------------------------------------------------------------------------------------------------------	------

Location	Species	Date I	ength w	veight	total PCB		Location	Species	Date	length w	eight t	otal PCB
Lyons Creek - Hwy 140	Pumpkinseed	23-Oct-91	9.5	9	1260	_	Lyons Creek - d/s of QEW	Brown Bullhead	18-Jul-00	28.8	344	80
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed	23-Oct-91 23-Oct-91	10.6 11.2	17	80 Trace 2500		Lyons Creek - d/s of QEW I yons Creek - d/s of QEW	Brown Bullhead Carp	18-Jul-00 18-Jul-00	28.9 48.6	406	60 80
Lyons Creek - Hwy 140	Pumpkinseed	23-Oct-91	12.8	36	1460		Lyons Creek - d/s of QEW	Carp	18-Jul-00	51.3	2007	100
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed Bowfin	23-Oct-91 01-Nov-91	17.5 40	126	220 80 Trace		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Carp Carp	18-Jul-00 18-Jul-00	52.5 55	2113 1950	180 0 ND
Lyons Creek - Hwy 140	Bowfin	01-Nov-91	44.4		310		Lyons Creek - d/s of QEW	Carp	18-Jul-00	56.2	2421	80
Lyons Creek - Hwy 140	Bowfin	01-Nov-91	44.0		320		Lyons Creek - d/s of QEW	Carp	18-Jul-00	61.1	3206	640
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bowfin Bowfin	01-Nov-91 01-Nov-91	45.8 55.7		260 500		Lyons Creek - d/s of QEW I yons Creek - d/s of QEW	Carp	18-Jul-00 18-Jul-00	67.5 72	4900 5105	100 80
Lyons Creek - Hwy 140	Bowfin	01-Nov-91	57.2		440		Lyons Creek - d/s of QEW	Carp	18-Jul-00	73	5545	260
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bowfin	01-Nov-91 01-Nov-91	63.9		380		Lyons Creek - d/s of QEW	Largemouth Bass	18-Jul-00 18-Jul-00	35.6	762	40
Lyons Creek - Hwy 140	Bowfin	01-Nov-91	66.8	160	240		Lyons Creek - d/s of QEW	Largemouth Bass	18-Jul-00	36.2	803	60
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill	05-Nov-91	19.2	180	80 Trace		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Largemouth Bass	18-Jul-00 18-Jul-00	39.4	954 921	40
Lyons Creek - Hwy 140	Largemouth Bass	05-Nov-91	24.4	218 261	160 Trace 380		Lyons Creek - d/s of QEW	Pumpkinseed	18-Jul-00	13.5	57	0 ND 20
Lyons Creek - Hwy 140	Rock Bass	05-Nov-91	12.5	43	200 Trace		Lyons Creek - d/s of QEW	Pumpkinseed	18-Jul-00	14.2	56	60
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Rock Bass Rock Bass	05-Nov-91 05-Nov-91	19.1 20.7	146 172	160 Trace 120 Trace		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Pumpkinseed Pumpkinseed	18-Jul-00 18-Jul-00	15.5	93 97	0 ND 80
Lyons Creek - Hwy 140	White Sucker	05-Nov-91	35.5	481	640		Lyons Creek - d/s of QEW	Pumpkinseed	18-Jul-00	16	91	20
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed	15-Oct-92	13.3	63	170 Trace		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Black Crappie	21-Oct-02	27.6	290 345	20
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed Pumpkinseed	15-Oct-92 15-Oct-92	13.6 13.6	61 58	145 Trace 150 Trace		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Black Crappie Black Crappie	21-Oct-02 21-Oct-02	26.5 27.4	318 379	20 20
Lyons Creek - Hwy 140	Pumpkinseed	15-Oct-92	14	71	0 ND		Lyons Creek - d/s of QEW	Black Crappie	21-Oct-02	27.4	352	40
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed	15-Oct-92 15-Oct-92	15	90	70 Trace		Lyons Creek - d/s of QEW Lyons Creek - Hwy 140	Black Crappie Black Crappie	21-Oct-02 21-Oct-02	27.5	143	220 P84
Lyons Creek - Hwy 140	Pumpkinseed	15-Oct-92	15.1	78	100 Trace 130 Trace		Lyons Creek - Hwy 140	Black Crappie Black Crappie	21-Oct-02	214	165 183	160 P84 140 P84
Lyons Creek - Hwy 140	Brown Bullhead	03-Nov-92	19.7	88	0 ND		Lyons Creek - Hwy 140	Black Crappie	21-Oct-02	227	190	260 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	04-Nov-92 04-Nov-92	48.5 57.2	1954 3311	300 20 ND		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Black Crappie Black Crappie	21-Oct-02 21-Oct-02	213 241	172 249	720 P84 620 P84
Lyons Creek - Hwy 140	Carp	04-Nov-92	63.5	4380	140 Trace		Lyons Creek - d/s of QEW	Bluegill	21-Oct-02	17.9	125	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill	02-Jun-94 02-Jun-94	14.4	72	780		Lyons Creek - d/s of QEW	Bluegill	21-Oct-02 21-Oct-02	18.7	156	0 ND
Lyons Creek - Hwy 140	Bluegill	02-Jun-94	14.9 15	68 81	1460 420		Lyons Creek - d/s of QEW	Bluegill	21-Oct-02 21-Oct-02	19.5	173	0 ND 40
Lyons Creek - Hwy 140	Bluegill	02-Jun-94	15.3	90	1580		Lyons Creek - Hwy 140	Bluegill	21-Oct-02	166	105	180 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill	02-Jun-94 02-Jun-94	15.5 16.1	97 105	480		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill	21-Oct-02 21-Oct-02	178	107	220 P84 160 P84
Lyons Creek - Hwy 140	Bluegill	02-Jun-94	16.5	111	640		Lyons Creek - Hwy 140	Bluegill	21-Oct-02	178	154	180 P84
Lyons Creek - Hwy 140	Bluegill	02-Jun-94	17.2	137	1100		Lyons Creek - d/s of QEW	Bowfin	21-Oct-02 21-Oct-02	30.3	256	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Brown Bullhead Brown Bullhead	02-Jun-94 02-Jun-94	22.2 22.6	165 150	360 360		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Bowfin Bowfin	21-Oct-02 21-Oct-02	42.5	727 982	100 20
Lyons Creek - Hwy 140	Brown Bullhead	02-Jun-94	23.3	193	380		Lyons Creek - d/s of QEW	Bowfin	21-Oct-02	47.6	1010	20
Lyons Creek - Hwy 140	Brown Bullhead	02-Jun-94	27.8	294	460		Lyons Creek - d/s of QEW	Bowfin	21-Oct-02 21-Oct-02	47.8	1208	20
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Brown Bullhead Brown Bullhead	02-Jun-94 02-Jun-94	29 33.1	329 582	360 420		Lyons Creek - Hwy 140 I yons Creek - Hwy 140	Bowfin Bowfin	21-Oct-02 21-Oct-02	468	883 1354	440 P84 160 P84
Lyons Creek - Hwy 140	Carp	02-Jun-94	22.6	236	580		Lyons Creek - Hwy 140	Bowfin	21-Oct-02	474	879	100 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	02-Jun-94 02-Jun-94	24.8 26	310	880		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bowfin	21-Oct-02 21-Oct-02	582	1485	220 P84 80 P84
Lyons Creek - Hwy 140	Carp	02-Jun-94	26.5	405	820		Lyons Creek - Hwy 140	Bowfin Brown Bullhead	21-Oct-02	546	1532	140 P84
Lyons Creek - Hwy 140	Carp	02-Jun-94	27.3	451	820		Lyons Creek - d/s of QEW	Brown Bullhead	21-Oct-02	27.3	283	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	02-Jun-94 02-Jun-94	27.8 28.5	537 617	1260 2800		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Brown Bullhead Brown Bullhead	21-Oct-02 21-Oct-02	29.9 30	339 377	60 160
Lyons Creek - Hwy 140	Carp	02-Jun-94	29.4	537	1420		Lyons Creek - d/s of QEW	Brown Bullhead	21-Oct-02	30.2	381	80 140 PR4
Lyons Creek - Hwy 140	Carp	02-Jun-94	31.8	850	1600		Lyons Creek - Hwy 140	Brown Bullhead	21-Oct-02	296	352	140 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	02-Jun-94 02-Jun-94	48.5 48.9	1589 1700	1740 1400		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Carp Carp	21-Oct-02 21-Oct-02	50.8 59.3	1734 3291	40 140
Lyons Creek - Hwy 140	Carp	02-Jun-94	51.5	2371	1440		Lyons Creek - d/s of QEW	Carp	21-Oct-02	61.4	3113	20
Lyons Creek - Hwy 140	Carp	02-Jun-94	56.4	3026	580		Lyons Creek - d/s of QEW	Carp	21-Oct-02 21-Oct-02	63.5	3712	60
