Detailed Human Health Risk Assessment: Lyon's Creek West

Submitted to:

Niagara Peninsula Conservation Authority

Dillon Project No. 04-2907

Submitted by

Dillon Consulting Limited 5 Cherry Blossom Road Cambridge, Ontario N3H 4R7 Phone: (519) 650-9833 Fax: (519) 650-7424

December, 2007

#### **EXECUTIVE SUMMARY**

The governments of Canada and the United States have identified the Niagara River Watershed as an *Area of Concern* (AOC). Tributaries of the Niagara River, such as Lyon's Creek are considered part of this AOC. Since 1991, several studies have identified the presence of *polychlorinated biphenyls* (PCB) and in sediment and soil on the Lyon's Creek West site. The presence of these contaminants in soil and sediments represents a potential route of exposure for people who live adjacent to the Lyon's Creek West site and for people from the City of Welland and others who may use the site for recreational purposes. A *Human Health Risk Assessment* (HHRA) was undertaken to determine the potential health risks for people who may come into contact with contaminants that originate from within the Lyon's Creek West site. The results of the HHRA will form part of a larger review and will be an important component in support of the development of a remedial action plan for the Lyon's Creek West study area.

The HHRA for the Lyon's Creek West site focused on the presence of PCB and metals in the soil and sediment on the site. The site contains a wetland area, which is made up of the upper portion of Lyon's Creek and two ditches that drain the surrounding lands into Lyon's Creek, and an area of open field (Upland area) that surrounds the wetland area. From observations made during visits to the site, it is evident that members of the local community regularly use the Upland area of the site for recreational activities. There is little evidence to suggest that the wetland area is used for recreational activities. Paths or other forms of access to the Wetlands area were not observed. Based on the difference in use patterns between the two areas of the site, the Lyon's Creek West site was divided into the Upland and Wetlands areas and potential exposures were estimated for each area.

The results of the chemical screening determined that arsenic, iron and manganese were the only contaminants present in the soil on the Upland area that exceeded their respective human health-based screening guidelines. Exposures to these contaminants were evaluated for receptors in all five age groups (infant, toddler, child, teen, adult). On the Wetlands area, arsenic and PCB were the only contaminants present in the sediments at levels that exceeded their respective human health-based screening guidelines. In addition to total PCB, *dioxin-like polychlorinated biphenyls* (DL-PCB) was included in the assessment of sediment-borne contaminants in the Wetlands area. Exposures to arsenic, PCB and DL-PCB in the Wetlands area were assessed for the child, teen and adult receptor. Due to the difficulty in accessing the Wetlands area of the site, the HHRA assumed that infants and toddlers would not be present on the Wetlands area of the Lyon's Creek West site.

Based on the results of the HHRA it was concluded that:

• The *Hazard Quotients* (HQs) associated with exposure to iron and manganese in the soil on the Upland area of the Lyon's Creek West site are below the hazard acceptability benchmark of 0.2 for people in all age groups. Therefore, exposure to iron and manganese in the soil on the Upland area would not be expected to result in any adverse human health effects for recreational users of the site.

- The initial assessment of the potential risks associated with exposure to arsenic in the soil on the Upland area of the Lyon's Creek West site, indicated that the incremental increase in lifetime cancer risk (IILCR) (6.3 x 10<sup>-6</sup>) exceeds the risk acceptability benchmark of 10<sup>-6</sup>. However, it should be noted that the *Exposure Point Concentration* used to estimate exposures to arsenic on the Upland area included 3 samples collected from the western end of the south ditch where arsenic levels were substantially higher than arsenic levels across the rest of the Upland area. Removal of these three samples from the data set reduces the *Upper Concentration* Limit (UCL) for arsenic to 5.9 mg/kg that is well below the standard of 20 mg/kg for residential/parkland land use. Therefore, arsenic levels are below the level of concern for human health across the majority of the Upland area. Based on this, exposure to arsenic would not be expected to result in an unacceptable increase in lifetime cancer risk for recreational users of the site.
- Potential concerns related to exposure to arsenic in the soil in the western portion of the south ditch have been addressed through the excavation of the south drainage ditch completed between August and September, 2007. Confirmatory sampling, completed as part of the excavation, showed that arsenic levels were below the MOE Table 3 standards for residential soil.
- Exposure to arsenic, PCB and DL-PCB in the sediments on the Wetlands area of the Lyon's Creek West site would not be expected to result in adverse human health effects. The HQs associated with recreational use exposure to PCB and DL-PCB in the sediments on the Wetlands area were below the 0.2 hazard acceptability benchmark for all three receptor age groups.
- The IILCR associated with exposure to arsenic in the sediment was below the 10<sup>-6</sup> risk acceptability benchmark. Therefore, exposure to arsenic in the sediment on the Wetlands area of the Lyon's Creek West site, would not be expected to result in an unacceptable increase in life-time cancer risk for the recreational user of the site.

In summary, exposure to contaminants in soil on the Upland area and in sediments on the Wetlands area would not pose a potential concern for human health, based on the exposure estimates used in this risk assessment.

| Execu | tive Su | mmary                                                                     | i   |
|-------|---------|---------------------------------------------------------------------------|-----|
| 1     | Intro   | luction                                                                   | 1   |
|       | 1.1     | Background                                                                |     |
|       | 1.2     | Scope and Objectives                                                      |     |
|       | 1.3     | Organization of the Report                                                | 2   |
|       | 1.4     | Limitations                                                               | 2   |
| 2     | Site C  | haracterization                                                           | 3   |
| -     | 2.1     | Site Description                                                          |     |
|       |         | 2.1.1 Site Location and Land Use                                          |     |
|       |         | 2.1.2 Site Hydrogeology                                                   |     |
|       | 2.2     | Summary of Available Data                                                 |     |
|       |         | 2.2.1 Wetlands Soil and Sediment Data                                     | 6   |
|       |         | 2.2.2 Uplands Soil Data                                                   | 7   |
| 3     | Proble  | em Formulation                                                            | 9   |
| -     | 3.1     | Identification of Contaminants of Potential Concern                       |     |
|       |         | 3.1.1 Contaminants of Concern in the Wetlands Area                        | 9   |
|       |         | 3.1.2 Contaminants of Concern in the Upland Area                          | .10 |
|       | 3.2     | Identification of Potential Receptors                                     | .12 |
|       | 3.3     | Site Conceptual Model                                                     | .12 |
| 4     | Expos   | ure Assessment                                                            | .15 |
|       | 4.1     | Characterization of Potential Receptors                                   |     |
|       |         | 4.1.1 Identifying Receptor Activity Patterns                              | .15 |
|       |         | 4.1.2 Exposure Averaging Factors                                          |     |
|       |         | 4.1.2.1Time Driven Exposure Averaging Factors                             | .17 |
|       |         | 4.1.2.2Event Driven Exposure Averaging Factors                            |     |
|       |         | 4.1.3 Calculating Exposure Averaging Factors for Upland and Wetland Areas |     |
|       | 4.2     | Physical and Physiological Parameters for Receptors                       |     |
|       | 4.3     | Quantifying Exposure for Individual Pathways                              |     |
|       | 4.3.1   | Incidental Ingestion of Soil or Sediment                                  |     |
|       |         | 4.3.2 Dermal Contact with Soil or Sediment                                |     |
|       |         | 4.3.3 Inhalation of Soil and Dust Particulate                             |     |
|       | 4.4     | Quantifying Total Daily Exposures from On-Site Sources                    |     |
|       |         | 4.4.1 Total Daily Intakes for COCs Assessed on Non-Carcinogenic Endpoints |     |
|       |         | 4.4.2 Total Daily Intakes for COCs Assessed on Carcinogenic Endpoints     | .29 |
| 5     | Toxici  | ity Assessment                                                            | .32 |
| 6     | Risk (  | Characterization                                                          |     |
|       | 6.1     | Characterizing Hazards for Exposures to Non-Carcinogenic Compounds        |     |
|       | 6.2     | Characterizing Risks for Exposures to Arsenic.                            |     |
|       |         | 6.2.1 Remediation of South Drainage Ditch                                 | .36 |
| 7     | Discus  | ssion of Uncertainties                                                    |     |
|       | 7.1     | Arsenic Concentrations in Soil                                            |     |
|       |         | 7.2 Sediment Contact Activity Patterns                                    | .37 |

# **TABLE OF CONTENTS**

| 8 | Conclusions and Recommendations | 39 |
|---|---------------------------------|----|
| 9 | References                      | 41 |

#### LIST OF TABLES

| Table 2-3:   | Recommended Upper Concentration Limits for the Wetlands Area           | 7    |
|--------------|------------------------------------------------------------------------|------|
| Table 2-4:   | Recommended UCL Values for Upland Area                                 | 8    |
| Table 3-1:   | Screening for Contaminants of Concern, Wetlands Area                   |      |
| Table 3-2:   | Screening for Contaminants of Concern, Upland Area                     |      |
| Table 3-3:   | Potentially Complete Exposure Pathways for the Wetlands Area           | . 13 |
| Table 3-4:   | Potentially Complete Exposure Pathways for the Uplands Area            | . 14 |
| Table 4-1:   | Exposure Duration and Frequency Assumptions (Health Canada, 2003)      | . 15 |
| Table 4-2a:  | Activity Patterns for Upland Area                                      |      |
| Table 4-2b:  | Activity Patterns for Wetlands Area                                    | . 16 |
| Table 4-3a:  | Exposure Averaging Factors for the Uplands Area                        | . 19 |
| Table 4-3b:  | Exposure Averaging Factors for the Wetlands Area                       | . 19 |
| Table 4-4a:  | Physical, Physiological and Behavioural Parameters: Uplands Receptors  | . 20 |
| Table 4-4b:  | Physical, Physiological and Behavioural Parameters: Wetlands Receptors | . 20 |
| Table 4-5a:  | Exposures From Incidental Ingestion of Soil on the Upland Area         | . 22 |
| Table 4-5b:  | Exposures From Incidental Ingestion of Sediment on the Wetlands Area   | . 22 |
| Table 4-6a:  | Exposure from Dermal Contact With Soil: Upland Area                    | . 24 |
| Table 4-6b:  | Exposure from Dermal Contact With Sediment: Wetlands Area              | . 24 |
| Table 4-7:   | Exposure From the Inhalation of Soil and Dust: Upland Area             |      |
| Table 4-8a:  | Total Daily Intakes for Iron and Manganese, Upland Area                | . 28 |
| Table 4-8b:  | Total Daily Intakes for PCB, Wetlands Area                             |      |
| Table 4-9a:  | Total Daily Intakes for Arsenic: Upland Area                           |      |
| Table 4-9b:  | Total Daily Intakes for Arsenic: Wetlands Area                         |      |
| Table 4-10a: | Oral/Dermal Life-Time Averaged Daily Doses Arsenic: Upland Area        | . 31 |
| Table 4-10b: | Inhalation Life-Time Averaged Daily Doses Arsenic: Upland Area         | . 31 |
| Table 4-10c: | Oral/Dermal Life-Time Averaged Daily Doses Arsenic: Wetlands Area      | . 31 |
| Table 5-1:   | Toxicological Reference Values for the Chemicals of Concern            | . 32 |
| Table 6-1a:  | Hazard Quotient Calculations for Relevant Receptors: Upland Area       | . 34 |
| Table 6-1b:  | Hazard Quotient Calculations for Relevant Receptors: Wetlands Area     | . 34 |
| Table 6-2a:  | IILCR for Oral/Dermal Exposures to Arsenic: Upland Area                | . 35 |
| Table 6-2b:  | IILCR for Inhalation Exposures to Arsenic: Upland Area                 |      |
| Table 6-2c:  | IILCR for Oral/Dermal Exposures to Arsenic: Wetlands Area              |      |

# LIST OF FIGURES

Figure 1:Lyons' Creek West Site LocationFigure 2:Lyon's Creek West Study Area

### APPENDICES

- Appendix A: Summary of Sediment and Soil Quality Data and DLPCB TEQ Calculations
- Appendix B: Statistical Analysis of Sediment and Soil Quality Data
- Appendix C: Toxicity Profiles

# 1 INTRODUCTION

# 1.1 Background

The governments of Canada and the United States have identified the Niagara River Watershed as an *Area of Concern* (AOC). Tributaries of the Niagara River, such as Lyon's Creek are considered part of this AOC. Over the years, the discharge of chemicals from industrial facilities, sewer overflows and non-point sources have all contributed to contaminant loadings in these tributaries. The movement of contaminants from these tributaries into the Niagara River contributes to the contaminant burden in the Niagara River.

The movement of contaminated sediments from these tributaries into the Niagara River has been identified as a potential concern. Management of sediments has been identified as part of the remediation effort. Prior to the management of sediments, there is a need to identify the environmental fate of contaminants, potential transport pathways and potential toxic effects to determine the potential for these contaminants to contribute to the impairment of the beneficial uses of the environmental resources in the Niagara River AOC.

Canada and Ontario, under the *Canada-Ontario Agreement* (COA), are working to understand, restore and protect environmental quality in the Niagara River AOC. As part of this agreement, contaminated sediments in Lyon's Creek must be dealt with in a manner that is deemed appropriate under the COA and the *Remedial Action Plan* (RAP) that has been developed for the Niagara River AOC. Since 1991, several studies of soil and sediment quality have been undertaken within the Lyon's Creek West study area. These studies have identified the presence of *polychlorinated biphenyls* (PCB), metals and other contaminants in the soil and sediments in Lyon's Creek West.

Previous environmental investigations on the Lyon's Creek West site identified the presence of *polychlorinated biphenyls* (PCB), and metals in soil and sediment. The presence of these contaminants represents a potential route of exposure for people who live adjacent to the site and for people from the City of Welland and others who may use the site for recreational purposes. A *Human Health Risk Assessment* (HHRA) was undertaken to determine the potential health risks for people who may come into contact with contaminants that originate from within the Lyon's Creek West study area. The results of the HHRA will form part of a larger review and will be an important component in support of the development of a remedial action plan for the Lyon's Creek West study area.

# **1.2 Scope and Objectives**

This report provides the HHRA phase in the development of remedial options for the Lyon's Creek West site. It is designed to address potential human health concerns related to the presence of PCB and other contaminants in the soil and sediment on the Lyon's Creek West site. Ecological concerns are not addressed in this report. The HHRA is based on soil and sediment quality data collected on the site from 1991 through 2004. The report has relied on the compiled historical data presented by Golder (Golder 2004, Golder 2005) and additional samples collected by Dillon as part of this HHRA. The data used in this report is discussed in detail in Section 2.

### **1.3** Organization of the Report

This report is organized in 9 sections and 2 appendices, of which this introduction is the first. Section 2 provides a summary of the environmental monitoring data available for the Lyon's Creek West study area. Section 3 presents the Problem Formulation that identifies the contaminants of concern, the potential receptors and the active or complete exposure pathways. Section 4 presents the results of the Exposure Assessment. Section 5, the Toxicity Assessment provides a listing of the toxicological reference values used to assess the potential hazards/risks associated with exposure to the chemicals of concern on the site. Section 6 characterizes the risks associated with exposure to chemicals in the soil for all identified receptors. Section 7 provides a discussion of the uncertainties associated with the hazard and risk estimates from the HHRA. Section 8 provides a summary of the reference materials used in the development of the HHRA. Appendix A provides a listing of the sediment and soil monitoring data that has been used to calculate sediment and soil concentrations for PCB and metals, as well as a tabular summary of TEQ calculations for DL-PCB in sediment and soils. Appendix B provides the statistical analysis used to determine the Upper Concentration Limit for PCB and metals.

# 1.4 Limitations

Risk assessments, by their nature, have inherent limitations and uncertainties. It is believed that these uncertainties have been addressed through the conservative interpretation of site-specific data and parameter selection, and in the conservatism inherent in existing toxicity information. The quantitative estimates of risk provided by this process are valid only for the assumptions and exposure scenarios outlined in this report. However, should knowledge of the site conditions or toxicity information change, the risk posed by the site may differ from that presented in this report.

This report was prepared exclusively for the purposes, project, and site location outlined in the report. The report is based on information provided to, or obtained by Dillon as indicated in the report, and applies solely to site conditions existing at the time of the site investigation. Where the risk assessment has relied on information provided to Dillon by the other parties, Dillon has, within the scope and expectations of the risk assessment process, reviewed this data but Dillon does not warrant the accuracy, completeness and representativeness of this information. Dillon's report represents a reasonable review of available information within an established work scope, work schedule, and budget.

This report was prepared by Dillon for the sole benefit and use of the Niagara Peninsula Conservation Authority and the Ontario Ministry of the Environment. The material in it reflects Dillon's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decision made based on it, are the responsibilities of such third parties. Dillon accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

### 2 SITE CHARACTERIZATION

# 2.1 Site Description

# 2.1.1 Site Location and Land Use

Lyon's Creek West is a small segment of the upper reaches of the Lyon's Creek watershed that was separated from Lyon's Creek East by the construction of the Welland Canal Bypass in the 1970's. The site is bounded by the Seaway Service Road to the east, Robert St. to the North, Marc Boulevard to the west and Chantal Ct. and Humberstone Road to the south (see Figure 1). Pedestrian access to the site is possible from all of these roads, and an informal parking area exists at the northeast corner of the site, at the south end of Bradley Avenue. The site includes open vacant fields which, between the adjacent stormwater management facility and surrounding residences, are maintained by the City as manicured lawn. East of the stormwater facility, towards the Welland Canal Bypass, the lawns give way to meadows, shrub thickets and a small remnant woodlot. The site also includes two drainage ditches, one of which leads from Humberstone Road to the south, and the other crosses the northern portion of the site after exiting a stormwater outfall adjacent to the stormwater management facility. These ditches convey drainage to the upper and lower ends of the wetland area that is the remnant of the upper reaches of Lyon's Creek at the site.

The south drainage ditch is a man-made drainage feature that supports intermittent flows from Humberstone Road and drains to the upper end of the wetland. Thick growths of cattail in the south ditch suggest that, despite intermittent flow conditions, it remains wet for significant periods. This ditch is reported to be the main source of water for the upper portion of the wetland area on the property (Golder, 2004). A second ditch, runs across the northern portion of the site (Figure 2). The northern ditch enters the site through a concrete outfall a short distance east of Marc Boulevard and drains a portion of southeast Welland. The north drainage ditch is also an artificial feature, but unlike the south ditch, it has features associated with permanent flow and was observed to be flowing during each site visit. Prior to 1992, this ditch also drained through the wetland area and relocated its confluence with the remnant section of Lyon's Creek to a location immediately upstream of the outfall to the Welland Canal. The stormwater management facility, located centrally within the site, is protected by a high chain-link fence, such that public access is effectively prevented as a safety measure. The facility is not a naturalized stormwater pond, but is comprised of a large concrete basin, which would not be particularly attractive to potential trespassers.

Based on information provided to Dillon by the NPCA, the site is used by the local community for recreational activities. The site is accessible from the surrounding roads. Footpaths and all-terrain vehicle (ATV) trails are evidence of hiking and other recreational activities at and around the upland portions of the site. However, there was no evidence of trails leading into or within the wetland area of the remnant Lyons Creek. There are no sports fields, baseball diamonds, or playground sets at the site. Use of the site by the public appears entirely informal.

The location of footpaths suggests that the main pedestrian traffic on the site passes along a "short cut" between Bradley Avenue and Chantal Court, making use of the small bridge over the north ditch, passing east of the stormwater management facility and avoiding the extensive patches of poison ivy in the unmanicured meadow to the east. Pedestrian traffic in other areas of the mowed lawn portions of the site has not been of sufficient magnitude to establish footpaths. Based on Dillon's incidental observations of visitors to the site, most of the pedestrian and cyclist activity in the area seems to be focused east of the wetland area, along the Seaway Service Road, which avoids vegetated areas, provides a good surface and affords a view of the canal. Footpaths lead into the small woodlot that is located east of the wetland, and there was some evidence of past mountain bike activity, but these trails were not well-worn and were difficult to traverse in places due to regrowth of vegetation. Trails within the unmanicured meadow surrounding the wetland and woodlot area were mostly due to recreational use of ATVs at the site. Poison ivy is conspicuously and abundantly present at the site, within meadows and within and along the edge of the wooded border of the wetland and the remnant woodlot, and likely acts as a deterrent to pedestrian traffic. The ATV trails are not extensive, being focused mainly on the rolling spoil piles north of the north ditch bypass, and appearing to be only a small portion of the area locally available to riders along the Seaway Service Road.

Evidence of community access to the creek/wetland, the north and south drainage ditches and the adjacent bank areas was very limited. The south drainage ditch is heavily vegetated and is crossed by culvert and limestone gravel path. There was no evidence of intrusion into the ditch or along its banks. The north drainage ditch is surrounded by manicured lawn at its west end and may be visited periodically by children and teenagers in this area. It should be noted that this portion of the north drainage ditch was previously dredged to remove contaminated sediments. The north ditch bypass is a steep-sided trench and there was no evidence of activity in this portion that was excavated through clean soils. The bypassed downstream section of the north ditch remains as a heavily vegetated damp depression, with no evidence of foot traffic or recreational use. The vegetation, including shrub thickets, stands of burdock and poison ivy immediately adjacent to the creek discourages access to these areas. Within the wetland portion of Lyons Creek, deep soft sediments and thick stands of common reed and cattail make access to these areas difficult.

Although some sunfish and minnows were observed within the north drainage ditch, and there is a small open water area at the confluence of the north ditch and the wetland, there was no evidence of recreational fishing at the site. The remnant reach of Lyons Creek is too shallow and heavily vegetated to support significant fish populations or to be attractive to anglers.

Based on these observations, the site was divided into two areas for the purposes of the risk assessment:

• Wetlands Area:

The wetlands area has been defined as the drainage ditches, wetland area, Lyon's Creek and the banks associated with these areas (see Figure 2).

• Uplands Area:

The Uplands area is defined as all remaining portions of the site not encompassed within the wetlands area (see Figure 2).

The wetlands area includes areas historically and currently contaminated by metals and PCBs, but also includes the remediated north drainage ditch and the clean reach of the north drainage ditch bypass. The wetlands area is held distinct from the uplands area of the site based both on its physical attributes (i.e., wetness and thick vegetation) and the lack of evidence of human use of that portion of the site.

The uplands area includes the lawns, meadows, thickets, woodlot and trails that surround the wetland portion of the site. These are the areas that are most accessible on the site and showed some sign of use by the public. And as the metals and PCBs contamination on the site are concentrated within the watercourses, the uplands area is also the least contaminated portion of the site.

# 2.1.2 Site Hydrogeology

The reports included for consideration in the HHRA did not provide any information relating to the hydrogeology of the Lyon's Creek West site of the lands immediately adjacent to it. Because the residential properties in the vicinity of the site are supplied with municipal drinking water that is not derived from groundwater in the area, groundwater does not represent a potentially complete exposure pathway on the site. However, limited groundwater data are available for a portion of the site, and supported a conclusion that PCBs were not being transported in groundwater from contaminated sediments within the Lyons Creek wetland area (AMEC, 2002).

# 2.2 Summary of Available Data

A number of environmental investigations have been conducted on the site since 1991. A summary of the historical data was developed as part of the Niagara River RAP (Golder, 2004). The studies summarized in the 2004 Golder report include:

- Beak, 1990;
- St Lawrence Seaway Authority (SLSA), 1991;
- Ontario Ministry of the Environment, 1991;
- Environmental Strategies Limited, 1992.

The Beak 1990 data is limited to 21 samples collected during an initial site characterization as part of the planned construction of Highway 406. The information available suggests that the areas where these samples were collected were removed during remediation activities undertaken in 1991. Therefore, these samples have not been included in the current assessment.

Golder collected additional soil, sediment and vegetation samples for arsenic, PCB and zinc analysis (Golder, 2004) and further soil and sediment samples in 2004 (Golder, 2005). The samples collected by Golder focused on the wetlands areas of the site. Environmental data for the uplands areas of the site was limited to the data collected by the SLSA in 1991. Dillon undertook an additional sampling program to provide additional characterization of metal and PCB concentrations in soil in the uplands areas of the site. The sampling data reported and collected by Golder and the additional sampling data collected by Dillon as part of this HHRA for the Wetlands and Upland areas are summarized in Appendix A.

This risk assessment is focused on potential human exposures that could occur during recreational activities on the site. The site is not used for local food production, nor is there evidence that berries or other wild foods, including fish, are collected from the site. As a result, direct exposures to contaminants present in the soil are the only potentially complete exposure pathways for people who use the site for recreational purposes. Therefore, soil and sediment data are the only data that have been considered in this assessment. The mechanisms that govern human exposure to sediments do not

differ from those that govern human exposure to soil, and standard risk assessment practice assesses human exposures to sediments in the same manner as human exposures to soil. Therefore, soil and sediment data have been combined to provide a single data set for the wetlands area. Tabular summaries of the PCB and metals (particularly arsenic) data used to characterize soil conditions in the wetlands and uplands areas of the site are provided in Appendix A.

# 2.2.1 Wetlands Soil and Sediment Data

The historical data summarized by Golder and the additional sampling data collected by Golder between 2003 and 2004 (Golder 2004, Golder 2005) have been combined to provide a single soil and sediment data set that covers the wetlands area. This provides approximately 99 data points for PCB, 29 data points for arsenic and 29 points for zinc. The concentrations of other metals were not reported. Summaries of the soil/sediment quality data sets for the wetlands area are provided in Appendix A.

For each contaminant, minimum, maximum and mean values and the *Upper Confidence Limit* (UCL) were calculated using ProUCL<sup>®</sup> (Version 3) software available from the US EPA. ProUCL tests datasets for several potential distributions including; normality; log-normality; and gamma distributions, and calculated a conservative 95% UCL of the mean. A detailed summary of ProUCL and the various statistical approaches it applies to the calculation of UCL can be found in the ProUCL User Guidance Manual (Singh et al. 2004) available through the US EPA. ProUCL provides a statistical summary for each chemical constituent and, based on the analysis, recommends the most stable UCL for use as the *Exposure Point Concentration* (EPC) for use as input to the risk assessment. A summary of the recommended UCL and the statistical basis for the value for PCB, arsenic and zinc for the wetland area are provided in Table 2-3. In cases where the ProUCL software recommends more than one possible UCL, the highest recommended value has been selected. The statistical summary outputs from the ProUCL software are provided in Appendix B.

In addition to evaluating exposures to total PCB, the risk assessment considered the potential hazards associated with exposures to dioxin-like PCB (DLPCB). This group of PCB isomers and congeners has similar biological mechanisms of action to polychlorinated Dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF). Where PCB congener analysis data was available, the concentration of DLPCB was calculated. These concentrations were expressed as ng Toxicity Equivalent (TEQ) DLPCB/g soil.

The various isomers and congeners of PCDD, PCDFs and DLPCBs all have the same biological mechanism of action (*ie.* they all work on the body in the same way). However, they differ in their levels of toxicity. In assessing PCDD/PCDF and DLPCB concentrations in soil, the concentrations of the individual isomers and congeners are converted to a *Toxicity Equivalent* (TEQ) concentration which effectively expresses the concentration of individual isomers and congeners as function of its effective concentration relative to the most biologically active congener (2,3,7,8-TCDD) which is assigned an *Toxicity Equivalency Factor* (TEF) of 1.0. The concentrations of the individual PCDD and PCDF isomers and congeners are multiplied by their respective TEF to provide a toxic equivalent concentration or TEQ. For example if the soil concentration of octachlorodibenzo-p-dioxin (OCDD) is reported as 500 ng/g, this is converted to a TEQ concentration by multiplying the reported concentration by the TEF for OCDD (500 ng/g x 0.0001 = 0.5 ng TEQ/g). Similar calculations are completed for each PCDD, PCDF and DLPCB and the TEQ concentrations are summed to provide a

total or overall TEQ for the sample. This approach has been used to calculate the TEQ concentration of DLPCB in the wetlands area of the Lyon's Creek West site, as summarized in tabular format in Appendix A. The TEQ concentrations range from 0.0058 ng/g TEQ to 0.5232 ng/g TEQ in the wetland sediments. The maximum TEQ concentration of 0.5232 ng/g TEQ in sediment in the wetlands area is reported in Table 2-3.

| Contaminant | Recommended UCL              |                 |
|-------------|------------------------------|-----------------|
| Contaminant | Statistical Basis            | Value (mg/kg)   |
| Arsenic     | 95% H-UCL                    | 64.9            |
| Zinc        | 99% Chebyshev (Mean, Sd) UCL | 2297            |
| PCB         | Adjusted Gamma UCL           | 24.9            |
| DL-PCB      | Maximum Value                | 0.5232 ng/g TEQ |

Table 2-3: Recommended Upper Concentration Limits for the Wetlands Area

# 2.2.2 Uplands Soil Data

The historical data summarized by Golder and the additional sampling data collected by Golder between 2003 and 2004 (Golder 2004, Golder 2005) and Dillon in 2004 have been combined to provide a single soil data set that covers the uplands area. This provides approximately 77 data points for PCB, 37 points for arsenic and 20 points for zinc and other metals. Summaries of the soil quality data sets for the uplands area are provided in Appendix A.

For each contaminant, minimum, maximum and mean values and the *Upper Confidence Limit* (UCL) were calculated using ProUCL<sup>®</sup>. A summary of the recommended UCL and the statistical basis for the value for PCB, arsenic and other metals for the upland area are provided in Table 2-4. In cases where the ProUCL software recommends more than one possible UCL, the highest recommended value has been selected. The statistical summary outputs from the ProUCL software are provided in Appendix B.

A review of the arsenic data set identified three samples (LC-1, LC-2 and T1-M, Golder 2004), where arsenic levels were substantially higher than arsenic concentrations across the rest of the site. These samples are located at the western end of the south drainage ditch which drains the Hydro One Crowlands Transformer Station to the west of the Lyon's Creek West site. When included in the UCL calculations, these samples resulted in a UCL of 32.4 mg/kg. However, arsenic concentrations in the remainder of the samples are below 14 mg/kg, considered to be representative of background concentrations in Ontario (MOE, 2004) (Table 1 value for agricultural land). This would suggest that arsenic would not be considered a potential concern over much of the site, but would be limited to a relatively small portion of the heavily vegetated south drainage ditch. To determine the potential effect that the inclusion of these samples could have on the risk assessment, these samples were removed from the data set for the upland area and the UCL was recalculated at 5.9 mg/kg. Both values are provided in Table 2-4.

| Cantaninant                       | Recommended UCL                   |               |
|-----------------------------------|-----------------------------------|---------------|
| Contaminant                       | Statistical Basis                 | Value (mg/kg) |
| Aluminum                          | Student's-t UCL                   | 21083         |
| Antimony                          | Mod-t UCL (Adjusted for skewness) | 0.55          |
| Arsenic                           | 95% Chebyshev (Mean, Sd) UCL      | 32.4          |
| Arsenic (minus LC-1, LC-2 & T1-M) | Student's-t UCL                   | 5.9           |
| Barium                            | Approximate Gamma UCL             | 121           |
| Cadmium                           | Mod-t UCL (Adjusted for skewness) | 0.29          |
| Chromium                          | Mod-t UCL (Adjusted for skewness) | 46.3          |
| Cobalt                            | Student's-t UCL                   | 13.8          |
| Copper                            | Mod-t UCL (Adjusted for skewness) | 29.5          |
| Iron                              | Student's-t UCL                   | 37120         |
| Lead                              | Mod-t UCL (Adjusted for skewness) | 35.0          |
| Manganese                         | Student's-t UCL                   | 852           |
| Molybdenum                        | Mod-t UCL (Adjusted for skewness) | 2.5           |
| Nickel                            | Mod-t UCL (Adjusted for skewness) | 44.8          |
| Selenium                          | Mod-t UCL (Adjusted for skewness) | 0.49          |
| Silver                            | All 20 samples same value         | 0.50          |
| Strontium                         | Student's-t UCL                   | 74.8          |
| Titanium                          | Student's-t UCL                   | 281           |
| Vanadium                          | Student's-t UCL                   | 42.5          |
| Zinc                              | 95% Chebyshev (Mean, Sd) UCL      | 315           |
| РСВ                               | 97.5% Chebyshev (Mean, Sd) UCL    | 0.49          |

Table 2-4: Recommended UCL Values for Upland Area

# **3 PROBLEM FORMULATION**

# 3.1 Identification of Contaminants of Potential Concern

The objective of the contaminants screening process is to determine which contaminants are present in the environment at levels that may pose a potential risk to human health or the environment. The identification of contaminants of concern is based on a comparison of contaminant concentrations and applicable screening guidelines. Guidelines have been established for several environmental media including soil, groundwater, surface water and ambient air. These guidelines are established using very conservative assumptions that overestimate exposures. As a result, the guidelines represent contaminant concentrations that do not pose a risk to human health or the environment. Contaminants that are present at concentrations that are lower than their respective guideline concentration are not considered to pose a risk to humans or the environment. If the concentration of a contaminant exceeds the guideline value, it does not mean that the contaminant poses a risk to humans or the environment. An exceedance of a guideline is an indication that additional work must be undertaken to determine if site-specific exposures to contaminants pose a potential risk. This additional work is usually undertaken in the form of a risk assessment. Thus, contaminants that are present at concentrations that exceed their respective guidelines are identified as contaminants of concern and are carried through to a quantitative risk assessment.

Guidelines have been established by regulatory agencies such as the Ontario Ministry of the Environment (MOE), the Canadian Council of Ministers of the Environment (CCME) and the U.S. Environmental Protection Agency (US EPA). It is important to note that most agencies develop guidelines that are based on human health and ecological effects. Where both values are available, the lower of the two values is selected as the generic or common guideline value. This approach provides protection for both human and ecological receptors. Because the focus of this risk assessment is human health, the screening guidelines selected from the various agencies are those that are based on the protection of human health. The Ontario Ministry of the Environment was used as the primary source of human health-based guidelines (MOE, 1996). Where guidelines were not available from the MOE, the USEPA Region III *Risk Based Concentration Table* (RBC) (US EPA, 2004) was used as an additional source of human health based screening guideline values.

# 3.1.1 Contaminants of Concern in the Wetlands Area

The focus of this risk assessment is the presence of contaminants in the soil in the uplands area and in the soil and sediment in the wetlands area of the Lyon's Creek West site. The MOE has not developed human health based screening guidelines for sediment. As noted above (Section 2.2) standard risk assessment practice assesses human exposure to sediments in the same manner as exposure to soil. Therefore, the use of human health based soil screening guidelines to identify potential COCs in both soil and sediment in the wetlands area is appropriate.

The recommended UCL values for the contaminants listed in Table 2-3 are compared to the human health-based screening guideline for residential/parkland use. A chemical is identified as a COC if the UCL exceeds the appropriate screening guideline. The screening for contaminants of concern for the wetlands area is provided in Table 3-1. The calculated UCLs for arsenic and PCB exceed their respective human health-based screening criteria. Therefore, arsenic and PCB were identified as COCs for the wetlands area and have been carried through the risk assessment to determine the

potential human health risks associated with exposure to these contaminants in the wetlands area of the site.

| Contaminant | Recommended | Screening Criteri | a (mg/kg) | СОС |
|-------------|-------------|-------------------|-----------|-----|
| Contaminant | UCL (mg/kg) | Value (mg/kg)     | Source    | tot |
| Arsenic     | 64.94       | 20.0              | MOE, 2004 | Yes |
| Zinc        | 2297        | 16000             | MOE, 2004 | No  |
| PCB         | 24.9        | 5.0               | MOE, 2004 | Yes |

 Table 3-1: Screening for Contaminants of Concern, Wetlands Area

Based on this screening, the COCs for the wetlands area are:

- Arsenic; and
- PCB.

These COCs are therefore carried through to the risk assessment.

### 3.1.2 Contaminants of Concern in the Upland Area

The recommended UCL values for the contaminants in soil in the upland area, listed in Table 2-4, are compared to the human health-based screening guideline for residential/parkland use. The human health based soil screening guidelines established by the MOE are set to ensure that site-related exposures to contaminants do not exceed 20% of their respective tolerable daily intakes. This is referred to as a *Hazard Index* (HI) of 0.2. When selecting guidelines from other agencies, such as the US EPA, it is necessary that the adopted screening guidelines. The US EPA Region III screening guidelines are based on a HI of 1.0 and an assumed soil ingestion rate of 200 mg/day for a toddler. Therefore it is necessary to adjust the US EPA Region III values to account for these differences. Screening guidelines from the US EPA have been adjusted as shown in Equation 3-1.

$$EPA_{adj} = EPA_{sv} \times \left(\frac{HI_{MOE}}{HI_{epx}} \times \frac{SI_{EPA}}{SI_{MOE}}\right)$$

**EQ 3-1:** 
$$EPA_{adj} = EPA_{sv} \times \left(\frac{0.2}{1.0} \times \frac{200mg / day}{100mg / day}\right)$$

$$EPA_{adi} = EPA_{sv} \times 0.4$$

Where:

| EPA adj           | = Adjusted screening value from EPA             | µg/g     |
|-------------------|-------------------------------------------------|----------|
| EPA <sub>sv</sub> | = EPA Region III screening value                | µg/g     |
| HI <sub>MOE</sub> | = Hazard Index used by MOE                      | Unitless |
| HI <sub>EPA</sub> | = Hazard Index used by US EPA Region III        | Unitless |
| SI <sub>EPA</sub> | = Soil ingestion rate used by US EPA Region III | mg/day   |
| SI <sub>MOE</sub> | = Soil ingestion rate used by MOE               | mg/day   |

The US EPA screening guidelines listed in Table 3-2 have been adjusted by a factor of 0.4 as described above. The calculated UCLs for iron and manganese exceed their respective screening criteria and have been carried through to the risk assessment. The UCL for arsenic, based on all datapoints exceeds the screening criteria. However, removal of the three arsenic samples from the south drainage ditch (LC-1, LC-2 and T1-M) results in a UCL that is below the screening criterion, and, as noted above, below typical background levels of arsenic. This suggests that arsenic concentrations in the soil do not represent a concern over much of the site. However, to ensure that potential risks are adequately characterized, arsenic was identified as a potential COC for the upland area.

| Contaminant                           | Recommended | Screening Cr  | riteria (mg/kg)   | coc |
|---------------------------------------|-------------|---------------|-------------------|-----|
| Contaminant                           | UCL (mg/kg) | Value (mg/kg) | Source            |     |
| Aluminum                              | 21083       | 31000         | US EPA RIII, 2004 |     |
| Antimony                              | 0.55        | 13            | MOE, 2004         |     |
| Arsenic                               | 32.4        | 20            | MOE, 2004         | Yes |
| Arsenic: LC-1, LC-2<br>& T1-M removed | 5.9         | 20            | MOE, 2004         |     |
| Barium                                | 121         | 3700          | MOE, 2004         |     |
| Cadmium                               | 0.29        | 14            | MOE, 2004         |     |
| Chromium (III)                        | 46.3        | 4800          | US EPA RIII, 2004 |     |
| Cobalt                                | 13.8        | 2700          | MOE, 2004         |     |
| Copper                                | 29.5        | 1100          | MOE, 2004         |     |
| Iron                                  | 37120       | 23000         | US EPA RIII, 2004 | Yes |
| Lead                                  | 35.0        | 200           | MOE, 2004         |     |
| Manganese                             | 852         | 640           | US EPA RIII, 2004 | Yes |
| Molybdenum                            | 2.5         | 170           | MOE, 2004         |     |
| Nickel                                | 44.8        | 310           | MOE, 2004         |     |
| Selenium                              | 0.49        | 320           | MOE, 2004         |     |
| Silver                                | 0.50        | 98            | MOE, 2004         |     |
| Strontium                             | 74.8        | 19000         | US EPA RIII, 2004 |     |
| Titanium                              | 281         | 120000        | US EPA RIII, 2004 |     |
| Vanadium                              | 42.5        | 470           | MOE, 2004         |     |
| Zinc                                  | 315         | 16000         | MOE, 2004         |     |
| PCB                                   | 0.49        | 5.0           | MOE, 2004         |     |

 Table 3-2: Screening for Contaminants of Concern, Upland Area

Based on this, the COCs for the upland area include:

- Arsenic (Excluded when LC-1, LC-2 and T1-M are removed);
- Iron; and
- Manganese.

These COCs are therefore carried through to the risk assessment.

# **3.2 Identification of Potential Receptors**

The Lyon's Creek West site incorporates the section of Lyon's Creek that lies west of the Welland Canal. The site is surrounded by residential development to the north, west and south and is adjacent to the Welland Canal Bypass to the east. Although the land is owned by the St. Lawrence Seaway Authority, Hydro One and others, the site is accessible, with the exception of the fenced stormwater management facility, and is used for informal recreational purposes by members of the local community. People living outside the community may also make use of the site for recreational purposes. However, the exposures experienced by these non-resident users would be expected to be less frequent than the exposures experienced by people living in the immediate vicinity of the site.

As stated earlier in this report, there are no sports fields, playground areas or other formal recreational facilities on the site. Evidence of recreational use is limited to footpaths, ATV trails and incidental observations of visitors to the site. These uses appeared to be largely confined to the upland area of the site. While the western portion of the north ditch is accessible from the surrounding lawn, all other portions of the wetlands area designated for the purposes of this risk assessment possess features that are uninviting to the public and there was no sign of intrusion into these areas.

For the purposes of the HHRA, recreational users of all ages have been considered as the primary receptors of concern for both the wetlands and upland areas of the Lyon's Creek West site. The age groups that have been considered in the HHRA include:

- Infants (0-6 months of age)
- Toddlers (7 months through 4 years of age)
- Children (5 years through 11 years of age)
- Teens (12 years through 19 years of age)
- Adults (20+ years of age).

The age groupings for the recreational receptors are consistent with the age groupings typically used by the MOE in assessing potential human health risks and are also consistent with the age grouping recommended by Health Canada (Health Canada, 2004). For the purposes of the HHRA, it has been assumed that recreational users of all ages could spend time on the wetlands and uplands areas of the site.

# 3.3 Site Conceptual Model

The Site Conceptual Model (SCM) is used to define the potential pathways that may contribute to exposure for the various people who could be on site. In assessing potential exposures to

contaminants for the recreational user of the Lyon's creek west site, possible exposure pathways have been evaluated to identify those that are potentially complete. Differences in the physical setting and the types and amounts of vegetative cover between the wetlands and upland areas of the site will likely influence the relative amount of time spent on the two areas of the site. The location of pedestrian and ATV trails in upland areas and a lack of same in the wetland area support this conclusion.