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	02-Jun-94 02-Jun-94	56.4 60.5	2839 3810	1020		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Carp	21-Oct-02 21-Oct-02	63.5	4155 4150	300 40
Lyons Creek - Hwy 140	Carp	02-Jun-94	63.8	5211	9600		Lyons Creek - d/s of QEW	Carp	21-Oct-02	65.8	4071	80
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	20.9	140	480		Lyons Creek - d/s of QEW	Carp	21-Oct-02 21-Oct-02	75.5	7942	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94 02-Jun-94	23.3 23.5	168 189	480 320		Lyons Creek - Hwy 140 I yons Creek - Hwy 140	Carp	21-Oct-02 21-Oct-02	375 526	790 2347	340 2000 P84
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	23.9	198	600		Lyons Creek - Hwy 140	Carp	21-Oct-02	305	436	1000 P84
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	25.1	200	620		Lyons Creek - Hwy 140	Carp	21-Oct-02 21-Oct-02	585	3048	1100 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass Largemouth Bass	02-Jun-94 02-Jun-94	25.2 25.3	235 231	300 180 Trace		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp Carp	21-Oct-02 21-Oct-02	666 301	5551 458	200 P84 580 P84
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	25.9	275	320		Lyons Creek - Hwy 140	Carp	21-Oct-02	580	2881	3000 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94 02-Jun-94	26.1	269	400		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Carp	21-Oct-02 21-Oct-02	306	778	360 P84 860 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94 02-Jun-94	26.8 27.8	282 324	320 240		Lyons Creek - d/s of QEW I yons Creek - d/s of QEW	Largemouth Bass	21-Oct-02 21-Oct-02	21.6 24.7	148 219	20 0 ND
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	28.5	293	500		Lyons Creek - d/s of QEW	Largemouth Bass	21-Oct-02	25.3	231	20
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass Largemouth Bass	02-Jun-94 02-Jun-94	28.7 29.8	354 351	320		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Largemouth Bass Largemouth Bass	21-Oct-02 21-Oct-02	30.7	438 905	0 ND 140
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	30.5	397	300		Lyons Creek - Hwy 140	Largemouth Bass	21-Oct-02	181	81	280 P84
Lyons Creek - Hwy 140	Largemouth Bass	02-Jun-94	30.5	409	180 Trace		Lyons Creek - Hwy 140	Largemouth Bass	21-Oct-02 21-Oct-02	212	132	280 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass Pumpkinseed	02-Jun-94 02-Jun-94	32.5 13.8	542 73	300 2940		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass	21-Oct-02 21-Oct-02	191	91 141	240 P84 260 P84
Lyons Creek - Hwy 140	Pumpkinseed	02-Jun-94	14.5	80	1000		Lyons Creek - Hwy 140	Largemouth Bass	21-Oct-02	215	130	240 P84
Lyons Creek - Hwy 140	Pumpkinseed	02-Jun-94	15.5	96	2060		Lyons Creek - Hwy 140	Largemouth Bass	21-Oct-02	385	795	240 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed Pumpkinseed	02-Jun-94 02-Jun-94	15.5 15.6	106 88	3260 3380		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Northern Pike Northern Pike	21-Oct-02 21-Oct-02	38.2 40.9	295 380	40 60
Lyons Creek - Hwy 140	Pumpkinseed	02-Jun-94	15.7	101	980		Lyons Creek - d/s of QEW	Northern Pike	21-Oct-02	48.6	720	20
Lyons Creek - Hwy 140	Pumpkinseed	02-Jun-94	16.2	111	1880		Lyons Creek - d/s of QEW	Northern Pike	21-Oct-02 21-Oct-02	57.7	1050	20
Lyons Creek - Hwy 140	White Sucker	02-Jun-94	23.8	159	440		Lyons Creek - d/s of QEW	Pumpkinseed	21-Oct-02 21-Oct-02	17.5	129 158	0 ND 20
Lyons Creek - Hwy 140	Black Crappie	28-Oct-99	17.5	77	540		Lyons Creek - d/s of QEW	Pumpkinseed	21-Oct-02	18.2	136	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Black Crappie Bluegill	28-Oct-99 28-Oct-99	19.4 15.2	89 145	440 240		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Pumpkinseed	21-Oct-02 21-Oct-02	18.8	158 187	0 ND 0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill Bluegill	28-Oct-99 28-Oct-99	15.3 15.7	148 148	180 480		Lyons Creek - Hwy 140 I yons Creek - Hwy 140	Pumpkinseed Pumpkinseed	21-Oct-02 21-Oct-02	148 157	65 80	360 P84 580 P84
Lyons Creek - Hwy 140	Bluegill	28-Oct-99	15.8	81	380		Lyons Creek - Hwy 140	Pumpkinseed	21-Oct-02	167	101	400 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill Bluegill	28-Oct-99 28-Oct-99	16 16.1	81 87	320 200		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed Pumpkinseed	21-Oct-02 21-Oct-02	155	81 77	400 P84 400 P84
Lyons Creek - Hwy 140	Bluegill	28-Oct-99	16.1	153	540 580		Lyons Creek - Hwy 140	Pumpkinseed	21-Oct-02	157 165	83 102	420 P84
Lyons Creek - Hwy 140	Bluegill	28-Oct-99	17	90	360		Lyons Creek - Hwy 140	Pumpkinseed	21-Oct-02	152	82	160 P84
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Bluegill Largemouth Bass	28-Oct-99 28-Oct-99	17.7 17	118 64	200 220		Lyons Creek - d/s of QEW Lyons Creek - d/s of QFW	Rock Bass Rock Bass	21-Oct-02 21-Oct-02	18 19.5	123 153	0 ND 0 ND
Lyons Creek - Hwy 140	Largemouth Bass	28-Oct-99	17.8	73	620		Lyons Creek - d/s of QEW	Rock Bass	21-Oct-02	22.6	250	0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass	28-Oct-99 28-Oct-99	18.2	73 89	260		Lyons Creek - a/s of QEW	Rock Bass	21-Oct-02 21-Oct-02	22.7	237 273	40 0 ND
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Largemouth Bass Largemouth Base	28-Oct-99 28-Oct-99	19.4 19.8	91 91	120 660		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	White Crappie White Crappie	21-Oct-02 21-Oct-02	23.2 23.4	148 156	60 40
Lyons Creek - Hwy 140	Largemouth Bass	28-Oct-99	20.5	122	540		Lyons Creek - d/s of QEW	White Crappie	21-Oct-02	26.9	320	20
Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	Pumpkinseed Pumpkinseed	28-Oct-99 28-Oct-99	14 14.4	59 65	380 380		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	White Crappie	21-Oct-02 21-Oct-02	29.1	340 479	40 40
Lyons Creek - Hwy 140	Pumpkinseed Pumpkinseed	28-Oct-99 28-Oct-99	14.4 14.8	66 75	680 620		Lyons Creek - Hwy 140 Lyons Creek - Hwy 140	White sucker	21-Oct-02	267	195 130	240 P84 360 P84
Lyons Creek - Hwy 140	Pumpkinseed	28-Oct-99	15.1	78	580		Lyons Creek - Hwy 140	White sucker	21-Oct-02	456	1094	1200 P84
Lyons Creek - Hwy 140 Lyons Creek - d/s of QEW	нитркіnseed Bluegill	28-Oct-99 18-Jul-00	15.7	80 121	40		Lyons Creek - Hwy 140 Lyons Creek - d/s of QEW	Yellow Perch	21-Oct-02 21-Oct-02	262	194 72	360 P84 0 ND
Lyons Creek - d/s of QEW Lyons Creek - d/s of OEW	Bluegill Bluegill	18-Jul-00 18-Jul-00	18.2 19.2	133 149	100 60		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEM	Yellow Perch Yellow Perch	21-Oct-02 21-Oct-02	20.1 20.3	90	40 0 ND
Lyons Creek - d/s of QEW	Bluegill	18-Jul-00	19.3	155	60		Lyons Creek - d/s of QEW	Yellow Perch	21-Oct-02	21.6	109	0 ND
Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Bluegill Brown Bullhead	18-Jul-00 18-Jul-00	19.6 27	166 330	0 ND 40		Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Yellow Perch Yellow Perch	21-Oct-02 21-Oct-02	21.7 28.2	120 <u>3</u> 16	0 ND 0 ND
Lyons Creek - d/s of QEW Lyons Creek - d/s of QEW	Brown Bullhead	18-Jul-00	27.4	332 416	20 0 ND		ND no measurable response					