In addition, contaminants at the site are generally associated with sediments of the wetlands area and with soil on the uplands area. This can lead to some differences in potential exposure pathways between the two areas of the site. For this reason, potential exposure pathways have been identified separately for the wetland and upland areas of the site. Listing of the pathways considered for the wetlands and upland areas are provided in Table 3-3 and Table 3-4. These tables provide rationales to support the inclusion of active pathways and the exclusion of pathways that are considered incomplete.

| Media          | Exposure<br>Route | Pathway                                                                          | Retained     | Rationale                                                                                                                                                                                                 |  |
|----------------|-------------------|----------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | Inhalation        | Inhalation of re-entrained sediment dusts                                        | No           | Sediments will either be wet, covered by a layer of<br>live and decomposing vegetation, or under water.<br>Therefore, sediments will not be re-entrained in the<br>air column as a result of wind action. |  |
|                |                   | Incidental ingestion of sediment                                                 | Yes          | Incidental ingestion of sediment is a potentially complete exposure pathway.                                                                                                                              |  |
| Sediment       | Ingestion         | Uptake into plants and<br>consumption of plants                                  | No           | People are not expected to consume plants from the wetlands area of the Lyon's Creek West site.                                                                                                           |  |
|                |                   | Uptake into animals and consumption of animals                                   | No           | Recreational fishing or the collection of wild foods<br>have not been identified as activities on the site. Site<br>characteristics are not favourable for these activities.                              |  |
|                | Dermal Contact    | Dermal Contact with Sediment                                                     | Yes          | Dermal contact with sediment is a potentially complete exposure pathway                                                                                                                                   |  |
|                | Inhalation        | Inhalation of re-entrained soil & dust                                           |              |                                                                                                                                                                                                           |  |
|                | Ingestion         | Ingestion of soil                                                                | d animals No | Contaminants in the wetlands area are assumed to be associated with sediments.                                                                                                                            |  |
| Soil           |                   | Uptake into plants and animals<br>and consumption of plants and<br>animals       |              |                                                                                                                                                                                                           |  |
|                | Dermal Contact    | Dermal contact with soil                                                         |              |                                                                                                                                                                                                           |  |
| Air            | Inhalation        | Inhalation of compounds in indoor air                                            | No           | The COC, (arsenic and PCB) are not volatile and therefore, the inhalation of vapours is not a                                                                                                             |  |
| All            | Innaration        | Inhalation of compounds in<br>outdoor air                                        | No           | potentially complete exposure pathway.                                                                                                                                                                    |  |
| Drinking Water | Ingestion         | Ingestion of compounds in<br>drinking water derived from on-<br>site groundwater | No           | There is no access to groundwater on the site and the surrounding community is supplied with municipal water.                                                                                             |  |
| Surface Water  | Ingestion         | Incidental Ingestion of surface water while swimming/wading                      |              | Access the surface water is limited by the vegetation<br>in the wetlands area. Surface waters are very                                                                                                    |  |
|                | Dermal Contact    | Dermal contact with surface<br>water while swimming of wading                    | No           | shallow and, combined with deep soft sediments and<br>thick vegetation, are not conducive to swimming or<br>wading.                                                                                       |  |
| Sup            | ermarket Food an  | d Consumer Products                                                              | No           | These exposures will be the same as the general population.                                                                                                                                               |  |

 Table 3-3: Potentially Complete Exposure Pathways for the Wetlands Area

Based on the information presented in Table 3-3, above, the potentially complete exposure pathways in the wetlands area include;

- Incidental ingestion of sediment; and
- Dermal contact with sediment.

| Media          | Exposure<br>Route         | Pathway                                                                                              | Retained | Rationale                                                                                                                                                                                                     |
|----------------|---------------------------|------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Inhalation                | Inhalation of re-entrained<br>sediment dusts                                                         |          |                                                                                                                                                                                                               |
|                |                           | Incidental ingestion of sediment                                                                     | No       |                                                                                                                                                                                                               |
| Sediment       | Ingestion                 | Uptake into plants and<br>consumption of plants<br>Uptake into animals and<br>consumption of animals |          | Contaminants are associated with soil. There are no sediments in the uplands area.                                                                                                                            |
|                | Dermal Contact            | Dermal contact with sediment                                                                         |          |                                                                                                                                                                                                               |
|                | Inhalation                | Inhalation of re-entrained soil & dust                                                               | Yes      | Inhalation of contaminants on re-entrained soil or<br>dust particles is a potentially complete exposure<br>pathway. It should be noted, however, that most<br>of the site soils are stabilized by vegetation. |
|                | Ingestion                 | Ingestion of soil                                                                                    | Yes      | Incidental ingestion of soil is a potentially<br>complete exposure pathway.                                                                                                                                   |
| Soil           |                           | Uptake into plants and consumption of plants                                                         | No       | People are not expected to consume plants from<br>the upland area of the Lyon's Creek West site. Site<br>observations did not reveal extensive stands wild<br>berries or other plant foods.                   |
|                |                           | Uptake into animals and consumption of animal products                                               | No       | The site is not used for raising domestic livestock<br>and there is no evidence of the collection of<br>country foods on the site.                                                                            |
|                | Dermal Contact            | Dermal contact with soil                                                                             | Yes      | Dermal contact with soil is a potentially complete exposure pathway.                                                                                                                                          |
| Air            | Inhalation                | Inhalation of compounds in indoor air                                                                | No       | The COC, (arsenic, PCB, iron and manganese) are not volatile and therefore, the inhalation of                                                                                                                 |
| Alf            | Innalation                | Inhalation of compounds in<br>outdoor air                                                            | No       | vapours is not a potentially complete exposure pathway.                                                                                                                                                       |
| Drinking Water | Ingestion of compounds in |                                                                                                      | No       | There is no access to groundwater on the site and<br>the surrounding community is supplied with<br>municipal water.                                                                                           |
|                | Ingestion                 | Incidental Ingestion of surface<br>water while swimming/wading                                       |          | There is no continuous source of surface water on                                                                                                                                                             |
| Surface Water  | Dermal Contact            | Dermal contact with surface<br>water while swimming of wading                                        | No       | the upland area of the site.                                                                                                                                                                                  |
| Sup            | ermarket Food an          | d Consumer Products                                                                                  | No       | These exposures will be the same as the general population.                                                                                                                                                   |

#### Table 3-4: Potentially Complete Exposure Pathways for the Uplands Area

The potentially complete exposure pathways for the upland area are presented in Table 3-4. Based on this assessment the potentially complete exposure pathways include;

- Incidental ingestion of soil;
- Dermal contact with soil; and
- Inhalation of re-entrained soil and dust.

### 4 EXPOSURE ASSESSMENT

# 4.1 Characterization of Potential Receptors

### 4.1.1 Identifying Receptor Activity Patterns

The level of exposure to contaminants in the soil and sediments on the Lyon's Creek West site that a person could experience depends on how often a person comes into contact with the soil and/or sediment. How often a person comes into contact with soil and/or sediments is determined by the activity patterns that are assumed for each receptor. Health Canada provides generic exposure assumptions for several land-use categories including; agricultural, residential, commercial and industrial sites (Health Canada, 2004). A summary of the exposure frequency and duration assumptions recommended by Health Canada is provided in Table 4-1. These provide reasonable, conservative estimates of potential exposure for people who may be present on a specific site.

|                        |              | Land Use C  | Categories |            |
|------------------------|--------------|-------------|------------|------------|
|                        | Agricultural | Residential | Commercial | Industrial |
| Hours per day on-site  | 24           | 24          | 8          | 8          |
| Days per Week On-Site  | 7            | 7           | 5          | 6          |
| Weeks per Year On-Site | 52           | 52          | 52         | 48         |

 Table 4-1: Exposure Duration and Frequency Assumptions (Health Canada, 2003)

However, the Health Canada exposure assumptions do not account for the period of the year when the ground is either frozen or snow-covered. In addition, the assumptions regarding the *Number of Days On-Site* and the *Weeks per Year On-site* for residential or commercial land-use do not adequately describe the amount of time that a person could spend on site for informal recreational purposes. In order to provide exposure estimates for all receptors that are representative of the local conditions, assumptions regarding the potential frequencies for direct contact with soil and/or sediments have been adjusted to account for the times that local residents could spend on the Lyon's Creek West site and to account for the period of the year when access to soils and sediments is restricted due to frozen or snow-covered conditions. For the purposes of this assessment the frost and snow free period is assumed to be 35 weeks (mid March to mid-November).

The length of time a person could be expected to spend on the Lyon's Creek West site is determined by the activity patterns that are assumed for each receptor. Visits to the site conducted by Dillon in the fall of 2004 identified numerous trails across the uplands area of the site, with most of the trails on the spoil piles and other meadow areas associated with the Seaway Service Road closer to the Welland Canal Bypass. However, there was no evidence of trails or access paths in the wetlands area of the site. Additional information provided by Golder (Rein Jaagumagi personal communication) supported these observations.

This information has been used to estimate activities patterns for people who may use the upland and wetlands areas for the Lyon's Creek West site for informal recreational activities. Because the focus of the HHRA is recreational use of the Lyon's Creek West site, activity patterns have been established for all receptor age groups (infant, toddler, child, teen and adult). The activity patterns that have been used to assess potential exposures in the upland and wetland areas are presented in Table 4-2a and Table 4-2b respectively.

| Receptor | Age Group       | Activity Pattern Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infant   | 0 – 6 months    | Infants up to the age of 6 months would not generally be expected to come into contact with soil on the Lyon's Creek West site. Site characteristics are generally not likely to encourage parents or caregivers to set infants on the ground. For the purposes of the HHRA, it has been assumed that infants would be present on site for 1 hour once per week over the frost-free period of the year (35 weeks), in the company of parents or caregivers walking or cycling through the site. It is expected that this will greatly overestimate potential exposures for infants. |
| Toddler  | 7 months – 4 yr | Toddlers are assumed to be on-site for a period of 1 hour once per week during<br>the frost-free period of the year (35 weeks). Similar to the infant group,<br>toddlers are likely to visit the site in the company of parents or caregivers that<br>would be walking or cycling through the site.                                                                                                                                                                                                                                                                                 |
| Child    | 5 yr – 11 yr    | Children, teens and adults are likely to spend the greatest amount of time on<br>the Lyon's Creek West site. For the purposes of this assessment it has been                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Teen     | 12 yr-19 yr     | assumed that children, teen and/or adult receptors would spend up to 2 hours<br>on the site once per week during the frost-free period of the year (35 weeks).<br>This duration of exposure appears consistent with relatively small size of the                                                                                                                                                                                                                                                                                                                                    |
| Adult    | 20+ yr          | site relatively to the extent of adjacent trails along the Welland Canal Bypass,<br>and the degree of trail development observed within the site itself.                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 4-2a: Activity Patterns for Upland Area

### Table 4-2b: Activity Patterns for Wetlands Area

| Receptor | Age Group       | Activity Pattern Assumptions                                                                                                                                                                                                                                                                        |
|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infant   | 0-6 months      | Infants and toddlers are not expected to be present in the Wetlands area of the                                                                                                                                                                                                                     |
| Toddler  | 7 months – 4 yr | site. Given site conditions, it is assumed that infants and toddlers would be<br>accompanied by parents or caregivers who would prevent access to wet areas<br>of the site. Therefore, these age groups would not generally be expected to<br>come into contact with sediment in the wetlands area. |
| Child    | 5 yr - 11 yr    | As noted above, there is little evidence that the local population accesses the Wetlands area of the Lyon's Creek West site on a regular basis. There were no                                                                                                                                       |
| Teen     | 12 yr-19 yr     | footpaths or ATV trails leading to the wetland area. The western segment of<br>the north ditch portion of the wetland area is relatively accessible from the<br>mowed portion of the site, however this area was previously remediated. For                                                         |
| Adult    | 20+ yr          | the purposes of this assessment it has been assumed that children, teens and<br>adults will visit the Wetlands area 5 times per year during the frost-free period<br>of the year.                                                                                                                   |

# 4.1.2 Exposure Averaging Factors

The toxicity reference values (TRVs) developed by regulatory agencies are averaged daily exposure values and represent daily exposures that can occur over a life-time without resulting in adverse human health effects or unacceptable increases in life-time cancer risk. The exposures to contaminants in the sediments of Lyon's Creek, experienced by members of the local community who use the Lyon's Creek West site for informal recreational activities, are considered to be

intermittent exposures, because exposures will only occur on the days when people are on the Lyon's Creek West site. Before these intermittent exposures can be compared to the appropriate toxicity values, the intermittent exposures must be adjusted to account for the differences in exposure duration between the intermittent exposures on the Lyon's Creek West site and the continuous exposures that were assumed in the development of the toxicity values. The difference in exposure duration is calculated as an *Exposure Averaging Factor* (AF). The activity patterns listed in Table 4-2a and Table 4-2b have been used to calculate the averaging factors for each of the receptor age groups for the Upland and Wetland areas of the site respectively.

The calculation of exposure averaging factors depends on the type of exposure being considered. For example, inhalation occurs on a continuous 24-hour basis regardless of whether a person is on-site or off-site. Therefore, the inhalation exposure experienced by people on a site is a function of the both the time spent on-site in a given day and the number of days spent on-site in a given year. Exposures of this nature are considered to be *Time Driven*. Exposures such as the incidental ingestion of soil or sediment or dermal contact with soil or sediment can only occur when a person is present on-site. These exposures are considered to be *Event Driven*. A discussion of the calculation of the *Event Driven* exposure averaging factors is provided below.

### 4.1.2.1 Time Driven Exposure Averaging Factors

The calculation of *Time Driven* averaging factors is a function, both of the time spent on the Lyon's Creek West site on a given day and the number of days spent on site in a given year. The *Averaging Factor* (AF) values for *Time Driven* exposures are calculated on the basis of hours per year over which exposures can occur and are calculated as shown in Equation 4-1.

# Eq 4-1: Calculation of Exposure Averaging Factor for *Time Driven* Exposures

$$AF = \frac{\left(ED_n \times EF_n \times EW_n \times Years_{(n)}\right)}{\left(24^{hours}/_{day} \times 365^{days}/_{year} \times Years_{(a)}\right)}$$

Where:

AF = Averaging Factor Unitless = Exposure Duration for receptor "n"  $ED_n$ hours/day  $EF_n$ = Exposure Frequency for receptor "n" days/week = Weeks per year on-site for receptor "n"  $EW_n$ weeks/year  $Years_n = Years of exposure$ years  $Years_a = Years$  for averaging exposure years

### Exposure Duration (ED<sub>n</sub>)

The exposure duration is defined as the number of hours per day that a person is assumed to be present on site.

# Exposure Frequency (EF<sub>n</sub>)

The exposure frequency is defined as the number of days per week that a person is expected to be present on-site.

#### Weeks $(EW_n)$

The weeks of exposure is defined as the number of weeks per year that a person is assumed to be present on-site.

### Years<sub>(n)</sub>

The number of years in an exposure scenario over which exposures are expected to occur. The number of years in the exposure scenario for each receptor is equivalent to the number of years that a receptor spends in each age group. For example, children are considered to be between the ages of 5 and 12 years of age. For this receptor group, the **Years**<sub>(n)</sub> would be 7 years.

### Years<sub>(a)</sub>

This represents the number of years over which the exposure is to be averaged. The number of years in the exposure scenario for each receptor is equivalent to the number of years that a receptor spends in each age group. For example, children are considered to be between the ages of 5 and 12 years of age. For this receptor group, the  $Years_{(a)}$  would be 7 years.

# 4.1.2.2 Event Driven Exposure Averaging Factors

The calculation of *Event Driven* averaging factors is a function of the number of days spent on the Lyon's Creek West site in a given year. Because scientific information relating to the apportionment of exposures between on-site and off-site sources is limited, the risk assessment process conservatively assumes that on the days that a person is on-site, all of the daily incidental ingestion of soil, or other direct contact exposures, occurs while on-site. The calculation of the AF for *Event Driven* exposures is based on the number of days exposures are assumed to occur compared with the number of days in a given year. The AF for *Event Driven* exposures is calculated as shown in Equation 4-2.

# Eq 4-2: Calculation of Exposure Averaging Factor for *Event Driven* Exposures

$$AF_{E} = \frac{\left(EF_{n} \times EW_{n} \times Years_{(n)}\right)}{\left(365^{days}/year \times Years_{(a)}\right)}$$

| AF                 | = Averaging Factor                                       | Unitless   |
|--------------------|----------------------------------------------------------|------------|
| EFn                | = Exposure Frequency for receptor "n"                    | days/week  |
| $EW_n$             | = Weeks per year on-site for receptor "n"                | weeks/year |
| Years <sub>n</sub> | = Years of exposure                                      | years      |
| Years <sub>a</sub> | = Years for averaging exposure                           | years      |
|                    | EF <sub>n</sub><br>EW <sub>n</sub><br>Years <sub>n</sub> | 0 0        |

# 4.1.3 Calculating Exposure Averaging Factors for Upland and Wetland Areas

Exposure averaging factors for *Time Driven* and *Event Driven* exposures for people in the Upland area of the site are provided in Table 4-3a. Exposure averaging factors for *Event Driven* exposures for people who use the Wetlands area of the site are provided in Table 4-3b. Time driven exposures are relevant for inhalation exposures. On the Wetland area of the Lyon's Creek West site, the contaminants are present in the sediments. The re-entrainment of soil and dust particles by wind

action does not occur for wet soil or sediment. Therefore, inhalation of soil and dust particulate is not a complete exposure pathway for receptors on the Wetlands area, and time driven exposure averaging factors are not required for this area of the Lyon's Creek West site.

| Time Driven Exposure Factors: Upland Area |                          |                  |                   |              |                           |                  |       |             |  |  |  |
|-------------------------------------------|--------------------------|------------------|-------------------|--------------|---------------------------|------------------|-------|-------------|--|--|--|
|                                           | Hours per<br>day on-site | Days per<br>Week | Weeks per<br>year | Years        | Total<br>Hours per<br>day | Days Per<br>Year | Years | AF          |  |  |  |
| Particulate Inhalation                    |                          |                  |                   |              |                           |                  |       |             |  |  |  |
| Infant                                    | 1                        | 1                | 35                | 0.5          | 24                        | 365              | 0.5   | 0.003995434 |  |  |  |
| Toddler                                   | 1                        | 1                | 35                | 4.5          | 24                        | 365              | 4.5   | 0.003995434 |  |  |  |
| Child                                     | 2                        | 1                | 35                | 7            | 24                        | 365              | 7     | 0.007990868 |  |  |  |
| Teen                                      | 2                        | 1                | 35                | 8            | 24                        | 365              | 8     | 0.007990868 |  |  |  |
| Adult                                     | 2                        | 1                | 35                | 55           | 24                        | 365              | 55    | 0.007990868 |  |  |  |
|                                           |                          | E                | vent Driven       | Exposure Fa  | actors: Uplar             | nd Area          |       |             |  |  |  |
| Receptor                                  | Hours per<br>day on-site | Days per<br>week | Weeks per<br>year | Years        | Total<br>Hours per<br>day | Days per<br>year | Years | AF          |  |  |  |
|                                           |                          |                  | Soil Ingesti      | on, Dermal ( | Contact with              | Soil             |       |             |  |  |  |
| Infant                                    | NA                       | 1                | 35                | 0.5          | NA                        | 365              | 0.5   | 0.095890411 |  |  |  |
| Toddler                                   | NA                       | 1                | 35                | 4.5          | NA                        | 365              | 4.5   | 0.095890411 |  |  |  |
| Child                                     | NA                       | 1                | 35                | 7            | NA                        | 365              | 7     | 0.095890411 |  |  |  |
| Teen                                      | NA                       | 1                | 35                | 8            | NA                        | 365              | 8     | 0.095890411 |  |  |  |
| Adult                                     | NA                       | 1                | 35                | 50           | NA                        | 365              | 50    | 0.095890411 |  |  |  |

 Table 4-3a: Exposure Averaging Factors for the Uplands Area

| Table 4-3b: | Exposure A | Averaging | Factors for | r the W | etlands Area |
|-------------|------------|-----------|-------------|---------|--------------|
|             |            |           |             |         |              |

|          | Event Driven Exposure Factors: Wetlands Area |     |       |     |            |  |  |  |  |  |  |
|----------|----------------------------------------------|-----|-------|-----|------------|--|--|--|--|--|--|
| Receptor | ceptor Days/year Years Days per year         |     | Years | AF  |            |  |  |  |  |  |  |
|          | Soil Ingestion, Dermal Contact with Sediment |     |       |     |            |  |  |  |  |  |  |
| Infant   | 0                                            | 0.5 | 365   | 0.5 | 0          |  |  |  |  |  |  |
| Toddler  | 0                                            | 4.5 | 365   | 4.5 | 0          |  |  |  |  |  |  |
| Child    | 5                                            | 7   | 365   | 7   | 0.01369863 |  |  |  |  |  |  |
| Teen     | 5                                            | 8   | 365   | 8   | 0.01369863 |  |  |  |  |  |  |
| Adult    | 5                                            | 50  | 365   | 50  | 0.01369863 |  |  |  |  |  |  |

# 4.2 Physical and Physiological Parameters for Receptors

Physical and physiological factors such as body weight and inhalation rate, and behavioural factors such as the incidental ingestion of soil, all affect the potential daily exposures experienced by each of the receptors considered in the HHRA. Physical and physiological parameters are available from a number of sources including the MOE, Health Canada and the US EPA. The MOE has recently completed a review of available parameters and has identified values that it has used in assessing

potential exposures to contaminants in the environment (MOE, 2002). These parameters have been used to assess potential human exposures in the HHRA for Lyon's Creek West. The parameters used to assess incidental ingestion and dermal contact with soils and inhalation of soil and dust particles for people on the Uplands area of the site are summarized in Table 4-4a. The parameters used to assess incidental ingestion of sediments and dermal contact with sediments for people on the Wetlands area of the site are summarized in Table 4-4b.

It should be noted that different skin surface areas have been used to assess potential dermal contact for people in the two areas of the Lyon's Creek West site. On the Uplands area of the site, the area of exposed skin is consistent with the areas of exposed skin assumed for regular outdoor activities on residential or recreational properties. On the Wetlands area it is assumed that only hands, and feet are likely to come into contact with sediments. Therefore, estimates of exposed skin surface area have been adjusted to reflect these differences.

| Parameter                 | Units               | Infant  | Toddler       | Child      | Teen      | Adult   | Reference           |  |  |
|---------------------------|---------------------|---------|---------------|------------|-----------|---------|---------------------|--|--|
| Age Range                 |                     | 0-6 m   | 7 m - 4 yrs   | 5 - 11 yrs | 12-19 yrs | >20yrs  | MOE, 2002           |  |  |
| Years within an Age Group | years               | 0.5     | 4.5           | 7          | 8         | 50      | MOE, 2002           |  |  |
| Body Weight               | kg                  | 8.2     | 16.5          | 32.9       | 59.7      | 70.7    | MOE, 2002           |  |  |
| Soil Ingestion Rate       | g/day               | 0.02    | 0.1           | 0.1        | 0.02      | 0.02    | MOE, 2002           |  |  |
| Daily Inhalation Rates    | m <sup>3</sup> /day | 2.1     | 9.3           | 14.5       | 15.8      | 15.8    | Health Canada, 2003 |  |  |
|                           |                     | S       | kin Surface A | Area       |           |         |                     |  |  |
| Hands                     | cm <sup>2</sup>     | 320     | 430           | 590        | 800       | 890     | MOE, 2002           |  |  |
| Upper & Lower Arms        | cm <sup>2</sup>     | 550     | 890           | 1480       | 2230      | 2500    | MOE, 2002           |  |  |
| Upper & Lower Legs        | cm <sup>2</sup>     | 910     | 1690          | 3070       | 4970      | 5720    | MOE, 2002           |  |  |
| Totals                    | cm <sup>2</sup>     | 1780    | 3010          | 5140       | 8000      | 9110    | MOE, 2002           |  |  |
| Soil Loading to Skin      |                     |         |               |            |           |         |                     |  |  |
| Soil Adhesion to Skin     | g/cm2               | 7.0E-05 | 2.0E-04       | 2.0E-04    | 7.0E-05   | 7.0E-05 | MOE, 2002           |  |  |

 Table 4-4a: Physical, Physiological and Behavioural Parameters: Uplands Receptors

#### Table 4-4b: Physical, Physiological and Behavioural Parameters: Wetlands Receptors

| Parameter                 | Units             | Infant  | Toddler     | Child      | Teen      | Adult   | Reference |  |  |  |  |
|---------------------------|-------------------|---------|-------------|------------|-----------|---------|-----------|--|--|--|--|
| Age Range                 |                   | 0-6 m   | 7 m - 4 yrs | 5 - 11 yrs | 12-19 yrs | >20yrs  | MOE, 2002 |  |  |  |  |
| Years within an Age Group | years             | 0.5     | 4.5         | 7          | 8         | 50      | MOE, 2002 |  |  |  |  |
| Body Weight               | kg                | 8.2     | 16.5        | 32.9       | 59.7      | 70.7    | MOE, 2002 |  |  |  |  |
| Soil Ingestion Rate       | g/day             | 0.02    | 0.1         | 0.1        | 0.02      | 0.02    | MOE, 2002 |  |  |  |  |
|                           | Skin Surface Area |         |             |            |           |         |           |  |  |  |  |
| Hands                     | cm <sup>2</sup>   | 320     | 430         | 590        | 800       | 890     | MOE, 2002 |  |  |  |  |
| Feet                      | cm <sup>2</sup>   | 250     | 430         | 720        | 1080      | 1190    | MOE, 2002 |  |  |  |  |
| Totals                    | cm <sup>2</sup>   | 570     | 860         | 1310       | 1880      | 2080    | MOE, 2002 |  |  |  |  |
| Soil Loading to Skin      |                   |         |             |            |           |         |           |  |  |  |  |
| Soil Adhesion to Skin     | g/cm2             | 7.0E-05 | 2.0E-04     | 2.0E-04    | 7.0E-05   | 7.0E-05 | MOE, 2002 |  |  |  |  |

#### 4.3 Quantifying Exposure for Individual Pathways

This section provides an overview of the calculations used to estimate exposures for each of the potentially complete exposure pathways on the Upland and Wetland areas of the Lyon's Creek West site. For the Upland area the potentially complete exposure pathways include:

- Incidental Ingestion of Soil;
- Incidental Dermal Contact with Soil; and
- Inhalation of Re-entrained Soil and Dust.