Trace trace amounts measured P84 PCB aroclor mixture of 1248 and 1254

**Table 12:** MOE Guide to Eating Ontario Sport Fish restrictions for fish collected from<br/>Lyons Creek at Highway 140 and downstream of the QEW. Consumption<br/>advisory is provided for different size classes of fish and is expressed in terms<br/>of meals per month. 'Sensitive' = women of childbearing age and children<br/>under 15. 'General' = general population.

		,				Size	catego	ory	1							
		15	20	25	30	35	40	45	50	55	60	65	70	75		
Lyons Creek																
at Hwy. 140																
Niagara R.M.																
Carp	General		1		1				0			0				2003 PCBs
	Sensitive		0		0	-						0				2002 PCBs
Brown Bullhead	General		2		1											1994 PCBs
	Sensitive		0		_				_							1991 PCBs
White Sucker	General		4	2	1	0		0								
	Sensitive		4	0	0			0								
Bowfin	General					4		2		2						
	Sensitive					4		0		0						
Largemouth Bass	General	4	2		1											
	Sensitive	4	0													
Rock Bass	General	2					-									
	Sensitive	0														
Black Crappie	General		2													
	Sensitive		0													
Pumpkinseed	General	1														
	Sensitive	0														
Bluegill	General	4														
J. J	Sensitive	4														
downstream of QEW	1															
Niagara R.M.																
Northern Pike	General							8								2002 Hg;
	Sensitive							8								2000 PCBs
Carp	General							8	8			1				2000 dioxins
	Sensitive							8	8			0				
Brown Bullhead	General	8		8	4											
	Sensitive	8		8	4											
Bowfin	General						8									
	Sensitive						4									
Largemouth Bass	General			8		4										
	Sensitive		8	4		0										
Yellow Perch	General		8	4												
	Sensitive	8	4	0												
Rock Bass	General		8													
	Sensitive	8	4													
Pumpkinseed	General	8		-												
	Sensitive	8														
Bluegill	General		8												1	
	Sensitive		8													
Black Crappie	General			8												
	Sensitive			4												
white Crapple	General			8												

F

	TEC TEC 112 112 112 112 112 112 112 112 112 11
	200 PM 200 PM 20
	2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5 2014.5
<ul> <li>Solution (2014)</li> <li>Sol</li></ul>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1) 2, 2, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	8.6 http://www.com/ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
24.4.(2, 2.24.4.) attached and a second and and a second and a second and and a second and and and and a sec	Apple 1
84 10 10 10 10 10 10 10 10 10 10 10 10 10	M.M.         M.M.           M.M.
(1998) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (	4954 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 4956 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 49566 495666 495666 495666 495666 495666 49566666 495666666666666666666666666666666666666
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44.5 (9) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
2012,447,5 2012,447,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2012,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5 2014,5	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c} \begin{array}{c} 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.32 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.33 \\ 2.3$	232.4.4.4.9. Partial State of the second s
	800 800 400 400 400 400 400 400 400 400
844 844 844 844 844 844 844 844	1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989年 1989 1989
84,848 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949 84,949	4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.8
2,2,4,4,5, 2,3,3 permetation from the second permetation f	22234465 22234465 22234465 0600 0003 114 114 114 114 114 114 114 114 114 11
63.6, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.4.5, 2.2.2.5, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2, 2.2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2,	1913年1913年1913年1913年1913年1913年1913年191
222.5.09 222.5.09 222.5.09 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5 222.5	2222222222222222222222222222222222222
1. 1000년 10000년 1000년 1000년 1000년 1000년 1000년 1000년 1000년 10000년 100000000	233346 (0 0044 (0) 1 1014 (
2232445 headacters headacters of 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2233446 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000
2,2, P. Protection of the second sec	20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 20131415 2013145 20131415 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 2013145 201515 201515 201515 201515 201515 201515
22,22,466 Wennable Wennable 0,22 0,22 0,24 0,24 0,24 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,	2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2255 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225
2,2,5, press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press press p	2223334445- 22333445- 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
22,445,122,125,152,122,122,122,122,122,122,12	18,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
22,2,2,5 (12,2,2,5) (12,2,2,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (12,1,5) (	22222222222222222222222222222222222222
deficiency of the component of the compo	14.6.K. Grappine Back Compile Back Compile Back Compile Back Compile Back Compile Back Compile Back Compile Back Compile Back Back Back Back Back Back Back Back Back Back Back Back Back Back Back Back Back Back Back

Table 13: PCB congener data and calculated TEQ values for sport fish collected from Lyons Creek at Highway 140, 2003

cT trace amounts m 94 PCB aroctor mix

1254

Toxicity is bolded, potential	
nt toxicity test results.	
Whole sedimer	italicized.
Table 14.	toxicity is i

T. tubifex young	29.0	11.8	14.5	13.3	5.2	20.4	17.5	14.4	2.3	19.2	0.0	12.5	11.2	11.5	27.2	25.1	18.9	17.8	19.1	17.7	24.5	21.4	46.3 - 9.9	9.8 - 0.8	< 0.8
T. tubifex survival	97.8	100.0	100.0	100.0	100.0	100.0	95.0	100.0	90.0	100.0	35.0	100.0	100.0	95.0	100.0	100.0	95.0	100.0	95.0	100.0	100.0	100.0	88.9	88.8-84.2	< 84.2
T. tubifex hatch	0.57	0.55	0.59	0.93	0.87	0.57	0.52	0.65	0.87	0.64	1.00	0.50	0.62	0.64	0.56	0.51	0.66	0.62	0.47	0.59	0.57	0.54	0.78 - 0.38	0.38 - 0.28	< 0.28
T. tubifex cocoons	9.9	8.7	10.3	8.4	5.7	10.5	9.6	9.8	4.1	10.8	0.2	8.6	9.1	7.7	10.9	10.0	9.7	9.2	0.6	8.0	10.2	11.0	12.4 - 7.2	7.1 - 5.9	< 5.9
<i>Hexagenia</i> Survival	96.2	98.0	100.0	100.0	94.0	100.0	100.0	94.0	2.0	100.0	4.0	84.0	46.0	94.0	96.0	98.0	100.0	100.0	100.0	100.0	100.0	100.0	85.5	85.4 - 80.3	< 80.3
<i>Hexagenia</i> growth	3.03	1.97	1.06	1.62	0.99	6.55	5.58	3.22	-0.09	4.90	-0.02	0.60	-0.01	3.07	3.35	3.72	5.09	5.45	5.75	4.64	2.90	3.16	5.00 - 0.90	0.80 - 0	neg
H. azteca surviva l	85.6	94.7	90.7	90.7	85.3	94.7	93.3	90.7	40.0	90.0	34.7	88.0	75.0	83.3	75.0	76.0	94.7	92.0	92.0	88.0	83.0	68.0	67.0	66.9–57.I	< 57.1
H. azteca growth	0.50	0.65	0.38	0.37	0.51	0.52	0.44	0.64	0.27	0.45	0.15	0.25	0.37	0.25	0.32	0.47	0.71	0.74	0.53	0.47	0.31	0.37	0.75 - 0.23	0.22 - 0.10	< 0.10
C. riparius survival	87.1	77.3	80.0	73.3	96.0	91.7	78.7	96.0	38.7	88.0	78.3	84.0	64.0	68.0	93.3	89.3	90.7	93.3	94.7	89.3	88.3	78.7	67.7	67.6 - 58.8	< 58.8
C. riparius Growth	0.35	0.21	0.20	0.21	0.23	0.47	0.56	0.30	0.06	0.47	0.24	0.38	0.19	0.31	0.20	0.23	0.41	0.40	0.36	0.37	0.19	0.21	0.49 - 0.21	0.20 - 0.14	< 0.14
Site	GL Ref. Mean	BEC01	BEC02	BLC01	BLC02	UC01	TC40	LC01	LC03	LC06	LC08	LC10	LC12	LC14	LC16	LC17	LC18	LC19	LC22	LC23	LC29	LC38	Non-toxic ^a	Potentially Toxic	Toxic