For the Wetlands area the potentially complete exposure pathways include:

- Incidental Ingestion of Sediment; and
- Incidental Dermal Contact with Sediment.

Calculations are provided for the relevant receptor age groups, for the contaminants of concern in the Upland and Wetlands areas in the following sections.

### 4.3.1 Incidental Ingestion of Soil or Sediment

The mechanisms that govern human exposure to sediments do not differ from those that govern human exposure to soil, and standard risk assessment practice assesses human exposures to sediments in the same manner as human exposures to soil. Exposure to contaminants in soil or sediment depends on the concentration of the contaminants in the soil or sediment, the amount of soil or sediment ingested on a daily basis and the number of days per year that exposures are likely to occur. The estimated daily intake of contaminants through the incidental ingestion of soil or sediment is calculated as shown in Equation 4-3. For the purposes of this assessment it has conservatively assumed that on the days when people are on the Upland or Wetlands areas of the Lyon's Creek West site, all soil or sediment ingested on that day comes from the Upland or Wetlands area. Thus, soil or sediment ingestions exposures are considered to be *event driven* exposures.

$$EDI_{si} = \frac{Csed \times IR_{sed} \times CF \times AF}{BW}$$

Where:

Eq 4-3:

| Parameter         | Description                                         | Units     |
|-------------------|-----------------------------------------------------|-----------|
| EDI <sub>si</sub> | = Intake from incidental ingestion of soil/sediment | mg/kg-day |
| C <sub>sed</sub>  | = Concentration of contaminant in soil/sediment     | mg/kg     |
| IR <sub>sed</sub> | = Daily soil/sediment ingestion rate                | g/day     |
| CF                | = g to kg conversion factor                         | 0.001     |
| AF                | = Exposure averaging Factor                         | unitless  |
| BW                | = Receptor body weight                              | kg        |

Estimates of exposure through the incidental ingestion of soil for arsenic, iron and manganese on the Upland area for each of the receptor age groups are shown in Table 4-5a. Estimates of exposure

through the incidental ingestion of sediment for arsenic and PCB on the Wetlands area, for the child, teen and adult receptor are provided in Table 4-5b. As noted in Section 4.1.3, infants and toddlers are not expected to be present on the Wetlands area, based on the assumption of parental or caregiver supervision while on site that would prevent access to the wetland and watercourse features by such young age groups. Therefore, exposures have not been estimated for these receptors on the Wetlands area. The incidental soil/sediment ingestion exposures have been used in conjunction with the exposure estimates for other contributing pathways to develop overall estimates of exposure to the COCs in the Upland and Wetlands areas of the Lyon's Creek West site.

| h        | Table 4-5a. Exposures From incluentar ingestion of 50n on the Optand Area |                     |                              |                   |             |                           |  |  |  |  |  |
|----------|---------------------------------------------------------------------------|---------------------|------------------------------|-------------------|-------------|---------------------------|--|--|--|--|--|
| Receptor | Concentration in<br>Soil                                                  | Soil Ingestion Rate | Exposure<br>Averaging Factor | Conversion Factor | Body Weight | Estimated<br>Daily Intake |  |  |  |  |  |
|          | mg/kg                                                                     | g/day               | Unitless                     | kg to g           | kg          | mg/kg-day                 |  |  |  |  |  |
|          | Arsenic                                                                   |                     |                              |                   |             |                           |  |  |  |  |  |
| Infant   | 3.2E+01                                                                   | 0.02                | 0.10                         | 0.001             | 8.2         | 7.6E-06                   |  |  |  |  |  |
| Toddler  | 3.2E+01                                                                   | 0.1                 | 0.10                         | 0.001             | 16.5        | 1.9E-05                   |  |  |  |  |  |
| Child    | 3.2E+01                                                                   | 0.1                 | 0.10                         | 0.001             | 32.9        | 9.4E-06                   |  |  |  |  |  |
| Teen     | 3.2E+01                                                                   | 0.02                | 0.10                         | 0.001             | 59.7        | 1.0E-06                   |  |  |  |  |  |
| Adult    | 3.2E+01                                                                   | 0.02                | 0.10                         | 0.001             | 70.7        | 8.8E-07                   |  |  |  |  |  |
|          | Iron                                                                      |                     |                              |                   |             |                           |  |  |  |  |  |
| Infant   | 3.7E+04                                                                   | 0.02                | 0.10                         | 0.001             | 8.2         | 8.7E-03                   |  |  |  |  |  |
| Toddler  | 3.7E+04                                                                   | 0.1                 | 0.10                         | 0.001             | 16.5        | 2.2E-02                   |  |  |  |  |  |
| Child    | 3.7E+04                                                                   | 0.1                 | 0.10                         | 0.001             | 32.9        | 1.1E-02                   |  |  |  |  |  |
| Teen     | 3.7E+04                                                                   | 0.02                | 0.10                         | 0.001             | 59.7        | 1.2E-03                   |  |  |  |  |  |
| Adult    | 3.7E+04                                                                   | 0.02                | 0.10                         | 0.001             | 70.7        | 1.0E-03                   |  |  |  |  |  |
|          |                                                                           |                     | Manganese                    |                   |             |                           |  |  |  |  |  |
| Infant   | 8.5E+02                                                                   | 0.02                | 0.10                         | 0.001             | 8.2         | 2.0E-04                   |  |  |  |  |  |
| Toddler  | 8.5E+02                                                                   | 0.1                 | 0.10                         | 0.001             | 16.5        | 4.9E-04                   |  |  |  |  |  |
| Child    | 8.5E+02                                                                   | 0.1                 | 0.10                         | 0.001             | 32.9        | 2.5E-04                   |  |  |  |  |  |
| Teen     | 8.5E+02                                                                   | 0.02                | 0.10                         | 0.001             | 59.7        | 2.7E-05                   |  |  |  |  |  |
| Adult    | 8.5E+02                                                                   | 0.02                | 0.10                         | 0.001             | 70.7        | 2.3E-05                   |  |  |  |  |  |

Table 4-5a: Exposures From Incidental Ingestion of Soil on the Upland Area

#### Table 4-5b: Exposures From Incidental Ingestion of Sediment on the Wetlands Area

| Receptor | Concentration in<br>Soil |       |                         | Conversion<br>Factor | Body Weight | Estimated<br>Daily Intake |
|----------|--------------------------|-------|-------------------------|----------------------|-------------|---------------------------|
|          | mg/kg                    | g/day | Unitless                | kg to g              | kg          | mg/kg-day                 |
|          |                          |       | Arsenic                 |                      |             |                           |
| Child    | 6.5E+01                  | 0.1   | 0.01                    | 0.001                | 32.9        | 2.7E-06                   |
| Teen     | 6.5E+01                  | 0.02  | 0.01                    | 0.001                | 59.7        | 3.0E-07                   |
| Adult    | 6.5E+01                  | 0.02  | 0.01                    | 0.001                | 70.7        | 2.5E-07                   |
|          |                          |       | РСВ                     |                      |             |                           |
| Child    | 2.5E+01                  | 0.1   | 0.01                    | 0.001                | 32.9        | 1.0E-06                   |
| Teen     | 2.5E+01                  | 0.02  | 0.01                    | 0.001                | 59.7        | 1.1E-07                   |
| Adult    | 2.5E+01                  | 0.02  | 0.01                    | 0.001                | 70.7        | 9.6E-08                   |
|          |                          |       | <b>Dioxin-Like PCBs</b> |                      |             |                           |
| Child    | 5.2E-04                  | 0.1   | 0.01                    | 0.001                | 32.9        | 2.2E-11                   |
| Teen     | 5.2E-04                  | 0.02  | 0.01                    | 0.001                | 59.7        | 2.4E-12                   |
| Adult    | 5.2E-04                  | 0.02  | 0.01                    | 0.001                | 70.7        | 2.0E-12                   |

#### 4.3.2 Dermal Contact with Soil or Sediment

The uptake of contaminants from soil/sediment through the skin depends on the concentration of the chemical in the soil/sediment, the surface area of skin exposed to soil/sediments on a daily basis, the amount of soil/sediment that adheres to the skin and the permeability of the skin to the contaminant. The estimation of the daily exposures to contaminants from dermal contact with soil/sediment is calculated as shown in Equation 4-4. For the purposes of this assessment it has been conservatively assumed that on the days when a person is on the Upland or Wetlands areas of the Lyon's Creek West site, all dermal contact with soil/sediment is derived from the soil or sediment on the site. Thus, dermal contact exposures for dermal contact on the Upland area and sediment on the Wetlands area are shown in Table 4-3a and Table 4-3b respectively. The results have been used in conjunction with the exposure estimates for the other contributing pathways to develop overall estimates of exposure to the contaminants of concern in the Upland and Wetlands areas of the Lyon's Creek West site.

**Eq 4-4:** 
$$EDI_{dc} = \frac{C_{sed} \times SA \times SLF \times DAF \times CF \times AF}{BW}$$

Where:

| Parameter  | Description                                     | Units                |
|------------|-------------------------------------------------|----------------------|
| $EDI_{dc}$ | = Intake from dermal contact with soil/sediment | mg/kg-day            |
| $C_{sed}$  | = Contaminant concentration in soil/sediment    | mg/kg                |
| SA         | = Surface area of exposed skin                  | cm <sup>2</sup> /day |
| SLF        | = soil/Sediment Loading Factor                  | g/cm <sup>2</sup>    |
| DAF        | = Dermal absorption factor                      | unitless             |
| CF         | = g to kg conversion factor                     | 0.001                |
| AF         | = Exposure averaging factor                     | unitless             |
| BW         | = Receptor body weight                          | kg                   |

The soil/sediment loading factor represents the amount of soil/sediment that adheres to the skin over a given surface area. The soil/sediment loading factors used in the present assessment were taken from the values used by the MOE in previous assessments of dermal exposure to contaminants in soil (MOE, 2002). The loading factors are based on soil adhesion to the skin. It is reasonable to expect that a greater amount of sediment could adhere to the skin given that, in general, sediment would be expected to be wetter than soil. Although a thicker layer of sediment may adhere to skin than soil, the area covered by soil and sediment can be expected to be the same. The uptake of contaminants from soil or sediment through the skin is governed by the layer of soil/sediment that is in direct contact with the skin. Contaminants in soil/sediment that are not in direct contact with the skin do not contribute to dermal uptake. Therefore, using soil-loading factors to estimate uptake from sediments will provide reasonable estimates of potential exposure.

The uptake of chemicals through the skin is chemical-specific. The dermal absorption factors used to estimate the absorbed doses of the contaminants of concern are based on default values recommended by the US EPA (US EPA, 2001).

Estimates of exposure to arsenic, iron and manganese through dermal contact with soil on the Upland area for each receptor age groups are shown in Table 4-6a. Estimates of exposure to arsenic and PCB through dermal contact with sediments on the Wetlands area, for the child, teen and adult receptors are provided in Table 4-6b.

| Receptor | Concentration<br>in Soil | Skin Surface<br>Area | Soil Adhesion<br>Factor | Dermal<br>Absorption | Averaging          | Conversion<br>Factor | Body Weight | Estimated<br>Daily Intake |
|----------|--------------------------|----------------------|-------------------------|----------------------|--------------------|----------------------|-------------|---------------------------|
|          | mg/kg                    | cm <sup>2</sup>      | g/cm <sup>2</sup>       | Factor<br>Unitless   | Factor<br>Unitless | kg to g              | kg          | mg/kg-day                 |
|          |                          |                      |                         | Arsenic              |                    |                      |             |                           |
| Infant   | 3.2E+01                  | 1780                 | 7.0E-05                 | 0.03                 | 0.10               | 0.001                | 8.2         | 1.4E-06                   |
| Toddler  | 3.2E+01                  | 3010                 | 2.0E-04                 | 0.03                 | 0.10               | 0.001                | 16.5        | 3.4E-06                   |
| Child    | 3.2E+01                  | 5140                 | 2.0E-04                 | 0.03                 | 0.10               | 0.001                | 32.9        | 2.9E-06                   |
| Teen     | 3.2E+01                  | 8000                 | 7.0E-05                 | 0.03                 | 0.10               | 0.001                | 59.7        | 8.7E-07                   |
| Adult    | 3.2E+01                  | 9110                 | 7.0E-05                 | 0.03                 | 0.10               | 0.001                | 70.7        | 8.4E-07                   |
|          |                          |                      |                         | Iron                 |                    |                      |             |                           |
| Infant   | 3.7E+04                  | 1780                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 8.2         | 5.4E-04                   |
| Toddler  | 3.7E+04                  | 3010                 | 2.0E-04                 | 0.01                 | 0.10               | 0.001                | 16.5        | 1.3E-03                   |
| Child    | 3.7E+04                  | 5140                 | 2.0E-04                 | 0.01                 | 0.10               | 0.001                | 32.9        | 1.1E-03                   |
| Teen     | 3.7E+04                  | 8000                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 59.7        | 3.3E-04                   |
| Adult    | 3.7E+04                  | 9110                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 70.7        | 3.2E-04                   |
|          |                          |                      |                         | Manganese            |                    |                      |             |                           |
| Infant   | 8.5E+02                  | 1780                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 8.2         | 1.2E-05                   |
| Toddler  | 8.5E+02                  | 3010                 | 2.0E-04                 | 0.01                 | 0.10               | 0.001                | 16.5        | 3.0E-05                   |
| Child    | 8.5E+02                  | 5140                 | 2.0E-04                 | 0.01                 | 0.10               | 0.001                | 32.9        | 2.6E-05                   |
| Teen     | 8.5E+02                  | 8000                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 59.7        | 7.7E-06                   |
| Adult    | 8.5E+02                  | 9110                 | 7.0E-05                 | 0.01                 | 0.10               | 0.001                | 70.7        | 7.4E-06                   |

 Table 4-6a: Exposure from Dermal Contact With Soil: Upland Area

Table 4-6b: Exposure from Dermal Contact With Sediment: Wetlands Area

| Receptor | Concentration<br>in Soil | Skin<br>Surface<br>Area | Soil<br>Adhesion<br>Factor | Dermal<br>Absorption<br>Factor | Exposure<br>Averaging<br>Factor | Conversion<br>Factor | Body<br>Weight | Estimated<br>Daily<br>Intake |
|----------|--------------------------|-------------------------|----------------------------|--------------------------------|---------------------------------|----------------------|----------------|------------------------------|
|          | mg/kg                    | cm <sup>2</sup>         | g/cm <sup>2</sup>          | Unitless                       | Unitless                        | kg to g              | kg             | mg/kg-day                    |
|          |                          |                         |                            | Arsenic                        |                                 |                      |                |                              |
| Child    | 6.5E+01                  | 1310                    | 2.0E-04                    | 0.03                           | 0.01                            | 0.001                | 32.9           | 2.1E-07                      |
| Teen     | 6.5E+01                  | 1880                    | 7.0E-05                    | 0.03                           | 0.01                            | 0.001                | 59.7           | 5.9E-08                      |
| Adult    | 6.5E+01                  | 2080                    | 7.0E-05                    | 0.03                           | 0.01                            | 0.001                | 70.7           | 5.5E-08                      |
|          |                          |                         |                            | РСВ                            |                                 |                      |                |                              |
| Child    | 2.5E+01                  | 1310                    | 2.0E-04                    | 0.14                           | 0.01                            | 0.001                | 32.9           | 3.8E-07                      |
| Teen     | 2.5E+01                  | 1880                    | 7.0E-05                    | 0.14                           | 0.01                            | 0.001                | 59.7           | 1.1E-07                      |
| Adult    | 2.5E+01                  | 2080                    | 7.0E-05                    | 0.14                           | 0.01                            | 0.001                | 70.7           | 9.8E-08                      |
|          | Dioxin-Like PCBs         |                         |                            |                                |                                 |                      |                |                              |
| Child    | 5.2E-04                  | 1310                    | 2.0E-04                    | 0.14                           | 0.01                            | 0.001                | 32.9           | 8.0E-12                      |
| Teen     | 5.2E-04                  | 1880                    | 7.0E-05                    | 0.14                           | 0.01                            | 0.001                | 59.7           | 2.2E-12                      |
| Adult    | 5.2E-04                  | 2080                    | 7.0E-05                    | 0.14                           | 0.01                            | 0.001                | 70.7           | 2.1E-12                      |

#### **4.3.3** Inhalation of Soil and Dust Particulate

Inhalation exposure to contaminants on re-entrained soil and dust particles depends on the concentration of the contaminant bound to the soil/dust particle and on the concentration of the particles in the air column. Exposure to COCs through the inhalation of re-entrained soil and dust particles is only relevant for the Upland area of the Lyon's Creek West site. Inhalation exposures are calculated as shown in Equation 4-5 and Equation 4-6. Equation 4-5 estimates the concentration of a chemical in air on a mg/m<sup>3</sup> basis, based on the concentration of the chemical in the soil. Chemical concentration estimates are used to characterize risks for chemicals where the *Toxicity Reference values* (TRVs) are expressed on a mg/m<sup>3</sup> basis (arsenic). Equation 4-6 provides dose estimates for inhalation exposure on a mg per kg body weight per day (mg/kg-day) basis for assessing exposures where the TRVs are expressed as reference doses (mg/kg-day) (iron and manganese).

Eq 4-5: 
$$C_{air} = C_{soil} \times PA \times AF$$

Where:

| Parameter         | Description                        | Units             |
|-------------------|------------------------------------|-------------------|
| $C_{air}$         | = Chemical concentration in air    | mg/m <sup>3</sup> |
| C <sub>soil</sub> | = Chemical concentration in soil   | mg/kg             |
| PA                | = Particulate Concentration in Air | kg/m <sup>3</sup> |
| AF                | = Exposure averaging factor        | unitless          |

#### Eq 4-6:

 $EDI_{Inhal} = \frac{C_{air} \times IR_{inhal} \times ABS_{Inhal}}{BW}$ 

Where:

| Parameter                       | Description                                          | Units               |
|---------------------------------|------------------------------------------------------|---------------------|
| $\mathrm{EDI}_{\mathrm{inhal}}$ | = Estimated Daily intake from particulate inhalation | mg/kg-day           |
| $C_{air}$                       | = Chemical concentration in air                      | mg/m <sup>3</sup>   |
| $IR_{inhal}$                    | = Inhalation rate                                    | m <sup>3</sup> /day |
| $ABS_{inhal}$                   | = Inhalation Absorption Factor                       | Unitless            |
| BW                              | = Body weight                                        | kg                  |

The particulate concentration in air of 7.6 x  $10^{-10}$  kg/m<sup>3</sup> recommended by Health Canada was used to estimate chemical concentrations in the air column (Health Canada, 2003). Inhalation absorption factors for all chemicals were assumed to be 1, representing 100% absorption. Daily inhalation rates for all receptors were based on the values recommended by Health Canada as outlined in Table 4-4a.

In estimating potential exposures to contaminants on re-entrained particles, it has been assumed that the re-entrainment of soil particles can occur every day that the ground is frost-free and does occur every day that a receptor is present in the Upland area of the Lyon's Creek West site. Because the reentrainment of soil and dust particles only occurs when the ground is dry, it is unlikely that wind action will suspend particles into the air during the spring and fall or during summer rain events when the ground is wet. Therefore, assuming that soil/dust re-entrainment occurs every day that a person is on the Upland area will over estimate potential exposures by this route. Further, most of the Upland area is covered by vegetation in the form of lawn, meadow, thicket or woodlot, with only a relatively small proportion of the area (e.g., footpaths and ATV trails) characterized by exposed soils that might be entrained as dust.