Table 15.Summary of BEAST assessment of toxicity.

BAN	ID 1	BAND 2	BAND 3	BAND 4				
Non-	toxic	Potentially	Toxic	Severely				
		toxic		toxic				
BEC01	LC16	BLC02		LC03				
BEC02	LC17	LC14		LC08				
BLC01	LC18			LC12				
TC40	LC19							
UC01	LC22							
LC01	LC23							
LC06	LC29							
LC10	LC38							

Table 16.Decision matrix for Lyons Creek sites. Biomagnification potential providedfor both minimum and intermediate exposure and uptake scenarios.

	Response	for indiv	ridual dec	cision ele	ements							
Site	Sediment PCB Chemistry	Toxicity	Benthos Alteration	Biomagnification Potential (min.)	Biomagnification Potential (inter.)	- Assessment Minimum (Min) and Intermediate (Inter) Scenarios						
LC01	0	0	0	0	0	Min - No further actions required.						
1 0 0 2			0	0	0	Min Determine reason(a) for adjunct toxicity						
LC03		•	U		v	Inter Above L and fully assess risk of hiemagnification						
1.006		0	0	NLA	NT A	Beth Detential for his magnification connect he accessed						
				NA O		Min Determine reason(a) for addiment toxicity						
LCUO	•				•	Inter - Above + and fully assess risk of biomagnification.						
LC10		0	0	NA	NA	Both - Potential for biomagnification cannot be assessed.						
LC12			•	•	•	Both - Management actions required.						
LC14	•	0	0	0	0	Min - No further actions required.						
_						Inter - Fully assess risk of biomagnification.						
LC16	•	0	0	•	•	Both - Fully assess risk of biomagnification.						
LC17	•	0	0	0	0	Min - No further actions required.						
						Inter - Fully assess risk of biomagnification.						
LC18		0	0	0	0	Min - No further actions required.						
						Inter - Fully assess risk of biomagnification.						
LC19	•	0	0	0	0	Min - No further actions required.						
						Inter - Fully assess risk of biomagnification.						
LC22	•	0	0	NA	NA	Both - Potential for biomagnification cannot be assessed.						
LC23	•	0	0	NA	NA	Both - Potential for biomagnification cannot be assessed.						
LC29	0	0	0	0	0	Min - No further actions required.						
						Inter - Fully assess risk of biomagnification.						
LC38	0	0	Ō	0	0	Min - No further actions required.						
		1				Inter - Fully assess risk of biomagnification.						

N/A = not applicable (tissue not collected)