Because inhalation occurs on a 24-hour/day basis, on-site inhalation exposures are considered to be *Time Driven* exposures. The averaging factors used to assess on-site exposures to chemicals in reentrained soil and dust are calculated as shown in Section 4.1.3. Estimates of exposure to arsenic, iron and manganese on the Upland area of the Lyon's Creek West site are provided in Table 4-7. These results have been used in conjunction with the intake estimates for the other contributing pathways to develop an overall estimate of on-site exposures for members of the local community who may use the Upland area of the Lyon's Creek West site for informal recreational purposes.

| Receptor  | Concentration<br>in Soil | Concentration               | 00                 | Concentration               |                     | Inhalation<br>Absorption | Body<br>weight | Avg Daily<br>Exposure |
|-----------|--------------------------|-----------------------------|--------------------|-----------------------------|---------------------|--------------------------|----------------|-----------------------|
|           | mg/kg                    | in Air<br>kg/m <sup>3</sup> | Factor<br>Unitless | in Air<br>mg/m <sup>3</sup> | m <sup>3</sup> /day | Factor<br>Unitless       | kg             | mg/kg-day             |
|           |                          |                             | 4                  | Arsenic                     |                     |                          |                |                       |
| Infant    | 3.2E+01                  | 7.60E-10                    | 4.0E-03            | 9.84E-11                    | -                   | -                        | -              | -                     |
| Toddler   | 3.2E+01                  | 7.60E-10                    | 4.0E-03            | 9.84E-11                    | -                   | -                        | -              | -                     |
| Child     | 3.2E+01                  | 7.60E-10                    | 8.0E-03            | 1.97E-10                    | -                   | -                        | -              | -                     |
| Teen      | 3.2E+01                  | 7.60E-10                    | 8.0E-03            | 1.97E-10                    | -                   | -                        | -              | -                     |
| Adult     | 3.2E+01                  | 7.60E-10                    | 8.0E-03            | 1.97E-10                    | -                   | -                        | -              | -                     |
|           |                          |                             |                    | Iron                        |                     |                          |                |                       |
| Infant    | 3.7E+04                  | 7.60E-10                    | 4.0E-03            | 1.13E-07                    | 2.10E+00            | 1.0                      | 8.2            | 2.9E-08               |
| Toddler   | 3.7E+04                  | 7.60E-10                    | 4.0E-03            | 1.13E-07                    | 9.30E+00            | 1.0                      | 16.5           | 6.4E-08               |
| Child     | 3.7E+04                  | 7.60E-10                    | 8.0E-03            | 2.25E-07                    | 1.50E+01            | 1.0                      | 32.9           | 1.0E-07               |
| Teen      | 3.7E+04                  | 7.60E-10                    | 8.0E-03            | 2.25E-07                    | 1.60E+01            | 1.0                      | 59.7           | 6.0E-08               |
| Adult     | 3.7E+04                  | 7.60E-10                    | 8.0E-03            | 2.25E-07                    | 1.60E+01            | 1.0                      | 70.7           | 5.1E-08               |
| Manganese |                          |                             |                    |                             |                     |                          |                |                       |
| Infant    | 8.5E+02                  | 7.60E-10                    | 4.0E-03            | 2.59E-09                    | 2.10E+00            | 1.0                      | 8.2            | 6.6E-10               |
| Toddler   | 8.5E+02                  | 7.60E-10                    | 4.0E-03            | 2.59E-09                    | 9.30E+00            | 1.0                      | 16.5           | 1.5E-09               |
| Child     | 8.5E+02                  | 7.60E-10                    | 8.0E-03            | 5.17E-09                    | 1.50E+01            | 1.0                      | 32.9           | 2.4E-09               |
| Teen      | 8.5E+02                  | 7.60E-10                    | 8.0E-03            | 5.17E-09                    | 1.60E+01            | 1.0                      | 59.7           | 1.4E-09               |
| Adult     | 8.5E+02                  | 7.60E-10                    | 8.0E-03            | 5.17E-09                    | 1.60E+01            | 1.0                      | 70.7           | 1.2E-09               |

 Table 4-7: Exposure From the Inhalation of Soil and Dust: Upland Area

# 4.4 Quantifying Total Daily Exposures from On-Site Sources

Estimates of the daily averaged intakes from each of the individual exposure pathways have been presented in the preceding sections. In order to properly assess the potential hazards and risks associated with exposure to each of the COC it is necessary to determine the contribution that each exposure pathway makes to the total daily exposure. This section provides a summary of the estimated daily exposure from each pathway for arsenic, iron and manganese on the Upland area and for arsenic and PCB on the Wetlands area for the relevant receptor age groups on the two areas of the Lyon's Creek West site. Iron and manganese are considered to be non-carcinogenic. Exposures to

PCBs are assessed using a non-carcinogenic end-point and exposures to arsenic are assessed using a carcinogenic endpoint. Because the carcinogenic and non-carcinogenic compounds have differing biological mechanisms of action, total daily exposures are assessed differently.

### 4.4.1 Total Daily Intakes for COCs Assessed on Non-Carcinogenic Endpoints

COCs that are assessed on non-carcinogenic endpoints, such as iron, manganese, PCB and DL-PCB in this assessment, are generally considered to act on the body through threshold mechanisms. This means that at low doses, the body is able to remove the chemical from the body without the chemical causing an adverse effect. As the dose or exposure increases, the body's ability to clear the chemical is reduced. When the exposure exceeds the body's ability to process and excrete the chemical, it can cause adverse or toxic effects. The point at which this occurs in called the threshold. The threshold is different for every chemical. The toxicity values developed for each chemical reflect the threshold for each chemical.

Toxicity values, referred to as Tolerable Daily Intakes (TDIs) by Health Canada and as Reference Doses (RfDs) (Reference Concentrations (RfCs) for inhalation exposures) by the US EPA are developed from toxicological studies of human or animal populations and are set to ensure that adverse human health effects will not occur over a life-time of exposure. Although slight differences exist between agencies, toxicity values for non-carcinogenic chemicals are generally defined as:

A quantitative estimate (with uncertainty spanning perhaps an order of magnitude (ten-fold)) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of non-carcinogenic deleterious effects during a life-time (US EPA, 1989).

The total amount of a chemical to which a person is exposed is determined by the exposures that occur through each of the individual exposure routes. If the biological end-point is the same for all routes of exposure, the total exposure is estimated as a sum of the exposures from all routes as shown in Equation 4-7. The EDIs from all pathways that contribute to the exposure through a given route are also summed in determining the total EDI. If the biological effects differ between the routes of exposure, then the hazards associated with each route must be calculated separately and the individual exposures are not summed. The biological end-point for the iron toxicity value has not been identified by the US EPA (see Section 5). In the absence of data to indicate that biological effects differ by the route of exposure, the risk assessment process assumes that the route of exposure does not alter the biological activity of a compound. Therefore, iron exposures have been summed to provide total daily intake estimates for all routes considered. The oral and inhalation reference doses for manganese listed by the US EPA are both based on neurological effects. Therefore, inhalation, ingestion and dermal contact exposures have been summed for manganese. The TRVs for PCB and DL-PCB recommended by the MOE to be used in this risk assessment is considered to apply to all three routes of exposure (see Section 5).

**Eq 4-7:** 
$$EDI_{total} = \sum_{i=1}^{n} EDI_{route}$$

Where:

| Parameter            | Description                                         | Units     |
|----------------------|-----------------------------------------------------|-----------|
| EDI <sub>total</sub> | = Total intake of chemical from all relevant routes | mg/kg-day |
| EDI <sub>route</sub> | = Pathway and or route-specific EDI                 | mg/kg-day |

The total daily concentrations are used in conjunction with the TRVs for the non-carcinogenic endpoints for COCs to assess the hazards associated with exposure to each of the chemical for each of the receptors. The total daily intakes for incidental ingestion, dermal contact and inhalation exposures to iron and manganese for all receptor age groups for the Upland area are provided in Table 4-8a. Total daily intakes for incidental ingestion and dermal contact to PCB and DL-PCB for the child, teen and adult receptor on the Wetlands area are provided in Table 4-8b.

| Table | 4-8a: Total | Daily Intakes for Iron and Mangane  | se, Uplan | d Area      |
|-------|-------------|-------------------------------------|-----------|-------------|
|       |             | Estimated Daily Intakes (mg/kg-day) |           | Combined To |

|          |                              | <b>Combined Total</b> |                   |            |           |  |
|----------|------------------------------|-----------------------|-------------------|------------|-----------|--|
| Receptor | Incidental Soil<br>Ingestion | Dermal Contact        | Total Soil/Dermal | Inhalation | mg/kg-day |  |
| Iron     |                              |                       |                   |            |           |  |
| Infant   | 8.7E-03                      | 5.4E-04               | 9.2E-03           | 2.9E-08    | 9.2E-03   |  |
| Toddler  | 2.2E-02                      | 1.3E-03               | 2.3E-02           | 6.4E-08    | 2.3E-02   |  |
| Child    | 1.1E-02                      | 1.1E-03               | 1.2E-02           | 1.0E-07    | 1.2E-02   |  |
| Teen     | 1.2E-03                      | 3.3E-04               | 1.5E-03           | 6.0E-08    | 1.5E-03   |  |
| Adult    | 1.0E-03                      | 3.2E-04               | 1.3E-03           | 5.1E-08    | 1.3E-03   |  |
|          |                              | Mang                  | anese             |            |           |  |
| Infant   | 2.0E-04                      | 1.2E-05               | 2.1E-04           | 6.6E-10    | 2.1E-04   |  |
| Toddler  | 4.9E-04                      | 3.0E-05               | 5.2E-04           | 1.5E-09    | 5.2E-04   |  |
| Child    | 2.5E-04                      | 2.6E-05               | 2.7E-04           | 2.4E-09    | 2.7E-04   |  |
| Teen     | 2.7E-05                      | 7.7E-06               | 3.5E-05           | 1.4E-09    | 3.5E-05   |  |
| Adult    | 2.3E-05                      | 7.4E-06               | 3.0E-05           | 1.2E-09    | 3.0E-05   |  |

#### Table 4-8b: Total Daily Intakes for PCB, Wetlands Area

| Pagantar | Estimated Daily Intakes (mg/kg-day) |                |                   |  |  |  |
|----------|-------------------------------------|----------------|-------------------|--|--|--|
| Receptor | Incidental Sediment<br>Ingestion    | Dermal Contact | Total Soil/Dermal |  |  |  |
|          | РСВ                                 |                |                   |  |  |  |
| Child    | 1.0E-06                             | 3.8E-07        | 1.4E-06           |  |  |  |
| Teen     | 1.1E-07                             | 1.1E-07        | 2.2E-07           |  |  |  |
| Adult    | 9.6E-08                             | 9.8E-08        | 1.9E-07           |  |  |  |
|          | Dioxin-Like PCBs                    |                |                   |  |  |  |
| Child    | 2.2E-11                             | 8.0E-12        | 3.0E-11           |  |  |  |
| Teen     | 2.4E-12                             | 2.2E-12        | 4.6E-12           |  |  |  |
| Adult    | 2.0E-12                             | 2.1E-12        | 4.1E-12           |  |  |  |

#### 4.4.2 Total Daily Intakes for COCs Assessed on Carcinogenic Endpoints

Carcinogenic chemicals are generally considered to work through a non-threshold mechanism. This means that there is no dose below which an adverse effect will not occur. Any exposure to a carcinogen is considered to be associated with some level of risk. At very low doses, the probability that an adverse effect (cancer) will occur is extremely small. The probability of developing cancer increases as the dose increases. Because it is possible for cancer to develop after exposure to a chemical has ceased (latency period), the toxicity values are expressed as the probability of developing cancer over a lifetime. This is based on the assumption that the risk associated with an elevated exposure to a carcinogenic chemical for a short period of time is equivalent to the risk associated with a lower level of exposure over a longer period of time (US EPA, 1999). In other words, what determines the carcinogenic potential associated with a given exposure is not the duration of the exposure, but the total level of exposure that occurs over a lifetime. Therefore, in order to determine the potential risks associated with a specific exposure, it is necessary to determine the lifetime averaged daily dose equivalent for the exposure in question. The Life-Time Averaged Daily Dose (LADD) is calculated as shown in Equation 4-8.

Eq 4-8:  

$$LADD^{p} = \frac{\left[(EDI_{i}^{p} \times 0.5 yrs) + (EDI_{tod}^{p} \times 4.5 yrs) + (EDI_{ch}^{p} \times 7 yrs) + (EDI_{teen}^{p} \times 8 yrs) + (EDI_{a}^{p} \times 50 yrs)\right]}{70 years}$$

Where:

| Parameter              | Description                       | Units     |
|------------------------|-----------------------------------|-----------|
| LADD                   | = Life-time averaged daily dose   | mg/kg-day |
| $\mathbf{EDI}_{t}^{p}$ | = EDI for receptor from pathway p | mg/kg-day |
| yrs                    | = Number of years in age group r  | years     |
| 70 yrs                 | = Assumed life-time               | years     |

Of the contaminants of concern identified on the Upland and Wetland areas, arsenic is the only one which is assessed on a carcinogenic endpoint in this risk assessment. Therefore, it was necessary to calculate LADDs for exposure to arsenic for people on the Upland and Wetlands areas of the site. In addition, while arsenic is considered to be carcinogenic by the oral, dermal and inhalation routes of exposure, the carcinogenic activity differs between the oral/dermal and inhalation routes. Therefore, to properly assess the potential risks associated with oral/dermal and inhalation exposures to arsenic, it is necessary to calculate the LADDs associated with oral/dermal exposures and inhalation exposures separately. The total daily intakes for oral, dermal and inhalation exposures to arsenic on the Upland and Wetland areas of the Lyon's Creek West site are presented in Table 4-9a and Table 4-9b, respectively. These total daily intake estimates have been used to calculate the LADDs for the various receptors on the site. The LADDs for oral/dermal exposures and inhalation exposures on the Upland area are provided in Table 4-10a and Table 4-10b, respectively. The LADDs associated with oral/dermal exposures on the Upland area are provided in Table 4-10a respectively. The LADDs associated with oral/dermal exposures on the Upland area are provided in Table 4-10a and Table 4-10b, respectively. The LADDs are used in conjunction with the TRVs for arsenic to determine the potential risks associated with exposure to arsenic on the Upland and Wetlands areas of the Lyon's Creek West site.

|          | Estimated Daily Intakes (mg/kg-day) |                |                      |            |  |  |
|----------|-------------------------------------|----------------|----------------------|------------|--|--|
| Receptor | Soil                                | Dermal Contact | Total<br>Soil/Dermal | Inhalation |  |  |
| Infant   | 7.6E-06                             | 1.4E-06        | 9.0E-06              | 2.5E-11    |  |  |
| Toddler  | 1.9E-05                             | 3.4E-06        | 2.2E-05              | 5.5E-11    |  |  |
| Child    | 9.4E-06                             | 2.9E-06        | 1.2E-05              | 9.0E-11    |  |  |
| Teen     | 1.0E-06                             | 8.7E-07        | 1.9E-06              | 5.3E-11    |  |  |
| Adult    | 8.8E-07                             | 8.4E-07        | 1.7E-06              | 4.5E-11    |  |  |

 Table 4-9a: Total Daily Intakes for Arsenic: Upland Area

| Table 4-9b: Total Dail | y Intakes for Arsenic: Wetlands Area |
|------------------------|--------------------------------------|
|------------------------|--------------------------------------|

| Receptor | Estimated Daily Intakes (mg/kg-day) |                |                   |  |  |
|----------|-------------------------------------|----------------|-------------------|--|--|
| 1        | Soil                                | Dermal Contact | Total Soil/Dermal |  |  |
| Child    | 2.7E-06                             | 2.1E-07        | 2.9E-06           |  |  |
| Teen     | 3.0E-07                             | 5.9E-08        | 3.6E-07           |  |  |
| Adult    | 2.5E-07                             | 5.5E-08        | 3.1E-07           |  |  |

| Oral/Dermal Exposures |                      |                       |                      |                       |                      |                       |       |                       | Life-Time            |             |                      |
|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|-------|-----------------------|----------------------|-------------|----------------------|
| Infant                |                      | Toddler               |                      | Child                 |                      | Teen                  |       | Adult                 |                      | Total Years | Averaged             |
| Avg Daily<br>Exposure | Exposure<br>Duration | Avg Daily<br>Exposure | Exposure<br>Duration | Avg Daily<br>Exposure | Exposure<br>Duration | Avg Daily<br>Exposure | -     | Avg Daily<br>Exposure | Exposure<br>Duration |             | Daily Dose<br>(LADD) |
| mg/kg-day             | Years                | mg/kg-day             | Years                | mg/kg-day             | Years                | mg/kg-day             | Years | mg/kg-day             | Years                | Years       | mg/kg-day            |
| 9.0E-06               | 0.5                  | 2.2E-05               | 4.5                  | 1.2E-05               | 7                    | 1.9E-06               | 8     | 1.7E-06               | 50                   | 70          | 4.2E-06              |

 Table 4-10a: Oral/Dermal Life-Time Averaged Daily Doses Arsenic: Upland Area

Table 4-10b: Inhalation Life-Time Averaged Daily Doses Arsenic: Upland Area

| Particulate Inhalation |                      |                       |                      |                       |                      |                       |       |                       | Life-Time            |             |                      |
|------------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|-------|-----------------------|----------------------|-------------|----------------------|
| Infant                 |                      | Toddler               |                      | Child                 |                      | Teen                  |       | Adult                 |                      | Total Years | Averaged             |
| Avg Daily<br>Exposure  | Exposure<br>Duration | Avg Daily<br>Exposure | Exposure<br>Duration | Avg Daily<br>Exposure | Exposure<br>Duration | Avg Daily<br>Exposure | -     | Avg Daily<br>Exposure | Exposure<br>Duration |             | Daily Dose<br>(LADD) |
| mg/m <sup>3</sup>      | Years                | mg/m <sup>3</sup>     | Years                | mg/m <sup>3</sup>     | Years                | mg/m <sup>3</sup>     | Years | mg/m <sup>3</sup>     | Years                | Years       | mg/m3                |
| 2.5E-11                | 0.5                  | 5.5E-11               | 4.5                  | 9.0E-11               | 7                    | 5.3E-11               | 8     | 4.5E-11               | 50                   | 70          | 5.1E-11              |

#### Table 4-10c: Oral/Dermal Life-Time Averaged Daily Doses Arsenic: Wetlands Area

| Oral/Dermal Exposures |                   |                       |                   |                       |                   |             |                             |
|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-------------|-----------------------------|
| Child                 |                   | Teen                  |                   | Adult                 |                   | Total Years | Life-Time<br>Averaged Daily |
| Avg Daily<br>Exposure | Exposure Duration | Avg Daily<br>Exposure | Exposure Duration | Avg Daily<br>Exposure | Exposure Duration |             | Dose (LADD)                 |
| mg/kg-day             | Years             | mg/kg-day             | Years             | mg/kg-day             | Years             | Years       | mg/kg-day                   |
| 2.9E-06               | 7                 | 3.6E-07               | 8                 | 3.1E-07               | 50                | 70          | 5.5E-07                     |

### 5 TOXICITY ASSESSMENT

An essential part of the risk assessment process is the identification of toxicologically based toxicity values that can be compared to exposure estimates. This section provides a listing of the toxicological reference values (TRVs) used in the HHRA. In selecting appropriate TRVs, toxicity values from the Ontario Ministry of the Environment, Health Canada and the US EPA *Integrated Risk Information System* (IRIS) were considered. Preference was given to the most recently developed TRVs because these values incorporate the most up-to-date assessments of available toxicological information and may include toxicological information that was unavailable during the development of older toxicity values. Where TRV values were not available from the MOE, Health Canada or the US EPA IRIS database, values were taken from the US EPA Region III *Risk Based Concentration* (RBC) tables.

Table 5-1 lists the TRVs for arsenic, iron, manganese, PCB and DL-PCB used in the assessment. Ingestion, dermal exposure and inhalation were identified as the potentially complete exposure pathways for all COCs except PCB and DL-PCB, for which inhalation exposure was excluded based on their presence in wetland sediments that are not likely to be entrained as dust. TRVs are not generally available for dermal exposures. Oral TRVs have been used to assess dermal exposures.

| Table 5-1. Toxicological Reference values for the Chemicals of Concern |                                      |                               |                                   |                     |  |  |
|------------------------------------------------------------------------|--------------------------------------|-------------------------------|-----------------------------------|---------------------|--|--|
| Chemical                                                               | Exposure Route                       | Toxicity Value                | Biological End-point              | Agency              |  |  |
|                                                                        | COCs with Non-carcinogenic Endpoints |                               |                                   |                     |  |  |
| Iron                                                                   | Oral/Dermal                          | 0.6 mg/kg-day                 | unspecified                       | US EPA, RIII, 2003  |  |  |
| non                                                                    | Inhalation                           | 0.6 mg/kg-day                 | unspecified                       | US EPA, RIII, 2003  |  |  |
|                                                                        | Oral/Dermal                          | 0.14 mg/kg-day                | Neurological effects              | US EPA, 1996        |  |  |
| Manganese                                                              | Inhalation                           | 0.000014 mg/kg-<br>day        | neurological effects              | US EPA, 1996        |  |  |
| PCB                                                                    | Oral/Dermal                          | 0.00002 mg/kg-day             | Hepatic and immunological effects | WHO, 2003           |  |  |
| DL-PCB                                                                 | Oral/Dermal                          | 2.3 pg/kg-day                 | Reproductive Effects              | Health Canada, 2004 |  |  |
|                                                                        | COCs with Carcinogenic Endpoints     |                               |                                   |                     |  |  |
| Arsenic                                                                | Oral/Dermal                          | 1.5 (mg/kg-day) <sup>-1</sup> | Skin Cancer                       | Health Canada, 2004 |  |  |
| Arsenic                                                                | Inhalation                           | $6.4 (mg/m^3)^{-1}$           | Lung Cancer                       | Health Canada, 2004 |  |  |

Table 5-1: Toxicological Reference Values for the Chemicals of Concern

Toxicity profiles that outline the biological effects associated with exposure to each of the COCs and the basis of the TRV selected for each COC, are provided in Appendix C.

### 6 **RISK CHARACTERIZATION**

The risk characterization stage of the HHRA process compares the exposures to the contaminants of concern for each of the receptors with the toxicity reference values to determine if site-related exposures exceed the identified limits. Because of the differences in the biological mechanisms of action between COCs assessed on non-carcinogenic and carcinogenic endpoints, the potential hazards/risks are determined differently. The characterization of hazards associated with exposure to COCs assessed on non-carcinogenic endpoints (iron, manganese and PCB) and the risks associated with exposure to carcinogenic endpoints (arsenic) are presented in the following sections.

### 6.1 Characterizing Hazards for Exposures to Non-Carcinogenic Compounds

For non-carcinogenic chemicals or assessment endpoints, such as apply to iron, manganese, PCB and DL-PCB, the potential for exposures to result in adverse human health effects is based on the ratio between the estimated exposure and the identified toxicity reference value. This ratio is called the *Hazard Quotient* (HQ) and is calculated as shown in Equation 6-1. The HQ provides an indication of whether estimated exposures are large enough to be of concern for human health. A HQ of less than 1.0 indicates that exposures are below the toxicity reference value and would not be expected to result in adverse human health effects. Because of the conservative assumptions used by regulatory agencies in the development of toxicity reference values, HQ values greater than 1.0 do not mean that adverse human health effects will occur, but the likelihood that an adverse effect will occur increases as the HQ value rises above 1.0.

### Eq: 6-1:

$$HQ = \frac{EDI_{total}}{TRV}$$

Where:

| Parameter           | Description                                                  | Units     |
|---------------------|--------------------------------------------------------------|-----------|
| HQ                  | = Hazard Quotient                                            | unitless  |
| EDI <sub>t(r)</sub> | = Estimated Daily Intake EDI <sub>total</sub> for receptor r | mg/kg-day |
| TRV                 | = Identified toxicological reference value                   | mg/kg-day |

The HHRA for the Lyon's Creek West site considered exposures that result from contact with materials from soil or sediment on the Lyon's Creek West site. Exposures from other sources, such as diet, have not been considered. In cases where exposures from all sources are not considered, standard risk assessment practice estimates potential hazards against a hazard benchmark of 0.2. This ensures that site-related exposures do not exceed twenty percent (20%) of the TRV on a daily basis. If the estimated exposures to the COCs with non-carcinogenic endpoints on the Uplands or Wetlands areas of the Lyon's Creek West site do not exceed 20% of their respective TRVs, it can be concluded that these exposures to not pose a potential hazard for recreational users of the site.

The hazard quotients associated with exposure to iron and manganese in soil on the Upland area and to PCB and DL-PCB in the sediment on the Wetlands area are provided in Table 6-1a and Table 6-1b respectively. All are below the HQ benchmark of 0.2, Therefore, exposures to the iron and manganese in the soil on the Upland area and PCB and DL-PCB in the sediment in the Wetlands area would not be expected to result in any adverse human health effects for people in any age group considered in the assessment (infants through adults).

| Receptor | Estimated Daily<br>Intakes (mg/kg-day) | Toxicity Value<br>(mg/kg-day) | Hazard Quotient |
|----------|----------------------------------------|-------------------------------|-----------------|
|          | ]                                      | fron                          |                 |
| Infant   | 9.2E-03                                | 6.0E-01                       | 0.015           |
| Toddler  | 2.3E-02                                | 6.0E-01                       | 0.038           |
| Child    | 1.2E-02                                | 6.0E-01                       | 0.020           |
| Teen     | 1.5E-03                                | 6.0E-01                       | 0.0025          |
| Adult    | 1.3E-03                                | 6.0E-01                       | 0.0023          |
|          | Mai                                    | nganese                       |                 |
| Infant   | 2.1E-04                                | 1.4E-01                       | 0.0015          |
| Toddler  | 5.2E-04                                | 1.4E-01                       | 0.0037          |
| Child    | 2.7E-04                                | 1.4E-01                       | 0.0020          |
| Teen     | 3.5E-05                                | 1.4E-01                       | 0.00025         |
| Adult    | 3.0E-05                                | 1.4E-01                       | 0.00022         |

 Table 6-1a: Hazard Quotient Calculations for Relevant Receptors: Upland Area

| Table 6-1b: Hazard Quotient ( | Calculations for Relevant Receptors: Wetlands Area |
|-------------------------------|----------------------------------------------------|
|-------------------------------|----------------------------------------------------|

| Receptor | Estimated Daily<br>Intakes (mg/kg-<br>day) | Toxicity Value<br>(mg/kg-day) | Hazard<br>Quotient |  |  |  |
|----------|--------------------------------------------|-------------------------------|--------------------|--|--|--|
| РСВ      |                                            |                               |                    |  |  |  |
| Infant   | 0.0E+00                                    | 2.0E-05                       | 0                  |  |  |  |
| Toddler  | 0.0E+00                                    | 2.0E-05                       | 0                  |  |  |  |
| Child    | 1.4E-06                                    | 2.0E-05                       | 0.071              |  |  |  |
| Teen     | 2.2E-07                                    | 2.0E-05                       | 0.011              |  |  |  |
| Adult    | 1.9E-07                                    | 2.0E-05                       | 0.0097             |  |  |  |
|          | Dioxin-                                    | Like PCBs                     |                    |  |  |  |
| Infant   | 0.0E+00                                    | 2.3E-09                       | 0                  |  |  |  |
| Toddler  | 0.0E+00                                    | 2.3E-09                       | 0                  |  |  |  |
| Child    | 3.0E-11                                    | 2.3E-09                       | 0.013              |  |  |  |
| Teen     | 4.6E-12                                    | 2.3E-09                       | 0.0020             |  |  |  |
| Adult    | 4.1E-12                                    | 2.3E-09                       | 0.0018             |  |  |  |

#### 6.2 Characterizing Risks for Exposures to Arsenic.

For carcinogenic chemicals, such as arsenic, the potential for exposure to result in adverse human health effects is based on the level of exposure averaged over a lifetime. This is calculated as the LADD, as shown in Section 4.4.2. As noted in Section 4.4.2, any exposure to a carcinogenic chemical is associated with some level of risk. Therefore, it is not possible to identify a level of exposure below which there is no potential risk. At very low levels of exposure, the risks of developing cancer become vanishingly small. Risk acceptability benchmarks determine at what level the risks of developing cancer can be considered to be minimal or *de minimus*. In Ontario, the risk acceptability benchmark for assessing exposures to carcinogens is one-in-a-million (1 x  $10^{-6}$  or 0.000001). This means that exposures to carcinogenic compounds that are predicted to result in less than one additional cancer per million population are considered to be below the level of concern. Exposures that are below the  $10^{-6}$  level of risk would not be expected to result in an unacceptable increase in lifetime cancer risk. The probability of developing cancer as a result of environmental exposure to a carcinogenic substance is expressed as the *Incremental Increase in Lifetime Cancer Risk* (IILCR) and is calculated as shown in Equation 6-2.

**Eq 6-2:** 
$$IILCR = LADD \times CSF$$

Where:

| Parameter | Description                                    | Units                     |
|-----------|------------------------------------------------|---------------------------|
| IILCR     | = Incremental Increase in Lifetime Cancer Risk | unitless                  |
| LADD      | = Lifetime Averaged Daily Dose                 | mg/kg-day                 |
| CSF       | = Cancer Slope Factor (TRV)                    | (mg/kg-day) <sup>-1</sup> |

For the Upland area IILCR values have been calculated separately for oral/dermal exposures and inhalation exposures, because the biological end-points differ between oral/dermal and inhalation exposures. The IILCRs associated with exposure to arsenic on the Upland area are provided in Table 6-2a and Table 6-2b. The IILCR associated with oral/dermal exposures to arsenic on the Wetlands area is provided in Table 6-2c.

| LADD      | Cancer Slope Factor        | IILCR    |
|-----------|----------------------------|----------|
| mg/kg-day | (mg/-kg-day) <sup>-1</sup> | Unitless |
| 4.2E-06   | 1.5                        | 6.3E-06  |

| LADD              | Cancer Slope Factor | IILCR    |
|-------------------|---------------------|----------|
| mg/m <sup>3</sup> | $(mg/m^3)^{-1}$     | Unitless |
| 5.1E-11           | 6.4                 | 3.2E-10  |

Table 6-2b: IILCR for Inhalation Exposures to Arsenic: Upland Area

#### Table 6-2c: IILCR for Oral/Dermal Exposures to Arsenic: Wetlands Area

| LADD      | Cancer Slope Factor        | IILCR    |
|-----------|----------------------------|----------|
| mg/kg-day | (mg/-kg-day) <sup>-1</sup> | Unitless |
| 5.5E-07   | 1.5                        | 8.3E-07  |

The IILCR for oral/dermal exposure to arsenic on the Upland site exceeds the  $1 \times 10^{-6}$  risk acceptability benchmark. This would suggest that exposures to arsenic on the Upland area of the Lyon's Creek West site could lead to unacceptable increases in lifetime cancer risk for people who use the site for recreational purposes. However, it is important to recall that the exposure point concentration (EPC) used to estimate potential exposures to arsenic included three samples where arsenic concentrations were substantially higher than arsenic concentrations across the majority of the site (see Section 3.1.2 and Table 3.2). As noted in Section 3.1.2, these samples are located along the western end of the south drainage ditch. Limited removal of materials from the area around these sample locations would reduce the potential risks associated with exposure to arsenic on the Upland area to levels well below the risk acceptability benchmark.

### 6.2.1 Remediation of South Drainage Ditch

In August and September 2007, approximately 300 meters of the south drainage ditch was excavated. The excavation ranged in depth from 0.3 m to 0.6 m below ground surface and in width from 3.6 m to 7.9 m in width (O'Connor, 2007). The area of the excavation included three sample locations where elevated arsenic levels were reported in the original site investigations (LC-1, LC-2 & T1-M). Thirty-nine confirmatory samples were collected from the completed excavation and submitted for arsenic analyses. The results showed that arsenic concentrations ranged between 4 mg/kg and 12 mg/kg. The maximum reported arsenic concentration (12 mg/kg) is below the MOE Table 3 standard for residential properties. Incorporating this additional data into the risk assessment for the Uplands area lowers the maximum concentration to 12 mg/kg and the 95% UCL to 5. 7 mg/kg. Both of these values are below the MOE Table 3 Standard of 20 mg/kg for residential soil. Therefore, as a result of the removal of arsenic from the south drainage ditch, exposures to arsenic in the Upland area does not represent a potential concern for human health.

### 7 DISCUSSION OF UNCERTAINTIES

Uncertainty is an important consideration in quantitative risk assessment. It is important to define uncertainty in the risk assessment process in order to quantify the range of possibilities of the results. If the uncertainty associated with a particular input factor is great, the range of possibilities for that specific value may produce a profound difference in the resulting risk calculation, depending on the particular value that is selected for that factor. An example of the potential impact of uncertainty on the results of the risk assessment may be illustrated by the soil ingestion factor for a child. The range of possibilities for daily soil ingestion may be anywhere from 0 to 100 milligrams per day per child. Even for a site-specific risk assessment, it is impossible to assess the amount of soil ingested by a particular child so that a unique value may be selected for each child in a study area. For this reason a value must be predicted from the scientific literature and inserted into the risk assessment calculations to represent the soil ingestion rate. If a value close to zero, such as 1 milligram per day is selected, the resulting predicted potential risk for a child will be 100-fold lower than the potential risks that would be predicted if a soil ingestion rate of 100 milligrams per day were used.

### 7.1 Arsenic Concentrations in Soil

As noted in Section 3.1.2 and Section 6.2, the IILCRs calculated of oral/dermal exposures to arsenic on the Upland area suggest that exposures could results in IILCRs that exceed the  $10^{-6}$  risk acceptability benchmark. However, the EPC used in the assessment is biased by the inclusion of three samples, limited to the southwestern portion of the site. The inclusion of these samples in the risk assessment has resulted in an overestimation of the arsenic concentration assumed to be present over the entire site. This, in turn, has resulted in an overestimation of the potential cancer risks associated with exposure to arsenic on the Upland area of the Lyon's Creek West site. Exposure to arsenic can reasonably be expected to be substantially lower than the estimates presented in the current report. If the three points of elevated concentration are not considered, arsenic levels do not exceed screening criteria. This area represents less than 1% of the total area of the site that has been modeled for human exposure. As a result, the potential human risks would also be expected to be reduced accordingly. Therefore, exposure to arsenic is unlikely to pose a potential concern for human health on the Lyon's Creek West site. Potential risks could be further reduced through the removal of soil from the affected area on the southwestern portion of the site.

Excavation activities in the south drainage ditch in August and September 2007 have removed the elevated arsenic levels and reduced arsenic levels across the site to levels that are below the MOE Table 3 standards for residential soil. As a result, arsenic is no longer a concern for human health in the Upland area of the site.

### 7.2 Sediment Contact Activity Patterns

Estimates of potential health hazards and risks associated with exposure to contaminants in the sediment on the Wetlands area of the site are based on the assumption of limited activity on this area of the site. The assumptions used in this study are based on observations made at the site, which suggest that the Wetlands area is not frequented by the local population as evidenced by the absence of obvious pathways through the area or the existence of access points to the water and wetland on the site. Further, the heavy vegetative cover in the area and soft, deep sediments would discourage

access to the area and would serve to largely prevent access to the sediments on the Wetlands area. Therefore, should the assumptions regarding the frequency of access to the site underestimate occupancy, it is likely that exposures experienced by members of the public would be higher than those assumed in the assessment.

### 8 CONCLUSIONS AND RECOMMENDATIONS

The HHRA for the Lyon's Creek West site focused on the presence of PCB and metals in the soil and sediment on the site. The Lyon's Creek West site is defined as the upper portion of Lyon's Creek to the west of the Welland Canal Bypass. The site contains a Wetland area, which is made up of the upper portion of Lyon's Creek and two ditches that drain the surrounding lands into Lyon's Creek, and an Upland area of lawn, meadow, thicket and woodlot that surrounds the wetland area. From observations made during visits to the site, it is evident that members of the local community regularly use portions of the Upland area of the site for informal recreational activities including walking, cycling and riding ATVs. There was no evidence to suggest that the wetland area is used for recreational activities, apart from possible access to the western segment of the north drainage ditch where is is abutted by gentle grades and manicured lawn. This portion of the north ditch was cleaned out as part of previously completed remediation activities. Paths or other signs of access to the remaining portions of the site, the Lyon's Creek West site was divided into the Upland and Wetlands areas and potential exposures were estimated for each area.

The results of the chemical screening determined that arsenic, iron and manganese were the only contaminants present in the soil on the Upland area that exceeded their respective human healthbased screening guidelines. Exposures to these contaminants were evaluated for receptors in all five age groups (infant, toddler, child, teen, adult). In the Wetlands area, arsenic and PCB were the only contaminants present in the sediments at levels that exceeded their respective human health-based screening guidelines. Exposures to arsenic, PCB and DL-PCB on the Wetlands area were assessed for the child, teen and adult receptor. Due to the difficulty in accessing the Wetlands area of the site and the likelihood of parental supervision as a preventative factor, the HHRA assumed that infants and toddlers would not be present on the Wetlands area of the Lyon's Creek West site.

Based on the results of the HHRA it was concluded that:

- The Hazard Quotients (HQs) associated with exposure to iron and manganese in the soil on the Upland area of the Lyon's Creek West site are below the hazard acceptability benchmark of 0.2 for people in all age groups (infant, toddler, child, teen and adult). Therefore, exposure to iron and manganese in the soil on the Upland area would not be expected to result in any adverse human health effects for recreational users of the site.
- The initial assessment of the potential risks associated with exposure to arsenic in the soil on the Upland area of the Lyon's Creek West site indicated that the incremental increase in lifetime cancer risk (IILCR) (6.3 x 10<sup>-6</sup>) exceeds the risk acceptability benchmark of 10<sup>-6</sup>. However, it should be noted that the *Exposure Point Concentration* used to estimate exposures to arsenic on the Upland area included 3 samples collected from the western end of the south ditch where arsenic levels were substantially higher than arsenic levels across the rest of the Upland area. As noted in Section 2.2.2, the removal of samples LC-1, LC-2 and T1-M, from the data set reduces the UCL for arsenic to 5.9 mg/kg, which is well below the standard of 20 mg/kg for residential/parkland land use. Therefore, arsenic levels are below the level of concern for human health across the majority of the Upland area. Based on this,

exposure to arsenic would not be expected to result in an unacceptable increase in lifetime cancer risk for recreational users of the site.

- Potential concerns related to exposure to arsenic in the soil in the area of LC-1, LC-2 and T1-M have been addressed through the excavation of the south drainage ditch completed between August and September, 2007. Confirmatory sampling, completed as part of the excavation, showed that arsenic levels were below the MOE Table 3 standards for residential soil in the area around LC-1, LC-2 and T1-M.
- Exposure to arsenic, PCB and DL-PCB in the sediments on the Wetlands area of the Lyon's Creek West site for the child, teen and adult receptors were well below the 0.2 hazard acceptability benchmark for all three receptor age groups. Further, based on observations made during site visits, there is limited evidence of recreational access to the Wetlands area. Infants and toddlers were assumed not to have access to the Wetlands area based on the assumption of parental supervision for these age groups that would prevent access to the perceived dangers of water and soft sediments. Therefore, exposure to PCB would not be expected to result in adverse human health effects for recreational used of the Wetlands area of the Lyon's Creek West site.
- The IILCR associated with exposure to arsenic in the sediment was below the 10<sup>-6</sup> risk acceptability benchmark. Therefore, exposure to arsenic in the sediment on the Wetlands area of the Lyon's Creek West site would not be expected to result in an unacceptable increase in lifetime cancer risk for the recreational user of the site.

Based on the exposure estimates employed in the current risk assessment, it can be concluded that exposure to contaminants in soil on the Upland area and in sediments on the Wetlands area would not pose a potential concern for human health.

#### 9 **REFERENCES**

#### AMEC Earth & Environmental Ltd. 2002.

Phase II Environmental Site Assessment Parcel #NW-024-B (Site #4) Vacant Lands at Lyons Creek Welland, Ontario. Report to St. Lawrence Seaway Management Corp. Nov. 2002.

#### ATSDR, 2000

Toxicological Profile for Polychlorinated Biphenyls (PCBs). US Department of Health and Human Services, Public Health Service. November 2000.

#### CCME, 1999

Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment. ISBN 1-896997-34-1, Publication No. 1299

#### Golder Associates, 2004

Niagara River Area of Concern Contaminated Sediment Site Assessment Phase I and Phase II, Report Submitted to the Niagara Peninsula Conservation Authority, May 2004

#### Golder Associates, 2005

Niagara River Area of Concern Contaminated Sediments Site Assessment, Phase III, Report Submitted to the Niagara Peninsula Conservation Authority, February, 2005.

#### Health Canada, 2004

Federal Contaminated Site Risk Assessment in Canada: Part I: Guidance on Human Health Screening Level Risk Assessment (SLRA), & Part II: Health Canada Toxicological Reference Values (TRVs),

#### MOE, 1996

Ontario Ministry of the Environment, Rationale for the Development and Application of Generic Soil, Groundwater and Sediment Criteria for Use at Contaminated Sites in Ontario. Appendix A.1.4(21).

#### MOE, 2002

Soil Investigation and Human Health Risk Assessment for the Rodney Street Community, Port Colborne: March 2002. MOE Publication No. 4255e.

#### O'Connor, 2007

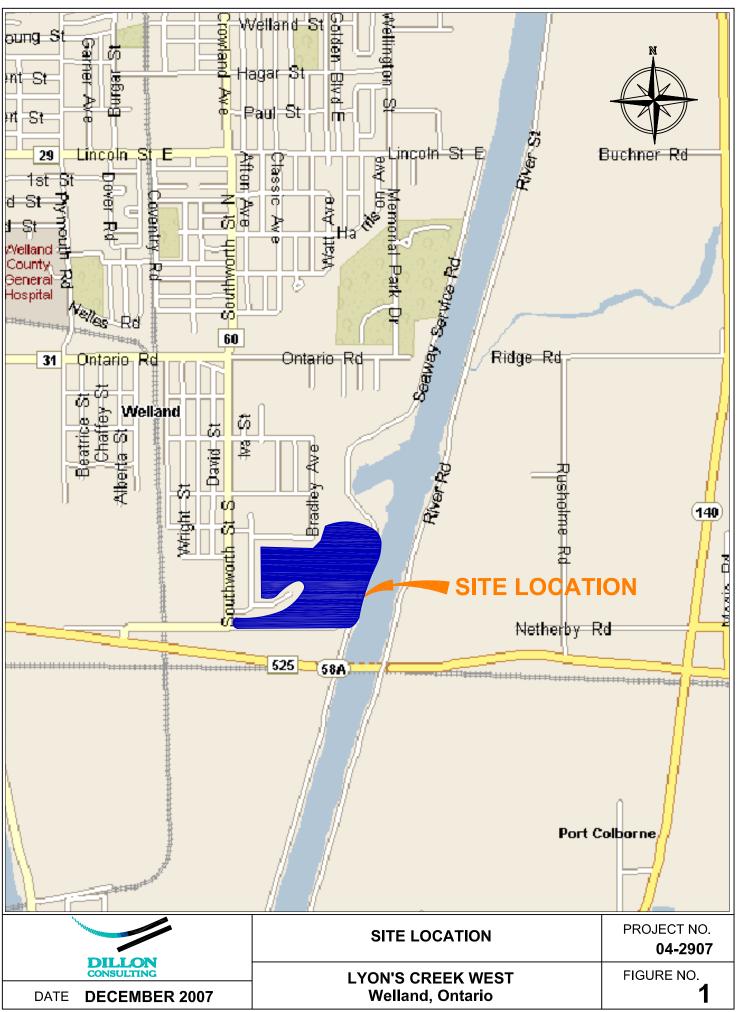
O'Connor Associates Environmental Inc. Report to Hydro One Networks Inc. Land Assessment and Remediation: Righto-of-Way Drainage Ditch Remedial Excavation East of Southworth Street, Crowland Transformer Station, Welland, Ontario.