Table 17: Sediment chemistry for	or core samp site	les collected f LC01	rom differe LC01	nt depths in LC01	Lyons Cree LC03	k LC03	LC03	LC16	LC16	LC16	LC17	LC17	LC17	LC29	LC29	LC29	LC29	LC29	LC29
<u>-</u>	core section	<10cm 1	10-25cm	>25cm	<10cm	10-25cm	>25cm	<10cm	10-25cm	>25cm	<10cm	10-25cm	>25cm	<10cm	10-25cm	>25cm	<10cm	10-25cm	>25cm
% <1000 um, >63 um % <2000 um, >1000 um	% %	50.62 0.04	53.6 0.24	63.8 0.08	75.84 0.24	70.36 0.51	67.12 0.221	71.93 1.35	67.49 0.36	63.48 0.24	57.11 0.32	51.2 0.2	63.03 0.2	64.5 0.44	58.66 0.12	67.24 0.63	68.88 0.32	67.29 0.2	67.5 0.24
% <63 um 2.2'.3.5'-tetrachlorobiphenvl	% na/a	49.34 18	46.16 50	36.12 120	23.92 8500	29.13 4000	32.66 420	26.72 110	32.15 380	36.28 4200	42.57 88	48.6 48	36.78 120	35.06 29	41.22 23	32.13 31	30.8 7.6	32.51 0.99	32.26 0.57
2,2',4,5'-tetrachlorobiphenyl	ng/g	20	48 100	84 130	6800	3200	330	160	290	3300	100	72	120	27	26	44	10	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
2,2',5-trichlorobiphenyl	ng/g	14	43	84	9500	4200	310	92	350	4100	52	42	110	35	20	40	23	5.5	4
2,2',6,6'-tetrachlorobiphenyl 2,2',6-trichlorobiphenyl	ng/g ng/g	2.8 <w< td=""><td>2.9 <w< td=""><td>7.8</td><td>1700 780</td><td>660 330</td><td>3.7 <w< td=""><td>15 <w< td=""><td>39 11</td><td>780 180</td><td>8.2 <w< td=""><td>5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2.9 <w< td=""><td>7.8</td><td>1700 780</td><td>660 330</td><td>3.7 <w< td=""><td>15 <w< td=""><td>39 11</td><td>780 180</td><td>8.2 <w< td=""><td>5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	7.8	1700 780	660 330	3.7 <w< td=""><td>15 <w< td=""><td>39 11</td><td>780 180</td><td>8.2 <w< td=""><td>5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	15 <w< td=""><td>39 11</td><td>780 180</td><td>8.2 <w< td=""><td>5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>	39 11	780 180	8.2 <w< td=""><td>5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<></td></w<>	5.7 <w< td=""><td>15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<></td></w<>	15 <w< td=""><td>1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></td></w<>	1.1 <w< td=""><td><w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<>	<w <w< td=""><td>3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	3.5 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,2'3,4,5'-pentachlorobiphenyl 2,2'3,44'5'-hexachlorobiphenyl	ng/g ng/a	<w 16</w 	46 57	<w 26</w 	<w 980</w 	<w 330</w 	<w 5.8</w 	<w 40</w 	<w 0.2</w 	<w 350</w 	<w 23</w 	<w 16</w 	<w 26</w 	<w 13</w 	<w 12</w 	<w 13</w 	<w 2.6</w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,2'3,4'5'6-hexachlorobiphenyl	ng/g	11	47	20	720	270	25	40	48	270	22	15	27	14	13	16	2.7	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
2,2'3,5',6-pentachlorobiphenyl	ng/g	44	120	160	13000	5500	560	340	620	5900	200	140	250	55	53	70	17	0.13	<w< td=""></w<>
2,2'4,4',5-pentachlorobiphenyl 2,2'4,5,5'-pentachlorobiphenyl	ng/g ng/g	13 33	50 89	36 53	3200	750 1400	140	89 100	81 140	1700	48 61	40 45	39 69	15 19	14 18	17 24	4.7 5.7	<vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv 	<vv <w< td=""></w<></vv 
2,2'4,6,6'-pentachlorobiphenyl 2,3,3'4,4'5-hexachlorobiphenyl	ng/g ng/g	<w 4.4</w 	<w 6.5</w 	<w 1.7</w 	<w 170</w 	<w 30</w 	<w 0.2</w 	<w 1.6</w 	<w 5.1</w 	<w 48</w 	<w 0.86</w 	<w 0.66</w 	<w 0.96</w 	<w 0.87</w 	<w 0.7</w 	<w 0.84</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,3,3'4,4'6-hexachlorobiphenyl 2,3,3'4,4'-pentachlorobiphenyl	ng/g ng/g	2.4 11	9.2 26	3.4 22	130 1900	47 760	5.8 74	6.2 21	7.3 65	51 830	3.6 18	3.1 9.7	4.2 24	2.2 5.9	2 4.7	2.6 4.2	<w 3.1</w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,3,3'4',6-pentachlorobiphenyl	ng/g	32	71	65	5100	2500	160	57	170	2700	45	25	59	17	13	11	3.3	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
2,3,4,4',5-pentachlorobiphenyl	ng/g	2.1	2.8	1.6	140	70	<\v <\v	3.5	5.7	<vv 84</vv 	2.1	<vv 1.2</vv 	2.4	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td>&lt;\v <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td>&lt;\v <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></vv </td></w<></vv 	<vv <w< td=""><td>&lt;\v <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></vv 	<\v <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,3',4',5-tetrachlorobiphenyl 2',3,4-trichlorobiphenyl	ng/g ng/g	27 15	76 21	120 52	1000 8000	4400 3100	470 250	230 49	430 200	5000 3300	130 34	96 24	170 59	30 14	29 9.6	45 16	13 9.6	<w 1.1</w 	<w <w< td=""></w<></w 
2,3,4'-trichlorobiphenyl 2,3'4,4',5-pentachlorobiphenyl	ng/g ng/g	3.3 22	3.5 78	20 39	3100 2500	1300 1000	57 110	5.1 89	70 120	1200 1100	8.5 50	3.5 36	20 58	4.4 13	2 12	1.6 15	<w 5.4</w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
2,3'4,4',6-pentachlorobiphenyl	ng/g	<w 11</w 	<w 28</w 	<w< td=""><td>69 4600</td><td><w 2100</w </td><td><w 210</w </td><td>3.3 110</td><td>4.9</td><td>19 2200</td><td>1.4 66</td><td><w< td=""><td>1.9</td><td><w 16</w </td><td><w 15</w </td><td><w 24</w </td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	69 4600	<w 2100</w 	<w 210</w 	3.3 110	4.9	19 2200	1.4 66	<w< td=""><td>1.9</td><td><w 16</w </td><td><w 15</w </td><td><w 24</w </td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	1.9	<w 16</w 	<w 15</w 	<w 24</w 	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
2,4,4'-trichlorobiphenyl	ng/g	19	38	87	9300	3800	330	160	360	4000	91	68	140	32	26	53	19	4.8	5.6
22',44',55'-hexachlorobiphenyl	ng/g	12	33	13	700	240	<w< td=""><td>27</td><td>32</td><td>250</td><td>14</td><td>9.6</td><td>16</td><td>9.7</td><td>9.4</td><td><vv 12</vv </td><td>0.046</td><td>&lt;\v <w< td=""><td><vv <w< td=""></w<></vv </td></w<></td></w<>	27	32	250	14	9.6	16	9.7	9.4	<vv 12</vv 	0.046	<\v <w< td=""><td><vv <w< td=""></w<></vv </td></w<>	<vv <w< td=""></w<></vv 
22',44',66'-hexachlorobiphenyl 22'33'44'55'6-nona(CI)biphenyl	ng/g ng/g	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 28</w </td><td><w <w< td=""><td><w <w< td=""><td><w 0.54</w </td><td><w 0.35</w </td><td>160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 28</w </td><td><w <w< td=""><td><w <w< td=""><td><w 0.54</w </td><td><w 0.35</w </td><td>160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 28</w </td><td><w <w< td=""><td><w <w< td=""><td><w 0.54</w </td><td><w 0.35</w </td><td>160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w </td></w<></w 	<w 28</w 	<w <w< td=""><td><w <w< td=""><td><w 0.54</w </td><td><w 0.35</w </td><td>160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w </td></w<></w 	<w <w< td=""><td><w 0.54</w </td><td><w 0.35</w </td><td>160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></w 	<w 0.54</w 	<w 0.35</w 	160 <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
22'33'44'55'-octa(CI)biphenyl 22'33'44'5-heptachlorobiphenyl	ng/g ng/g	2.2 3.7	2.2 5.5	2.7 5.8	120 210	22 66	1.8 1.3	3.8 8.9	3.8 10	22 51	1.5 4.6	0.78 2.9	1.5 4.8	1.2 4.5	1 4.1	1.5 4.8	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
22'33'44'6-heptachlorobiphenyl 22'33'455'66'-nona(Cl)binhenyl	ng/g	0.29	0.29	<w ~W</w 	63 ~W	1.5 ~W	<w< td=""><td>1.2</td><td>1.6</td><td><w ~W</w </td><td><w ~W</w </td><td><w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w< td=""><td><w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w ~W</w </td></w<></td></w<></td></w<></td></w<>	1.2	1.6	<w ~W</w 	<w ~W</w 	<w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w< td=""><td><w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w ~W</w </td></w<></td></w<></td></w<>	<w ~W</w 	<w ~W</w 	<w< td=""><td><w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w ~W</w </td></w<></td></w<>	<w< td=""><td><w ~W</w </td><td><w ~W</w </td><td><w ~W</w </td></w<>	<w ~W</w 	<w ~W</w 	<w ~W</w 
22'33'455'6'-octa(Cl)biphenyl	ng/g	0.9	0.9	2.7	110	<w< td=""><td><w< td=""><td>3</td><td>3.2</td><td>11</td><td>0.57</td><td><w< td=""><td>0.57</td><td>0.29</td><td><w< td=""><td>0.66</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>3</td><td>3.2</td><td>11</td><td>0.57</td><td><w< td=""><td>0.57</td><td>0.29</td><td><w< td=""><td>0.66</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3	3.2	11	0.57	<w< td=""><td>0.57</td><td>0.29</td><td><w< td=""><td>0.66</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	0.57	0.29	<w< td=""><td>0.66</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	0.66	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
22'33'45'66-octa(CI)biphenyl 22'33'4'56-heptachlorobiphenyl	ng/g ng/g	0.78	4 0.78	6.3 1.2	<vv 88</vv 	26	0.2	4.3	4.1	<vv 0.1</vv 	<vv 0.76</vv 	2.8 <w< td=""><td><vv 1.1</vv </td><td>1.7</td><td>1.8 0.69</td><td>3.2 0.81</td><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<>	<vv 1.1</vv 	1.7	1.8 0.69	3.2 0.81	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv 	<vv <w< td=""></w<></vv 
22'33'55'66'-octa(CI)biphenyl 22'33'55'6-heptachlorobiphenyl	ng/g ng/g	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
22'344'55'-heptachlorobiphenyl 22'344'5'6-heptachlorobiphenyl	ng/g ng/a	4.2 1.2	0.2 3.5	10 3.1	410 98	130 <w< td=""><td>12 <w< td=""><td>17 6</td><td>19 6.1</td><td>110 28</td><td>8.7 2.9</td><td>6.3 1.6</td><td>9.6 3.5</td><td>8.8 2</td><td>8.3 1.7</td><td>10 2.4</td><td>1.2 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<>	12 <w< td=""><td>17 6</td><td>19 6.1</td><td>110 28</td><td>8.7 2.9</td><td>6.3 1.6</td><td>9.6 3.5</td><td>8.8 2</td><td>8.3 1.7</td><td>10 2.4</td><td>1.2 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<>	17 6	19 6.1	110 28	8.7 2.9	6.3 1.6	9.6 3.5	8.8 2	8.3 1.7	10 2.4	1.2 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