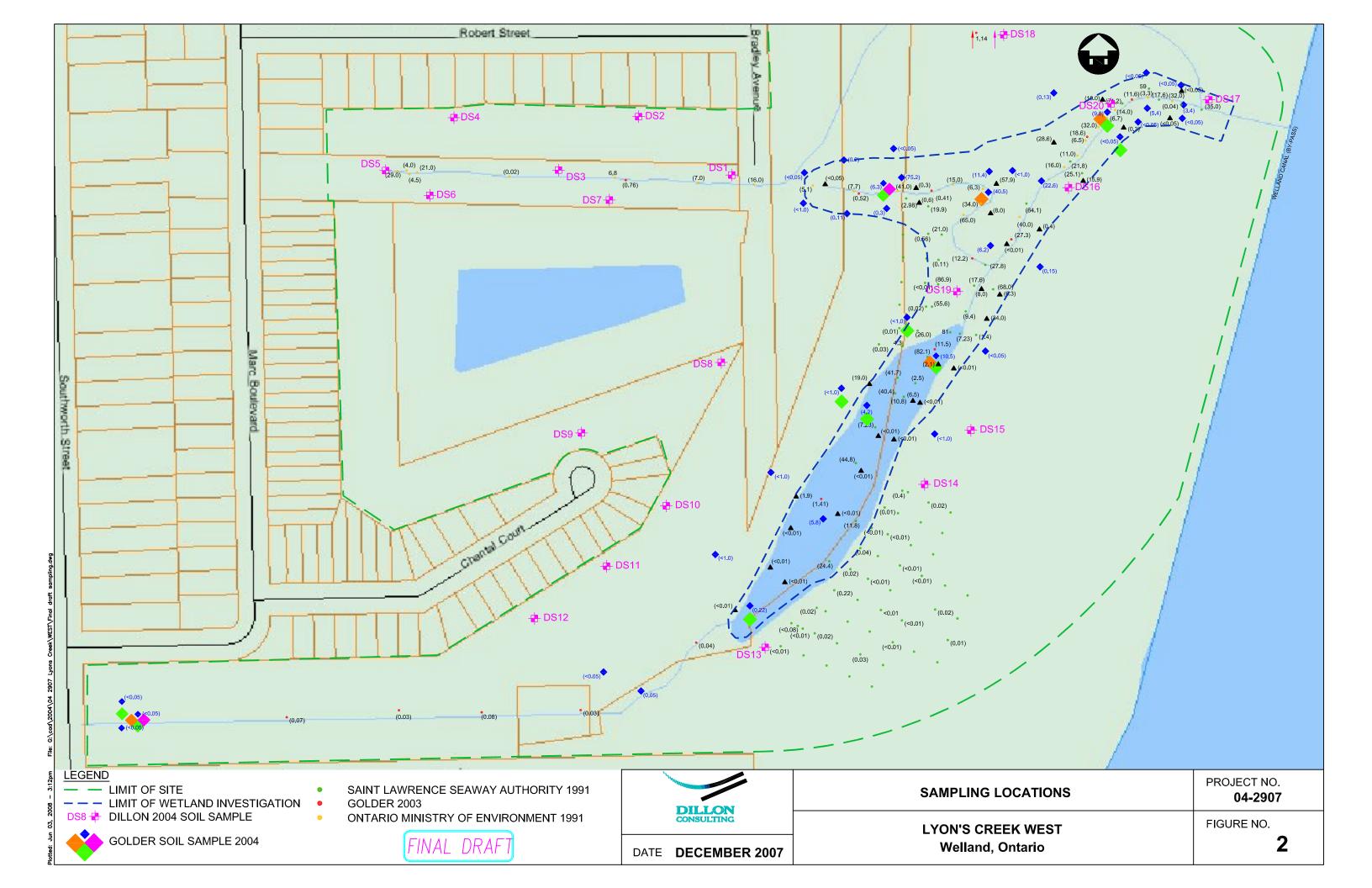
#### Singh, A., A.K Singh and R.W. Maichle, 2004

ProUCL Version 3.0 User Guide. US EPA publication EPA/600/R04/079, April 2004.

#### US EPA, 2001

Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, US EPA, March 2001


#### US EPA RIII, 2003


United States Environmental Protection Agency, Region III, Risk Based Concentration Tables, 2003.

#### WHO, 2003

Polychlorinated Biphenyls: Human Health Aspects. Concise International Chemical Assessment Document 55. World Health Organization, 2003. ISBN 92 4 153055 3

FIGURES





APPENDIX A Summary of Sediment and Soil Quality Data And DLPCB TEQ Calculations

| Report    | Sample   | Depth (cm)    | PCB <sub>total</sub> | Report   | Sample        | Depth (cm)    | PCB <sub>total</sub> | Report      | Sample     | Depth (cm)    | PCB <sub>total</sub> |
|-----------|----------|---------------|----------------------|----------|---------------|---------------|----------------------|-------------|------------|---------------|----------------------|
| Report    | Location | Deptil (CIII) | mg/kg                | Кероп    | Location      | Deptil (cill) | mg/kg                | Report      | Location   | Deptil (cill) | mg/kg                |
| SLSA 1991 | LC-41    | 0-20          | 2.98                 | ESL 1992 | A1-1          | 0-50          | 0.58                 | Golder 2004 | T8N+5(LC)  | 0-5           | 0.50                 |
| SLSA 1991 | LC-42    | 0-20          | 19.90                | ESL 1992 | A2-1          | 0-50          | 0.01                 | Golder 2004 | T10S+5(LC) | 0-5           | 0.025                |
| SLSA 1991 | LC-45A   | 0-20          | 21.00                | ESL 1992 | C2-1          | 0-50          | 0.01                 | Golder 2004 | T5-S       | 0-5           | 0.50                 |
| SLSA 1991 | LC-51A   | 0-18          | 86.90                | ESL 1992 | F1            | 0-30          | 0.01                 | Golder 2004 | T6-N       | 0-5           | 0.50                 |
| SLSA 1991 | LC-54    | 0-24          | 55.60                | ESL 1992 | G3-10         | 0-10          | 78.00                | Golder 2004 | T6-S       | 0-5           | 0.025                |
| SLSA 1991 | LC-56    | 0-18          | 26.00                | ESL 1992 | G1            | 0-50          | 0.01                 | Golder 2004 | T7-N       | 0-5           | 11.40                |
| SLSA 1991 | LC-58A   | 0-20          | 4.30                 | ESL 1992 | G2-1          | 0-50          | 19.00                | Golder 2004 | T8-N       | 0-5           | 6.19                 |
| SLSA 1991 | LC-59    | 0-16          | 41.70                | ESL 1992 | I1            | 0-50          | 0.01                 | Golder 2004 | T8-S       | 0-5           | 0.15                 |
| SLSA 1991 | LC-67A   | 0-23          | 35.00                | ESL 1992 | A-1'          | 0-50          | 0.01                 | Golder 2004 | T9-N       | 0-5           | 0.13                 |
| SLSA 1991 | LC-68A   | 0.21          | 0.04                 | ESL 1992 | I2            | 0-50          | 2.13                 | Golder 2004 | T9-S       | 0-5           | 0.025                |
| SLSA 1991 | LC-69A   | 0-20          | 17.60                | ESL 1992 | L1-1          | 0-40          | 1.89                 | Golder 2004 | T10-N      | 0-5           | 0.025                |
| SLSA 1991 | LC-70A   | 0-22          | 71.20                | ESL 1992 | M1            | 0-50          | 0.38                 | Golder 2004 | T10-S      | 0-5           | 5.36                 |
| SLSA 1991 | LC-71A   | 0-16          | 21.80                | ESL 1992 | N1            | 0-20          | 0.01                 | Golder 2004 | T11-N      | 0-5           | 0.025                |
| SLSA 1991 | LC-72A   | 0-19          | 64.10                | ESL 1992 | O2            | 0-50          | 8.00                 | Golder 2004 | T11-S      | 0-5           | 0.025                |
| SLSA 1991 | LC-73A   | 0-22          | 27.80                | ESL 1992 | P2-1          | 0-50          | 57.90                | Golder 2004 | T12-N      | 0-5           | 75.20                |
| SLSA 1991 | LC-74A   | 0-23          | 9.40                 | ESL 1992 | Q2            | 0-50          | 28.60                | Golder 2004 | T2-M (LC)  | 0-5           | 0.05                 |
| SLSA 1991 | LC-75A   | 0-20          | 82.10                | ESL 1992 | R2-1          | 0-50          | 10.00                | Golder 2004 | T3-M (LC)  | 0-5           | 0.22                 |
| SLSA 1991 | LC-76A   | 0-20          | 7.23                 | MOE 1991 | A1            | 0-20          | 32.00                | Golder 2004 | T4-M (LC)  | 0-5           | 5.83                 |
| SLSA 1991 | LC-77A   | 0-19          | 44.80                | MOE 1991 | B1            | 0-20          | 3.30                 | Golder 2004 | T5-M (LC)  | 0-5           | 4.16                 |
| SLSA 1991 | LC-78A   | 0-20          | 11.80                | MOE 1991 | C1            | 0-20          | 14.00                | Golder 2004 | T6-M (LC)  | 0-5           | 10.5                 |
| SLSA 1991 | LC-79A   | 0-16          | 24.40                | MOE 1991 | D1            | 0-20          | 6.70                 | Golder 2004 | T7-M (LC)  | 0-5           | 40.5                 |
| SLSA 1991 | LC-80A   | 0-16          | 17.60                | MOE 1991 | E1            | 0-20          | 32.00                | Golder 2004 | T8-M (LC)  | 0-5           | 22.6                 |
| SLSA 1991 | LC-81A   | 0-23          | 9.40                 | MOE 1991 | F1            | 0-20          | 6.50                 | Golder 2004 | T9-M (LC)  | 0-5           | 9.03                 |
| SLSA 1991 | LC-82A   | 0-24          | 1.41                 | MOE 1991 | G1            | 0-20          | 11.00                | Golder 2004 | T10-M (LC) | 0-5           | 3.42                 |
| SLSA 1991 | LC-83A   | 0-19          | 45.00                | MOE 1991 | H1            | 0-20          | 16.00                | Golder 2004 | T12-M(LC)  | 0-5           | 6.26                 |
| SLSA 1991 | LC-84A   | 0-22          | 72.60                | MOE 1991 | I1            | 0-20          | 40.00                | Golder 2004 | LC-6       | 0-5           | 11.60                |
| SLSA 1991 | LC-85A   | 0-22          | 25.10                | MOE 1991 | J1            | 0-20          | 65.00                | Golder 2004 | LC-7       | 0-5           | 18.60                |
| SLSA 1991 | LC-86A   | 0-20          | 43.90                | MOE 1991 | K1            | 0-20          | 34.00                | Golder 2004 | LC-8       | 0-5           | 27.30                |
| SLSA 1991 | LC-87A   | 0-20          | 8.59                 | MOE 1991 | L1            | 0-20          | 6.30                 | Golder 2004 | LC-11      | 0-5           | 0.41                 |
| SLSA 1991 | LC-88A   | 0-22          | 68.00                | MOE 1991 | M1            | 0-20          | 15.00                | Golder 2004 | LC-12      | 0-5           | 0.52                 |
| SLSA 1991 | LC-89A   | 0-23          | 40.40                | MOE 1991 | N1            | 0-20          | 42.00                | Golder 2004 | LC-13      | 0-5           | 12.20                |
| SLSA 1991 | LC-90A   | 0-17          | 10.80                | MOE 1991 | 01            | 0-20          | 7.70                 | Golder 2004 | LC-14      | 0-5           | 11.50                |
| SLSA 1991 | LC-91A   | 0-19          | 2.48                 | MOE 1991 | P1            | 0-20          | 5.10                 | Golder 2004 | LC-15      | 0-5           | 1.41                 |
|           |          |               |                      | Nu       | mber of Sampl | es            |                      |             | 99         |               |                      |
|           |          |               |                      |          | Minimum       |               |                      |             | 0.01       |               |                      |
|           |          |               |                      |          | Maximum       |               |                      |             | 86.90      |               |                      |

Wetland Sediment/Soil PCB Data Summary 1990-2004

| Report    | Sample   | Depth (cm)    | PCB <sub>total</sub> | Report            | Sample   | Depth (cm)    | PCB <sub>total</sub> | Report      | Sample    | Depth (cm)    | PCB <sub>total</sub> |
|-----------|----------|---------------|----------------------|-------------------|----------|---------------|----------------------|-------------|-----------|---------------|----------------------|
| Report    | Location | Deptil (CIII) | mg/kg                | Report            | Location | Deptil (cill) | mg/kg                | Report      | Location  | Deptil (cill) | mg/kg                |
| SLSA 1991 | LC-05A   | 0-17          | 0.01                 | SLSA 1991         | LC-62    | 0-20          | 0.01                 | Golder 2004 | T13-N     | 0-5           | 0.20                 |
| SLSA 1991 | LC-07    | 0             | 0.03                 | SLSA 1991         | LC-63    | 0-20          | 0.02                 | Golder 2004 | T14-S     | 0-5           | 0.50                 |
| SLSA 1991 | LC-09    | 0-20          | 0.02                 | ESL 1992          | A-3'     | 0-50          | 0.01                 | Golder 2004 | T14-N     | 0-5           | 0.025                |
| SLSA 1991 | LC-10    | 0-20          | 0.01                 | ESL 1992          | P1       | 0-50          | 0.41                 | Golder 2004 | T12-N+15  | 0-5           | 0.025                |
| SLSA 1991 | LC-11    | 0-20          | 0.08                 | ESL 1992          | R1       | 0-50          | 0.28                 | Golder 2004 | T1-M (LC) | 0-5           | 0.025                |
| SLSA 1991 | LC-13    | 0             | 0.01                 | ESL 1992          | R3       | 0-30          | 0.05                 | Dillon 2004 | 1         |               | 0.55                 |
| SLSA 1991 | LC-17    | 0-10          | 0.03                 | ESL 1992          | T1-1     | 0-50          | 0.01                 | Dillon 2004 | 2         |               | 0.025                |
| SLSA 1991 | LC-18    | 0-18          | 0.01                 | ESL 1992          | T2-1     | 0-50          | 0.01                 | Dillon 2004 | 3         |               | 3.58                 |
| SLSA 1991 | LC-19A   | 0-20          | 0.01                 | ESL 1992          | DITSED-A | 0-10          | 0.01                 | Dillon 2004 | 4         |               | 0.025                |
| SLSA 1991 | LC-21    | 0-20          | 0.22                 | ESL 1992          | DITSED-B | 0-10          | 0.01                 | Dillon 2004 | 5         |               | 0.87                 |
| SLSA 1991 | LC-23    | 0-20          | 0.01                 | ESL 1992          | 117-3    | 0-30          | 0.01                 | Dillon 2004 | 6         |               | 0.025                |
| SLSA 1991 | LC-24    | 0-21          | 0.02                 | Golder 2004       | LC-1     | 0-5           | 0.07                 | Dillon 2004 | 7         |               | 0.07                 |
| SLSA 1991 | LC-25    | 0-14          | 0.01                 | Golder 2004       | LC-2     | 0-5           | 0.015                | Dillon 2004 | 8         |               | 0.025                |
| SLSA 1991 | LC-26A   | 0-13          | 0.01                 | Golder 2004       | LC-3     | 0-5           | 0.08                 | Dillon 2004 | 9         |               | 0.025                |
| SLSA 1991 | LC-28A   | 0-19          | 0.04                 | Golder 2004       | LC-4     | 0-5           | 0.015                | Dillon 2004 | 10        |               | 0.025                |
| SLSA 1991 | LC-31A   | 0-15          | 0.01                 | Golder 2004       | LC-5     | 0-5           | 0.04                 | Dillon 2004 | 11        |               | 0.025                |
| SLSA 1991 | LC-32    | 0-20          | 0.01                 | Golder 2004       | LC-9     | 0-5           | 1.14                 | Dillon 2004 | 12        |               | 0.025                |
| SLSA 1991 | LC-36A   | 0-20          | 0.01                 | Golder 2004       | LC-10    | 0-5           | 0.76                 | Dillon 2004 | 13        |               | 0.025                |
| SLSA 1991 | LC-38    | 0-20          | 0.02                 | Golder 2004       | T1-N     | 0-5           | 0.025                | Dillon 2004 | 14        |               | 0.025                |
| SLSA 1991 | LC-40    | 0-20          | 0.40                 | Golder 2004       | T1-S     | 0-5           | 0.025                | Dillon 2004 | 15        |               | 0.025                |
| SLSA 1991 | LC-55    | 0-19          | 0.01                 | Golder 2004       | T2-N     | 0-5           | 0.025                | Dillon 2004 | 16        |               | 0.14                 |
| SLSA 1991 | LC-57    | 0-19          | 0.03                 | Golder 2004       | T3-N     | 0-5           | 0.50                 | Dillon 2004 | 17        |               | 0.025                |
| SLSA 1991 | LC-53    | 0-20          | 0.02                 | Golder 2004       | T4-N     | 0-5           | 0.50                 | Dillon 2004 | 18        |               | 0.025                |
| SLSA 1991 | LC-44A   | 0-22          | 0.56                 | Golder 2004       | T5-N     | 0-5           | 0.50                 | Dillon 2004 | 19        |               | 0.025                |
| SLSA 1991 | LC-48    | 0-17          | 0.11                 | Golder 2004       | T12-S    | 0-5           | 0.30                 | Dillon 2004 | 20        |               | 0.025                |
| SLSA 1991 | LC-50    | 0-20          | 0.01                 | Golder 2004       | T13-S    | 0-5           | 0.11                 |             |           |               |                      |
|           |          |               |                      | Number of Samples |          |               |                      |             | 77        |               |                      |
|           |          |               |                      |                   | Minimum  |               |                      |             | 0.01      |               |                      |
|           |          |               |                      |                   | Maximum  |               |                      |             | 3.58      |               |                      |

#### Upland Soil PCB Data Summary 1990-2004

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Wetland Sediment/Soil Arsenic Data Summary 2004

| Report      | Sample     | Depth (cm) | As    | Report      | Sample         | Depth (cm) | As    | Report      | Sample     | Depth (cm) | As    |
|-------------|------------|------------|-------|-------------|----------------|------------|-------|-------------|------------|------------|-------|
| Керон       | Location   | Depth (em) | mg/kg | Керон       | Location       | Depth (em) | mg/kg | Керон       | Location   | Depth (em) | mg/kg |
| Golder 2004 | T8N+5(LC)  | 0-5        | 5.3   | Golder 2004 | T10-N          | 0-5        | 2.9   | Golder 2004 | T3-M (LC)  | 0-5        | 480   |
| Golder 2004 | T10S+5(LC) | 0-5        | 4.5   | Golder 2004 | T10-S          | 0-5        | 24.5  | Golder 2004 | T4-M (LC)  | 0-5        | 19    |
| Golder 2004 | T5-S       | 0-5        | 5.2   | Golder 2004 | T11-N          | 0-5        | 2.9   | Golder 2004 | T5-M (LC)  | 0-5        | 58.7  |
| Golder 2004 | T6-N       | 0-5        | 23.9  | Golder 2004 | T11-S          | 0-5        | 2.4   | Golder 2004 | T6-M (LC)  | 0-5        | 95.2  |
| Golder 2004 | T6-S       | 0-5        | 2.3   | Golder 2004 | T12-N          | 0-5        | 45.7  | Golder 2004 | T7-M (LC)  | 0-5        | 13.8  |
| Golder 2004 | T7-N       | 0-5        | 18.5  | Golder 2004 | LC-6           | 0-5        | 8.2   | Golder 2004 | T8-M (LC)  | 0-5        | 33.9  |
| Golder 2004 | T8-N       | 0-5        | 11.0  | Golder 2004 | LC-8           | 0-5        | 71.1  | Golder 2004 | T9-M (LC)  | 0-5        | 16.8  |
| Golder 2004 | T8-S       | 0-5        | 3.9   | Golder 2004 | LC-12          | 0-5        | 4.4   | Golder 2004 | T10-M (LC) | 0-5        | 8.6   |
| Golder 2004 | T9-N       | 0-5        | 3.1   | Golder 2004 | LC-13          | 0-5        | 14.3  | Golder 2004 | T12-M(LC)  | 0-5        | 16.0  |
| Golder 2004 | T9-S       | 0-5        | 2.8   | Golder 2004 | T2-M (LC)      | 0-5        | 80.2  |             |            |            |       |
|             |            |            |       | Nu          | mber of Sample | es         |       |             | 29         |            |       |
|             |            |            |       |             | Minimum        |            |       |             | 2.3        |            |       |
|             |            |            |       |             | Maximum        |            |       |             | 480.0      |            |       |

| Report      | Sample<br>Location | Depth (cm) | As<br>mg/kg  | Report      | Sample<br>Location | Depth (cm) | As<br>mg/kg    | Report      | Sample<br>Location | Depth (cm) | As<br>mg/kg  |
|-------------|--------------------|------------|--------------|-------------|--------------------|------------|----------------|-------------|--------------------|------------|--------------|
| Golder 2004 | T12-S              | 0-5        | mg/kg<br>4.8 | Golder 2004 | Location<br>LC-1   | 0-5        | mg/kg<br>167.0 | Dillon 2004 | 10                 |            | mg/kg<br>4.9 |
|             |                    |            |              |             | -                  | * *        |                |             | - 0                |            |              |
| Golder 2004 | T13-S              | 0-5        | 8.4          | Golder 2004 | LC-2               | 0-5        | 47.0           | Dillon 2004 | 11                 |            | 6.2          |
| Golder 2004 | T13-N              | 0-5        | 5.0          | Golder 2004 | LC-9               | 0-5        | 5.1            | Dillon 2004 | 12                 |            | 6.6          |
| Golder 2004 | T14-S              | 0-5        | 6.6          | Golder 2004 | LC-10              | 0-5        | 5.5            | Dillon 2004 | 13                 |            | 4.7          |
| Golder 2004 | T14-N              | 0-5        | 5.2          | Dillon 2004 | 1                  |            | 6.0            | Dillon 2004 | 14                 |            | 5.0          |
| Golder 2004 | T1-N               | 0-5        | 3.2          | Dillon 2004 | 2                  |            | 6.3            | Dillon 2004 | 15                 |            | 4.6          |
| Golder 2004 | T1-S               | 0-5        | 2.8          | Dillon 2004 | 3                  |            | 8.9            | Dillon 2004 | 16                 |            | 9.9          |
| Golder 2004 | T2-N               | 0-5        | 3.7          | Dillon 2004 | 4                  |            | 6.2            | Dillon 2004 | 17                 |            | 6.5          |
| Golder 2004 | T3-N               | 0-5        | 2.6          | Dillon 2004 | 5                  |            | 6.2            | Dillon 2004 | 18                 |            | 4.8          |
| Golder 2004 | T4-N               | 0-5        | 3.2          | Dillon 2004 | 6                  |            | 5.0            | Dillon 2004 | 19                 |            | 5.8          |
| Golder 2004 | T5-N               | 0-5        | 2.4          | Dillon 2004 | 7                  |            | 5.2            | Dillon 2004 | 20                 |            | 5.5          |
| Golder 2004 | T12-N+15           | 0-5        | 7.8          | Dillon 2004 | 8                  |            | 5.8            |             |                    |            |              |
| Golder 2004 | T1-M (LC)          | 0-5        | 53.3         | Dillon 2004 | 9                  |            | 5.0            |             |                    |            |              |
|             |                    |            |              | Nu          | mber of Sampl      | es         |                |             | 37                 |            |              |
|             |                    |            |              |             | Minimum            |            |                |             | 2.4                |            |              |
|             |                    |            |              |             | Maximum            |            |                |             | 167.0              |            |              |