22'34'55'6-heptachlorobiphenyl	ng/g	1.5	3	4.4	200	91 26	<w< td=""><td>8.4</td><td>9.2</td><td>39 15</td><td>3.7</td><td>2.4</td><td>4.6</td><td>4.1</td><td>3.8</td><td>5 ~W</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	8.4	9.2	39 15	3.7	2.4	4.6	4.1	3.8	5 ~W	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
2'3,4,4',5-pentachlorobiphenyl	ng/g	4.1	4.1	2	470	180	0.2	9.4	15	190	3.9	1.4	5	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
23',44',55'-hexachlorobiphenyl 23',44',5'6-hexachlorobiphenyl	ng/g ng/g	<w 11</w 	2 33	<w 13</w 	<w 910</w 	<w 340</w 	<w 0.1</w 	0.52	<w 32</w 	<w 310</w 	<w 14</w 	<w 9.6</w 	<w 16</w 	<w 9.7</w 	<w 9.6</w 	<w 9.4</w 	<w 0.046</w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
233'44'55'6-octachlorobiphenyl 233'44'55'-heptachlorobiphenyl	ng/g ng/g	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
233'44'5'6-heptachlorobiphenyl 3.3' 4.4'-tetrachlorobiphenyl	ng/g	<w 1.1</w 	<w 1.1</w 	<w 2.9</w 	170 30	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 12</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 12</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 12</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w 12</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w 0.31</w </td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w 0.31</w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
3,3'4,4',5-pentachlorobiphenyl	ng/g	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
3,4,4',5-tetrachlorobiphenyl	ng/g	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
3,4,4'-trichlorobiphenyl a-BHC (hexachlorocyclohexane)	ng/g ng/g dry	12 <w< td=""><td>12 <w< td=""><td>48 <w< td=""><td>12000 <w< td=""><td>4900 <w< td=""><td>180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	12 <w< td=""><td>48 <w< td=""><td>12000 <w< td=""><td>4900 <w< td=""><td>180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	48 <w< td=""><td>12000 <w< td=""><td>4900 <w< td=""><td>180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	12000 <w< td=""><td>4900 <w< td=""><td>180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	4900 <w< td=""><td>180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	180 <w< td=""><td>17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	17 <w< td=""><td>140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	140 <w< td=""><td>3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3700 <w< td=""><td>24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	24 <w< td=""><td>10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	10 <w< td=""><td>40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	40 <w< td=""><td>5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>	5.2 <w< td=""><td>2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<>	2.9 <w< td=""><td>2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<>	2.9 <w< td=""><td>1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<>	1.6 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
Acenaphthene Acenaphthylene	ng/g dry ng/g dry	<w <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>520 200</td><td>940 200</td><td>200 200</td><td><w <w< td=""><td><w <w< td=""><td>220 200</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<></td></w<></w 	40 <w< td=""><td>60 <w< td=""><td>520 200</td><td>940 200</td><td>200 200</td><td><w <w< td=""><td><w <w< td=""><td>220 200</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></td></w<>	60 <w< td=""><td>520 200</td><td>940 200</td><td>200 200</td><td><w <w< td=""><td><w <w< td=""><td>220 200</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<>	520 200	940 200	200 200	<w <w< td=""><td><w <w< td=""><td>220 200</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td>220 200</td><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	220 200	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
a-Chlordane Aldrin	ng/g dry	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
Aluminum	ug/g dry	12000	11000	11000	20000	29000	31000	22000	26000	23000	17000	19000	20000	22000	23000	21000	25000	29000	30000
Antiliacene	ug/g dry	<**	140	00	440	240	200	< • •	40	520	< **	<	< **	< • •	< **	< * *	< **	< ***	< **
b-BHC (hexachlorocyclohexane)	ug/g ary ng/g dry	81 <w< td=""><td>/6 <w< td=""><td>87 <w< td=""><td>78 <w< td=""><td>42 220</td><td>160 <w< td=""><td>140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	/6 <w< td=""><td>87 <w< td=""><td>78 <w< td=""><td>42 220</td><td>160 <w< td=""><td>140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	87 <w< td=""><td>78 <w< td=""><td>42 220</td><td>160 <w< td=""><td>140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	78 <w< td=""><td>42 220</td><td>160 <w< td=""><td>140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	42 220	160 <w< td=""><td>140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	140 <w< td=""><td>160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	160 <w< td=""><td>140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	140 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	110 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	110 <w< td=""><td>120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>130 <w< td=""><td>130 <w< td=""></w<></td></w<></td></w<>	130 <w< td=""><td>130 <w< td=""></w<></td></w<>	130 <w< td=""></w<>
Benzo(a)anthracene Benzo(a)pyrene	ng/g dry ng/g dry	200 240	980 1100	320 320	3000 1700	5700 1900	1400 480	140 120	300 240	2800 1800	100 80	60 <w< td=""><td>80 80</td><td>20 <w< td=""><td>40 <w< td=""><td>40 <w< td=""><td>40 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>	80 80	20 <w< td=""><td>40 <w< td=""><td>40 <w< td=""><td>40 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<></td></w<>	40 <w< td=""><td>40 <w< td=""><td>40 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<></td></w<>	40 <w< td=""><td>40 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></td></w<>	40 <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<>	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
Benzo(b)fluoranthene Benzo(g,h,i)pervlene	ng/g dry ng/g dry	320 160	1500 720	440 280	2200 1700	2900 1500	620 480	220 160	360 280	1600 1700	160 120	120 80	120 80	60 <w< td=""><td>80 <w< td=""><td>100 <w< td=""><td>120 80</td><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<>	80 <w< td=""><td>100 <w< td=""><td>120 80</td><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<>	100 <w< td=""><td>120 80</td><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<>	120 80	40 <w< td=""><td><w <w< td=""></w<></w </td></w<>	<w <w< td=""></w<></w 
Benzo(k)fluoranthene Beryllium	ng/g dry	100	520	120	580	1100	200	60	100	400	40	40	40	<w< td=""><td><w< td=""><td><w< td=""><td>40</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td>40</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td>40</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	40	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
Cadmium	ug/g dry	0.5	0.6	0.9	2.6	3.3	1.1	1.1	1.9	2.4	1	0.8	0.8	1	1.2	1.2	1.3	1	1
Chromium	ug/g dry ug/g dry	92000	2000	22	28000	91	4300	41	48	60	29	28	29000	33	34	41	35	38	37
Chrysene Cobalt	ng/g dry ug/g dry	200 8.6	900 9.1	420 8.7	6500 14	9100 17	2300 15	240 13	580 15	5400 16	160 11	100 12	160 14	60 13	60 13	80 15	60 16	20 17	20 19
Copper d10-phenanthrene	ug/g dry %R	40 110	60 86	41 87	150 97	130 90	19 75	51 86	55 98	75 88	35 110	32 83	30 86	33 82	29 86	28 110	30 83	25 81	20 120
d12-chrysene d8-naphthalene	%R %R	61 43	58 36	66 34	140 45	110 38	100 35	76 33	72 37	100 34	83 36	82 33	81 31	57 32	84 31	78 31	76 42	78 38	80 45
DDT & Metabolites Dibenzo(a b)anthracene	ng/g dry	12	44	38	760	320	72	66	110	420	44	30	48	12	10	12	8	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
Dieldrin Endosulahs-	ng/g dry	<vv 4</vv 	<w< td=""><td><w< td=""><td>400 <w< td=""><td>400 <w< td=""><td>400 <w< td=""><td>26</td><td>6</td><td>~W</td><td>18</td><td>10</td><td>10</td><td>&lt; vv 2</td><td><vv 4</vv </td><td><vv 4</vv </td><td>&lt; vv 4</td><td>&lt; vv &lt; W</td><td>&lt; W</td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>400 <w< td=""><td>400 <w< td=""><td>400 <w< td=""><td>26</td><td>6</td><td>~W</td><td>18</td><td>10</td><td>10</td><td>&lt; vv 2</td><td><vv 4</vv </td><td><vv 4</vv </td><td>&lt; vv 4</td><td>&lt; vv &lt; W</td><td>&lt; W</td></w<></td></w<></td></w<></td></w<>	400 <w< td=""><td>400 <w< td=""><td>400 <w< td=""><td>26</td><td>6</td><td>~W</td><td>18</td><td>10</td><td>10</td><td>&lt; vv 2</td><td><vv 4</vv </td><td><vv 4</vv </td><td>&lt; vv 4</td><td>&lt; vv &lt; W</td><td>&lt; W</td></w<></td></w<></td></w<>	400 <w< td=""><td>400 <w< td=""><td>26</td><td>6</td><td>~W</td><td>18</td><td>10</td><td>10</td><td>&lt; vv 2</td><td><vv 4</vv </td><td><vv 4</vv </td><td>&lt; vv 4</td><td>&lt; vv &lt; W</td><td>&lt; W</td></w<></td></w<>	400 <w< td=""><td>26</td><td>6</td><td>~W</td><td>18</td><td>10</td><td>10</td><td>&lt; vv 2</td><td><vv 4</vv </td><td><vv 4</vv </td><td>&lt; vv 4</td><td>&lt; vv &lt; W</td><td>&lt; W</td></w<>	26	6	~W	18	10	10	< vv 2	<vv 4</vv 	<vv 4</vv 	< vv 4	< vv < W	< W
Endosulphan II Endosulphan II	ng/g ary ng/g dry	<vv <w< td=""><td>&lt;\v <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></td></w<></vv 	<\v <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<>	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td>&lt;\v &lt;\v</td><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<\v <\v	<vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv <w< td=""></w<></vv </td></w<></vv 	<vv <w< td=""></w<></vv 
Endosulphan sulphate Endrin	ng/g dry ng/g dry	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
Fluoranthene Fluorene	ng/g dry ng/g dry	400 <w< td=""><td>1900 40</td><td>780 60</td><td>8700 1100</td><td>21000 3300</td><td>4300 460</td><td>260 <w< td=""><td>520 40</td><td>4700 700</td><td>120 <w< td=""><td>100 <w< td=""><td>140 <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1900 40	780 60	8700 1100	21000 3300	4300 460	260 <w< td=""><td>520 40</td><td>4700 700</td><td>120 <w< td=""><td>100 <w< td=""><td>140 <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	520 40	4700 700	120 <w< td=""><td>100 <w< td=""><td>140 <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>140 <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	140 <w< td=""><td>40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	40 <w< td=""><td>60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<></td></w<>	60 <w< td=""><td>100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<></td></w<>	120 <w< td=""><td>40 <w< td=""><td><w <w< td=""></w<></w </td></w<></td></w<>	40 <w< td=""><td><w <w< td=""></w<></w </td></w<>	<w <w< td=""></w<></w 
g-BHC (hexachlorocyclohexane) g-Chlordane	ng/g dry ng/g dry	21 <w< td=""><td>38 <w< td=""><td>54 <w< td=""><td>630 <w< td=""><td>280 <w< td=""><td>100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	38 <w< td=""><td>54 <w< td=""><td>630 <w< td=""><td>280 <w< td=""><td>100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	54 <w< td=""><td>630 <w< td=""><td>280 <w< td=""><td>100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	630 <w< td=""><td>280 <w< td=""><td>100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	280 <w< td=""><td>100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	52 <w< td=""><td>120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	120 <w< td=""><td>430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	430 <w< td=""><td>40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	40 <w< td=""><td>32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	32 <w< td=""><td>62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	62 <w< td=""><td>31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	31 <w< td=""><td>22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	22 <w< td=""><td>35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	35 <w< td=""><td>23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<></td></w<>	23 <w< td=""><td>13 <w< td=""><td>3 <w< td=""></w<></td></w<></td></w<>	13 <w< td=""><td>3 <w< td=""></w<></td></w<>	3 <w< td=""></w<>
Heptachlor Heptachlor	ng/g dry	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
Indeno(1,2,3-c,d)pyrene	ng/g ary ng/g dry	<vv 160</vv 	<vv 880</vv 	<vv 240</vv 	<vv 600</vv 	<vv 560</vv 	<vv 400</vv 	<vv 120</vv 	<vv 120</vv 	<vv 400</vv 	<vv 80</vv 	<vv <w< td=""><td><w <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv 80</vv </td><td><vv 80</vv </td><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></vv </td></w<></vv </td></w<></w </td></w<></vv 	<w <w< td=""><td><vv <w< td=""><td><vv <w< td=""><td><vv 80</vv </td><td><vv 80</vv </td><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></vv </td></w<></vv </td></w<></w 	<vv <w< td=""><td><vv <w< td=""><td><vv 80</vv </td><td><vv 80</vv </td><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></vv </td></w<></vv 	<vv <w< td=""><td><vv 80</vv </td><td><vv 80</vv </td><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></vv 	<vv 80</vv 	<vv 80</vv 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
Iron Lead	ug/g dry ug/g dry	19000 11	19000 16	20000 22	59000 200	87000 100	30000 11	33000 35	41000 54	91000 69	29000	29000	31000	32000 30	31000 27	36000 44	32000 22	35000 12	35000 9
Magnesium Manganese	ug/g dry ug/a dry	16000 510	17000 500	17000 520	12000 480	8200 420	7400 230	11000 330	12000 380	8700 560	15000 520	15000 620	14000 540	9700 410	13000 410	14000 470	10000 410	8800 370	8400 360
Methoxychlor Mirex	ng/g dry ng/g dry	<w 10</w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""><td><w <w< td=""></w<></w </td></w<></w </td></w<></w 	<w <w< td=""><td><w <w< td=""></w<></w </td></w<></w 	<w <w< td=""></w<></w 
Molybdenum	ug/g dry	<w< td=""><td><w< td=""><td>0.6</td><td>6.6</td><td>4.6</td><td><w< td=""><td>0.7</td><td>1</td><td>4</td><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>0.6</td><td>6.6</td><td>4.6</td><td><w< td=""><td>0.7</td><td>1</td><td>4</td><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.6	6.6	4.6	<w< td=""><td>0.7</td><td>1</td><td>4</td><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.7	1	4	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>0.8</td><td>1</td><td><w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	0.8	1	<w< td=""><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
Nickel	ug/g dry	29	33	37	92	140	43	53	67	120	38	38	44	50	48	62	<vv 56</vv 	46	37
ivitrogen; total Kjeldahl op-DDT	mg/g dry ng/g dry	1.5 <w< td=""><td>1.3 <w< td=""><td>1.4 <w< td=""><td>2.9 <w< td=""><td>4.4 <w< td=""><td>3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1.3 <w< td=""><td>1.4 <w< td=""><td>2.9 <w< td=""><td>4.4 <w< td=""><td>3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1.4 <w< td=""><td>2.9 <w< td=""><td>4.4 <w< td=""><td>3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2.9 <w< td=""><td>4.4 <w< td=""><td>3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	4.4 <w< td=""><td>3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3.7 <w< td=""><td>6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	6.4 <w< td=""><td>4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	4.8 <w< td=""><td>4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	4.4 <w< td=""><td>3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3 <w< td=""><td>1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1.4 <w< td=""><td>2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2.1 <w< td=""><td>3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3.4 <w< td=""><td>3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	3.7 <w< td=""><td>2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	2.4 <w< td=""><td>3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<></td></w<>	3.8 <w< td=""><td>3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<></td></w<>	3.1 <w< td=""><td>3.2 <w< td=""></w<></td></w<>	3.2 <w< td=""></w<>
Oxychlordane PCB congeners; total	ng/g dry ng/g	<w 420</w 	<w 1100</w 	<w 1300</w 	<w 120000</w 	<w 50000</w 	<w 4200</w 	<w 2100</w 	<w 4300</w 	<w 52000</w 	<w 1300</w 	<w 890</w 	<w 1700</w 	<w 440</w 	<w 380</w 	<w 550</w 	<w 150</w 	<w 14</w 	<w 11</w 
Phenanthrene Phosphorus: total	ng/g dry mg/g dry	140 0.78	520 0.82	400	860 3	1800 4 9	200 1	80 1 2	120	3100 7 2	80 1 3	100 1 1	40 1 4	20 1 4	20 1	20 1.5	40 0 9.8	20	20 0.78
pp-DDD	ng/g dry	<w< td=""><td><w< td=""><td><w< td=""><td>95</td><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td>95</td><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>95</td><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	95	<w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td><w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<></td></w<>	<w< td=""><td>10</td><td><w< td=""><td><w< td=""></w<></td></w<></td></w<>	10	<w< td=""><td><w< td=""></w<></td></w<>	<w< td=""></w<>
pp-DDE	ng/g dry	11 <w< td=""><td>45 <w< td=""><td>38 <w< td=""><td>590</td><td>320 <w< td=""><td>73 <w< td=""><td><w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	45 <w< td=""><td>38 <w< td=""><td>590</td><td>320 <w< td=""><td>73 <w< td=""><td><w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	38 <w< td=""><td>590</td><td>320 <w< td=""><td>73 <w< td=""><td><w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	590	320 <w< td=""><td>73 <w< td=""><td><w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	73 <w< td=""><td><w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	110 <w< td=""><td>420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	420 <w< td=""><td>44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	44 <w< td=""><td>30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	30 <w< td=""><td>49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	49 <w< td=""><td>12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<></td></w<>	12 <w< td=""><td><w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<></td></w<>	<w< td=""><td>12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<></td></w<>	12 <w< td=""><td><w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<></td></w<>	<w< td=""><td><vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv </td></w<>	<vv <w< td=""><td>-3 <w< td=""></w<></td></w<></vv 	-3 <w< td=""></w<>
Pyrene Strontium	ng/g dry ug/g dry	320 150	1600 120	700 110	7900 95	21000 66	4700 57	220 66	560 67	6200 69	120 90	80 100	140 75	40 44	60 58	80 76	80 62	40 56	20 61
Titanium Vanadium	ug/g dry ug/g drv	220 26	220 26	170 26	150 49	140 58	70 51	140 43	200 53	170 54	200 36	210 39	150 41	100 41	210 45	150 43	180 47	160 54	160 54
Zinc	ug/g dry	110	140	220	4000	5400	240	590	800	2800	410	300	400	520	450	650	190	140	110
FIGURES



Samples were also be collected downstream on Montrose (39) and upstream (40) and downstream(38) of QEW



Figure 1b:. Location of reference creeks in relation to Lyons Creek.





**Figure 3:** PCA ordination plot of Lyons Creek sediment samples. (A) Depicts the groupings identified through cluster analysis, (B) shows the vectors for Total Organic Carbon (TOC) and the three particle size classes.



Figure 4: PCB concentrations and sediment grouping relationships for surficial sediments collected from the initial screening survey of Lyons Creek East. Horizontal lines represent mean PCB values for each grouping.



and those highlighted in yellow represent the samples collected in 2003 (yellow with blue boarder represent those samples both years Samples were also be collected downstream of QEW (38) in 2002 and 2003. Figure 5: Sample locations for 2002 and 2003 detailed survey. Locations highlighted in blue represent those locations sampled in 2002,



Figure 6: Lyons Creek sediment chemistry, 2002-2003. NMDS Axis1 vs. Axis2. (a) Ordination plot of site groupings. Sediment chemistry vectors are also provided for: PCB congeners (b), OC pesticides (c), PAHs (d) and metals (e).



Figure 7: Lyons Creek sediment chemistry, 2002-2003. NMDS Axis1 vs. Axis3. (a) Ordination plot of site groupings. Sediment chemistry vectors are also provided for: PCB congeners (b), OC pesticides (c), PAHs (d) and metals (e).



**Figure 8:** Sediment chemistry concentrations for selected metals from Lyons Creek (2002 & 2003) and the reference creeks (Usshers, Tee, Beaver and Black). PSQG lowest effect levels (LEL) and severe effect levels (SEL) are also plovided.

## Biota



**Figure 9.** Total PCBs in benthic invertebrates (µg/g dry weight) collected from Lyons Creek (LC) and reference creeks.



**Figure 10.** Total PCBs in biota (μg/g wet weight) collected from Lyons Creek (grey) and reference creeks (green). The dotted green line indicates the 99th percentile for the reference sites. The solid red line indicates the IJC guideline for the protection of wildlife consumers of aquatic species (100 ng/g ww).

## **Benthic Invertebrates**



**Figure 11.** PCB concentrations expressed in toxic equivalent quantities for coplanar PCBs. The red lines indicate the Canadian tissue residue guideline (TRG) for the protection of avian consumers of aquatic biota (CCME 2001).



**Figure 12.** Relationships between total PCBs in biota (normalized to % lipid) and total PCBs in sediment (normalized to % total organic carbon). Separate regression lines are shown for each taxon.





**Figure 13a.** Predictions (minimum, intermediate, and maximum) of total PCBs (μg/g ww) in benthivorous fish receptor species. Charts compare predicted [PCBs] among receptors and between reference and test sites. Highest predicted [PCBs] for reference sites for each scenario is indicated on the chart (min, med, max). The tissue objective (100 ng/g ww, IJC), where applicable, is indicated by the red dotted line.





**Figure 13b.** Predictions (minimum, intermediate, and maximum) of total PCBs (μg/g ww) in fish receptor species. Charts compare predicted [PCBs] among receptors and between reference and test sites. Highest predicted [PCBs] for reference sites for each scenario is indicated on the chart (min, med, max). The tissue objective (100 ng/g ww, IJC), where applicable, is indicated by the red dotted line.







Figure 13c. Predictions (minimum, intermediate, and maximum) of total PCBs (μg/g ww) in wildlife receptor species. Charts compare predicted [PCBs] among receptors and between reference and test sites. Highest predicted [PCBs] for reference sites for each scenario is indicated on the chart (min, med, max).



Figure 14. Ordination plot of % lipid and PCB congener concentrations in clams deployed at Lyons Creek and reference streams in 2002 and 2003. 90%, 99% and 99.9% confidence ellipses have been plotted around the reference data.



Figure 15. Total PCB concentrations in clam tissue collected from Lyons Creek and reference streams in 2002 and 2003. Groupings identified through cluster analysis are also shown.



Figure 16. TEQ concentrations of co-planar PCBs in clam tissue from Lyons Creek and reference sites. CCME tissue residue guideline (TRG, CCME2001) is also provided.



Figure 17. Total PCB concentration and TEQ values for forage fish collected from Lyons Creek and reference fish in 2002.



**Figure 18:** Total PCB and calculated TEQ values for forage fish collected from Lyons Creek and reference streams in 2003



Figure 19: Total PCB concentrations, calculated TEQ values, and lipid and length measurements for bluntnose minnow collected in 2002 and 2003



**Figure 20**: PCB concentrations in sport fish collected from Highway 140 and the QEW from 1991 - 2003. Consumption restrictions are provided; the bolded numbers on the right of the chart indicate the recommended number of meals per month (MOE, 2005)



**Figure 21:** TEQ values calculated for sport fish collected from Highway 140 in 2003. Error bars are shown, and CCME TRG criteria is provided



Figure22.Toxicological response of Lyons Creek and reference sites represented<br/>by 2-dimensional hybrid multidimensional scaling (HMDS) (stress = 0.07).<br/>The directions of maximum correlations of toxicity endpoints and<br/>environmental variables with sites are shown as vectors.



**Figure 23.** Abundance (per m²) of most prominent macroinvertebrate taxa and total number of taxa present at reference sites (green) and Lyons Creek sites (grey).



**Figure 24.** Ordination of Lyons Creek and reference community structure data represented by 3-dimensional hybrid multidimensional scaling (HMDS) (stress = 0.130). The directions of maximum correlations of community endpoints with sites are shown as vectors. [Tub = Tubificidae, Chir = Chironomidae, Naid = Naididae, Hyal = Hyalellidae, Gam = Gammaridae, Plagio = Plagiostomidae]



Figure 25: Sediment profile data for Lyons Creek. <10cm represents the surficial 10cm of sediment, 10-25cm represents the sediment collected at a depth of 10-25cm, and >25cm represents the historical sediment collected from a depth of greater than 25cm.



Figure 26: Sediment profiles of PCB congeners for Lyons Creek. (a) sediment cores with sections taken at less than 10cm, 10-25cm and greater than 25cm. (b) vectors of major congener groups



**Figure 27:** Seven PCB homologues found in the sediment of Lyons Creek. LEL = Provincial Sediment Quality Guidelines Lowest Effect Level criteria (70ng/g), SEL = Severe Effect Level (53,000 ng/g at 10% TOC)