Upland Soil Arsenic Data Summary 2004

| Upland Soil Metals Data Summary 200 |
|-------------------------------------|
|-------------------------------------|

|           | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10       | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | Number  |       |       |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|
| Parameter | mg/kg    | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | of      | Max.  | Min   |
|           | Soil     | Soil  | Soil  | Soil  | Soil  | Soil  | Soil  | Soil  | Soil  | Soil  | Soil  | Samples |       |       |
| As        | 6     | 6.3   | 8.9   | 6.2   | 6.2   | 5     | 5.2   | 5.8   | 5     | 4.9      | 6.2   | 6.6   | 4.7   | 5     | 4.6   | 9.9   | 6.5   | 4.8   | 5.8   | 5.5   | 20      | 9.9   | 4.6   |
| Se        | 0.5   | 0.7   | 0.4   | 0.6   | 0.4   | 0.5   | 0.4   | 0.4   | 0.4   | 0.3      | 0.4   | 0.6   | 0.3   | 0.3   | 0.6   | 0.4   | 0.6   | 0.4   | 0.3   | 0.3   | 20      | 0.7   | 0.3   |
| Sb        | 0.5   | 0.5   | 0.9   | 0.5   | 0.5   | 0.3   | 0.4   | 0.5   | 0.4   | 0.3      | 0.5   | 0.6   | 0.5   | 0.5   | 0.5   | 0.7   | 0.5   | 0.3   | 0.5   | 0.5   | 20      | 0.9   | 0.3   |
| Ag        | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5      | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 20      | 0.5   | 0.5   |
| Al        | 19800 | 23400 | 14400 | 19400 | 16300 | 20100 | 17400 | 20900 | 18900 | 19800    | 20800 | 26400 | 20100 | 20200 | 12900 | 19800 | 25800 | 21000 | 18600 | 20900 | 20      | 26400 | 12900 |
| Ba        | 115   | 112   | 95    | 92    | 104   | 130   | 112   | 104   | 107   | 128      | 131   | 96    | 133   | 120   | 48    | 119   | 131   | 135   | 109   | 116   | 20      | 135   | 48    |
| Be        | 1     | 1.1   | 0.7   | 0.9   | 0.8   | 1     | 0.9   | 0.9   | 0.9   | 1        | 1     | 1.1   | 0.9   | 1     | 0.4   | 0.9   | 1.2   | 1     | 0.9   | 1     | 20      | 1.2   | 0.4   |
| Ca        | 20000 | 4140  | 35300 | 8710  | 25900 | 41800 | 41800 | 20000 | 35600 | 46100    | 41600 | 2920  | 47300 | 33700 | 2430  | 25400 | 6870  | 52400 | 32400 | 26100 | 20      | 52400 | 2430  |
| Cd        | 0.25  | 0.25  | 0.5   | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25     | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 20      | 0.5   | 0.25  |
| Co        | 15    | 13    | 12    | 12    | 11    | 13    | 12    | 13    | 13    | 13       | 15    | 15    | 13    | 13    | 6     | 13    | 17    | 14    | 12    | 15    | 20      | 17    | 6     |
| Cr        | 31    | 37    | 48    | 127   | 35    | 30    | 29    | 33    | 29    | 28       | 31    | 38    | 30    | 31    | 21    | 36    | 36    | 29    | 31    | 32    | 20      | 127   | 21    |
| Cu        | 24    | 18    | 57    | 20    | 30    | 24    | 28    | 21    | 22    | 25       | 27    | 21    | 27    | 23    | 10    | 39    | 22    | 26    | 27    | 25    | 20      | 57    | 10    |
| Fe        | 35800 | 33800 | 49800 | 29200 | 42000 | 33800 | 31700 | 33000 | 31500 | 33100    | 34700 | 39200 | 33900 | 32800 | 15700 | 38200 | 40000 | 35500 | 34500 | 35100 | 20      | 49800 | 15700 |
| K         | 3300  | 2900  | 2340  | 2560  | 2490  | 3660  | 3060  | 3140  | 3260  | 3990     | 3970  | 2980  | 3960  | 3830  | 1050  | 3430  | 3950  | 4270  | 2990  | 3860  | 20      | 4270  | 1050  |
| Mg        | 9800  | 6960  | 17800 | 6770  | 8640  | 12300 | 13500 | 9040  | 11500 | 13300    | 12800 | 6630  | 13700 | 14100 | 2980  | 10000 | 7960  | 14300 | 13500 | 11600 | 20      | 17800 | 2980  |
| Mn        | 987   | 996   | 997   | 816   | 720   | 746   | 761   | 788   | 699   | 626      | 691   | 903   | 634   | 687   | 451   | 674   | 1220  | 719   | 602   | 941   | 20      | 1220  | 451   |
| Mo        | 1.5   | 1.5   | 4     | 7     | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5      | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 20      | 7     | 1.5   |
| Na        | 102   | 116   | 240   | 119   | 117   | 180   | 159   | 137   | 185   | 197      | 168   | 130   | 165   | 134   | 58    | 154   | 86    | 280   | 112   | 137   | 20      | 280   | 58    |
| Ni        | 36    | 45    | 44    | 91    | 34    | 32    | 32    | 41    | 33    | 33       | 35    | 39    | 32    | 33    | 38    | 40    | 44    | 31    | 38    | 38    | 20      | 91    | 31    |
| P         | 800   | 597   | 815   | 578   | 780   | 742   | 715   | 626   | 625   | 676      | 723   | 401   | 677   | 695   | 358   | 936   | 800   | 689   | 685   | 804   | 20      | 936   | 358   |
| Pb        | 24    | 24    | 46    | 25    | 26    | 17    | 93    | 24    | 17    | 14       | 18    | 27    | 21    | 20    | 21    | 37    | 26    | 13    | 37    | 28    | 20      | 93    | 13    |
| Sr        | 51.7  | 27.5  | 59.2  | 32    | 56.2  | 89.4  | 83.4  | 59    | 86.3  | 99.1     | 88.2  | 27.5  | 98.4  | 61.3  | 14.7  | 70.7  | 34.6  | 111   | 66    | 68.9  | 20      | 111   | 14.7  |
| Ti        | 256   | 202   | 183   | 239   | 248   | 289   | 267   | 241   | 277   | 305      | 300   | 199   | 302   | 272   | 264   | 283   | 262   | 351   | 269   | 297   | 20      | 351   | 183   |
| V         | 40    | 47    | 33    | 42    | 34    | 40    | 36    | 42    | 38    | 39<br>72 | 41    | 54    | 39    | 40    | 27    | 40    | 52    | 41    | 36    | 43    | 20      | 54    | 27    |
| Zn        | 126   | 111   | 707   | 115   | 207   | 100   | 126   | 110   | 79    | 73       | 102   | 97    | 83    | 77    | 80    | 515   | 117   | 71    | 128   | 136   | 20      | 707   | 71    |

## Lyon's Creek West: Coplanar and Mono-Orth PCBs in Soil and Sediment and Calculated TEQs

| All values in<br>ng/g d.w. | 3,3',4,4'-TeCB                                                                                                                                                                                                                               | 3,4,4',5-TeCB                                                                                                                                                                                                                                                                                | 2,3,3',4,4'-PeCB | 2,3,4,4',5-PeCB | 2,3',4,4',5-PeCB | 2',3,4,4',5-PeCB | 3,3',4,4',5-PeCB 2                                                                                                                                                                         | 2,3,3',4,4',5-HxCB 2                                                                                                                                         | 2,3,3',4,4',5'-HxCB                                                                                                            | 2,3',4,4',5,5'-HxCB 3                                                                            | 8,3',4,4',5,5'-HxCI                                                | B 2,3,3',4,4',5,5'-<br>HpCB          | Total toxic<br>PCB<br>congeners |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|---------------------------------|
| IUPAC No.                  | 77                                                                                                                                                                                                                                           | 81                                                                                                                                                                                                                                                                                           | 105              | 114             | 118              | 123              | 126                                                                                                                                                                                        | 156                                                                                                                                                          | 157                                                                                                                            | 167                                                                                              | 169                                                                | 189                                  | ng/g                            |
| TEF <sub>mamm</sub>        | 0.0001                                                                                                                                                                                                                                       | 0.0001                                                                                                                                                                                                                                                                                       | 0.0001           | 0.0005          | 0.0001           | 0.0001           | 0.1                                                                                                                                                                                        | 0.0005                                                                                                                                                       | 0.0005                                                                                                                         | 0.00001                                                                                          | 0.01                                                               | 0.0001                               |                                 |
| Concentratio               | n in soil (ng/g d.w                                                                                                                                                                                                                          | r.)                                                                                                                                                                                                                                                                                          |                  |                 |                  |                  |                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                |                                                                                                  |                                                                    |                                      |                                 |
| T1-N                       | 0.031                                                                                                                                                                                                                                        | 0.002                                                                                                                                                                                                                                                                                        | 0.17             | 0.007           | 0.29             | 0.008            | 0.006                                                                                                                                                                                      | 0.063                                                                                                                                                        | 0.063                                                                                                                          | 0.028 <                                                                                          | 0.004                                                              | 0.009                                | 0.681                           |
| T5-N                       | 0.48                                                                                                                                                                                                                                         | 0.023                                                                                                                                                                                                                                                                                        | 1.5              | 0.055           | 2.8              | 0.081            | 0.018                                                                                                                                                                                      | 0.3                                                                                                                                                          | 0.3                                                                                                                            | 0.094 <                                                                                          | 0.007                                                              | 0.031                                | 5.689                           |
| T6-N                       | 16                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                         | 45               | 1.6             | 85               | 2.4              | 0.34                                                                                                                                                                                       | 6.2                                                                                                                                                          | 6.2                                                                                                                            | 1.8 <                                                                                            | 0.15                                                               | 0.43                                 | 165.56                          |
| T7-N                       | 53 <                                                                                                                                                                                                                                         | 0.51                                                                                                                                                                                                                                                                                         | 110              | 1.9             | 390              | 16               | 1.7                                                                                                                                                                                        | 29                                                                                                                                                           | 29                                                                                                                             | 14 <                                                                                             | 0.82                                                               | 3.5                                  | 649.43                          |
| T9-S                       | 0.38 <                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                         | 1.3              | 0.018           | 4.2              | 0.25             | 0.016                                                                                                                                                                                      | 0.43                                                                                                                                                         | 0.43                                                                                                                           | 0.19 <                                                                                           | 0.006                                                              | 0.043                                | 7.273                           |
| T12-S                      | 0.82                                                                                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                        | 3                | 0.11            | 6.1              | 0.14             | 0.052                                                                                                                                                                                      | 2.2                                                                                                                                                          | 2.2                                                                                                                            | 0.95 <                                                                                           | 0.095                                                              | 0.74                                 | 16.432                          |
| Calculated T               | EQs (ng/g d.w) ba                                                                                                                                                                                                                            | sed on mammalian                                                                                                                                                                                                                                                                             | TEF              |                 |                  |                  |                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                |                                                                                                  |                                                                    |                                      |                                 |
| T1-N TEQ                   | 0.0000031                                                                                                                                                                                                                                    | 0.000002                                                                                                                                                                                                                                                                                     | 0.000017         | 0.0000035       | 0.000029         | 0.000008         | 0.0006                                                                                                                                                                                     | 0.0000315                                                                                                                                                    | 0.0000315                                                                                                                      | 0.0000028                                                                                        | 0.00004                                                            | 0.000009                             | 0.001                           |
| T5-N TEQ                   | 0.000048                                                                                                                                                                                                                                     | 0.0000023                                                                                                                                                                                                                                                                                    | 0.00015          | 0.0000275       | 0.00028          | 0.0000081        | 0.0018                                                                                                                                                                                     | 0.00015                                                                                                                                                      | 0.00015                                                                                                                        | 0.0000094                                                                                        | 0.00007                                                            | 0.0000031                            | 0.003                           |
| T6-N TEQ                   | 0.0016                                                                                                                                                                                                                                       | 0.000044                                                                                                                                                                                                                                                                                     | 0.0045           | 0.0008          | 0.0085           | 0.00024          | 0.034                                                                                                                                                                                      | 0.0031                                                                                                                                                       | 0.0031                                                                                                                         | 0.000018                                                                                         | 0.0015                                                             | 0.000043                             | 0.057                           |
| T7-N TEQ                   | 0.0053                                                                                                                                                                                                                                       | 0.000051                                                                                                                                                                                                                                                                                     | 0.011            | 0.00095         | 0.039            | 0.0016           | 0.17                                                                                                                                                                                       | 0.0145                                                                                                                                                       | 0.0145                                                                                                                         | 0.00014                                                                                          | 0.0082                                                             | 0.00035                              | 0.266                           |
| T9-S TEQ                   | 0.000038                                                                                                                                                                                                                                     | 0.000001                                                                                                                                                                                                                                                                                     | 0.00013          | 0.000009        | 0.00042          | 0.000025         | 0.0016                                                                                                                                                                                     | 0.000215                                                                                                                                                     | 0.000215                                                                                                                       | 0.0000019                                                                                        | 0.00006                                                            | 0.0000043                            | 0.003                           |
| T12-S TEQ                  | 0.000038                                                                                                                                                                                                                                     | 0.000001                                                                                                                                                                                                                                                                                     | 0.00013          | 0.000009        | 0.00042          | 0.000025         | 0.0016                                                                                                                                                                                     | 0.000215                                                                                                                                                     | 0.000215                                                                                                                       | 0.0000019                                                                                        | 0.00006                                                            | 0.0000043                            | 0.003                           |
| Concentratio               | n in sediment (ng                                                                                                                                                                                                                            | /g d.w.)                                                                                                                                                                                                                                                                                     |                  |                 |                  |                  |                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                |                                                                                                  |                                                                    |                                      |                                 |
| Т3-М                       | 0.2 <v< td=""><td>V 4</td><td>3</td><td>1</td><td>4</td><td>3 MPC</td><td>0.1 <w< td=""><td>0.2 <w< td=""><td>0.2 <w< td=""><td>0.2 <w< td=""><td>2</td><td>0.2 <w< td=""><td>17</td></w<></td></w<></td></w<></td></w<></td></w<></td></v<> | V 4                                                                                                                                                                                                                                                                                          | 3                | 1               | 4                | 3 MPC            | 0.1 <w< td=""><td>0.2 <w< td=""><td>0.2 <w< td=""><td>0.2 <w< td=""><td>2</td><td>0.2 <w< td=""><td>17</td></w<></td></w<></td></w<></td></w<></td></w<>                                   | 0.2 <w< td=""><td>0.2 <w< td=""><td>0.2 <w< td=""><td>2</td><td>0.2 <w< td=""><td>17</td></w<></td></w<></td></w<></td></w<>                                 | 0.2 <w< td=""><td>0.2 <w< td=""><td>2</td><td>0.2 <w< td=""><td>17</td></w<></td></w<></td></w<>                               | 0.2 <w< td=""><td>2</td><td>0.2 <w< td=""><td>17</td></w<></td></w<>                             | 2                                                                  | 0.2 <w< td=""><td>17</td></w<>       | 17                              |
| T5-M                       | 2                                                                                                                                                                                                                                            | 0.5 <w< td=""><td>52</td><td>3</td><td>120</td><td>12 MPC</td><td>0.1 <w< td=""><td>8</td><td>0.2 <w< td=""><td>3</td><td>14</td><td>1</td><td>215</td></w<></td></w<></td></w<>                                                                                                             | 52               | 3               | 120              | 12 MPC           | 0.1 <w< td=""><td>8</td><td>0.2 <w< td=""><td>3</td><td>14</td><td>1</td><td>215</td></w<></td></w<>                                                                                       | 8                                                                                                                                                            | 0.2 <w< td=""><td>3</td><td>14</td><td>1</td><td>215</td></w<>                                                                 | 3                                                                                                | 14                                                                 | 1                                    | 215                             |
| Т7-М                       | 13                                                                                                                                                                                                                                           | 0.5 <w< td=""><td>340</td><td>16</td><td>730</td><td>99 MPC</td><td>0.1 <w< td=""><td>38</td><td>0.2 <w< td=""><td>16</td><td>90</td><td>5</td><td>1347</td></w<></td></w<></td></w<>                                                                                                        | 340              | 16              | 730              | 99 MPC           | 0.1 <w< td=""><td>38</td><td>0.2 <w< td=""><td>16</td><td>90</td><td>5</td><td>1347</td></w<></td></w<>                                                                                    | 38                                                                                                                                                           | 0.2 <w< td=""><td>16</td><td>90</td><td>5</td><td>1347</td></w<>                                                               | 16                                                                                               | 90                                                                 | 5                                    | 1347                            |
| Т8-М                       | 7                                                                                                                                                                                                                                            | 0.5 <w< td=""><td>250</td><td>11</td><td>480</td><td>45 MPC</td><td>0.1 <w< td=""><td>29</td><td>0.2 <w< td=""><td>10</td><td>65</td><td>2</td><td>899</td></w<></td></w<></td></w<>                                                                                                         | 250              | 11              | 480              | 45 MPC           | 0.1 <w< td=""><td>29</td><td>0.2 <w< td=""><td>10</td><td>65</td><td>2</td><td>899</td></w<></td></w<>                                                                                     | 29                                                                                                                                                           | 0.2 <w< td=""><td>10</td><td>65</td><td>2</td><td>899</td></w<>                                                                | 10                                                                                               | 65                                                                 | 2                                    | 899                             |
| T11-M                      | 1                                                                                                                                                                                                                                            | 0.5 <w< td=""><td>43</td><td>4</td><td>85</td><td>10 MPC</td><td>0.1 <w< td=""><td>6</td><td>0.2 <w< td=""><td>2</td><td>13</td><td>1</td><td>165</td></w<></td></w<></td></w<>                                                                                                              | 43               | 4               | 85               | 10 MPC           | 0.1 <w< td=""><td>6</td><td>0.2 <w< td=""><td>2</td><td>13</td><td>1</td><td>165</td></w<></td></w<>                                                                                       | 6                                                                                                                                                            | 0.2 <w< td=""><td>2</td><td>13</td><td>1</td><td>165</td></w<>                                                                 | 2                                                                                                | 13                                                                 | 1                                    | 165                             |
| T12-M                      | 3                                                                                                                                                                                                                                            | 0.5 <w< td=""><td>22</td><td>6</td><td>310</td><td>41 MPC</td><td>0.1 <w< td=""><td>13</td><td>0.2 <w< td=""><td>5</td><td>30</td><td>2</td><td>432</td></w<></td></w<></td></w<>                                                                                                            | 22               | 6               | 310              | 41 MPC           | 0.1 <w< td=""><td>13</td><td>0.2 <w< td=""><td>5</td><td>30</td><td>2</td><td>432</td></w<></td></w<>                                                                                      | 13                                                                                                                                                           | 0.2 <w< td=""><td>5</td><td>30</td><td>2</td><td>432</td></w<>                                                                 | 5                                                                                                | 30                                                                 | 2                                    | 432                             |
| Calculated T               | EQs (ng/g d.w) ba                                                                                                                                                                                                                            | sed on mammalian                                                                                                                                                                                                                                                                             | TEF              |                 |                  |                  |                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                |                                                                                                  |                                                                    |                                      |                                 |
| Т3-М                       | 0.0000194                                                                                                                                                                                                                                    | <d.l.< td=""><td>0.001674</td><td>0.001885</td><td>0.001032</td><td>0.001143</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<> | 0.001674         | 0.001885        | 0.001032         | 0.001143         | <d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<> | <d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<> | <d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<> | <d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<></td></d.l.<> | <d.l.< td=""><td><d.l.< td=""><td>0.0058</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.0058</td></d.l.<> | 0.0058                          |
| T5-M                       | 0.000194                                                                                                                                                                                                                                     | <d.l.< td=""><td>0.029016</td><td>0.005655</td><td>0.03096</td><td>0.004572</td><td><d.l.< td=""><td>0.01596</td><td><d.l.< td=""><td>0.00001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0864</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                           | 0.029016         | 0.005655        | 0.03096          | 0.004572         | <d.l.< td=""><td>0.01596</td><td><d.l.< td=""><td>0.00001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0864</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                          | 0.01596                                                                                                                                                      | <d.l.< td=""><td>0.00001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0864</td></d.l.<></td></d.l.<></td></d.l.<>            | 0.00001056                                                                                       | <d.l.< td=""><td><d.l.< td=""><td>0.0864</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.0864</td></d.l.<> | 0.0864                          |
| Т7-М                       | 0.001261                                                                                                                                                                                                                                     | <d.l.< td=""><td>0.18972</td><td>0.03016</td><td>0.18834</td><td>0.037719</td><td><d.l.< td=""><td>0.07581</td><td><d.l.< td=""><td>0.0001584</td><td><d.l.< td=""><td><d.l.< td=""><td>0.5232</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                              | 0.18972          | 0.03016         | 0.18834          | 0.037719         | <d.l.< td=""><td>0.07581</td><td><d.l.< td=""><td>0.0001584</td><td><d.l.< td=""><td><d.l.< td=""><td>0.5232</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                           | 0.07581                                                                                                                                                      | <d.l.< td=""><td>0.0001584</td><td><d.l.< td=""><td><d.l.< td=""><td>0.5232</td></d.l.<></td></d.l.<></td></d.l.<>             | 0.0001584                                                                                        | <d.l.< td=""><td><d.l.< td=""><td>0.5232</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.5232</td></d.l.<> | 0.5232                          |
| Т8-М                       | 0.000679                                                                                                                                                                                                                                     | <d.l.< td=""><td>0.1395</td><td>0.020735</td><td>0.12384</td><td>0.017145</td><td><d.l.< td=""><td>0.057855</td><td><d.l.< td=""><td>0.0008448</td><td><d.l.< td=""><td><d.l.< td=""><td>0.3606</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                             | 0.1395           | 0.020735        | 0.12384          | 0.017145         | <d.l.< td=""><td>0.057855</td><td><d.l.< td=""><td>0.0008448</td><td><d.l.< td=""><td><d.l.< td=""><td>0.3606</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                          | 0.057855                                                                                                                                                     | <d.l.< td=""><td>0.0008448</td><td><d.l.< td=""><td><d.l.< td=""><td>0.3606</td></d.l.<></td></d.l.<></td></d.l.<>             | 0.0008448                                                                                        | <d.l.< td=""><td><d.l.< td=""><td>0.3606</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.3606</td></d.l.<> | 0.3606                          |
| T11-M                      | 0.000097                                                                                                                                                                                                                                     | <d.l.< td=""><td>0.023994</td><td>0.00754</td><td>0.02193</td><td>0.00381</td><td><d.l.< td=""><td>0.01197</td><td><d.l.< td=""><td>0.000528</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0699</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                               | 0.023994         | 0.00754         | 0.02193          | 0.00381          | <d.l.< td=""><td>0.01197</td><td><d.l.< td=""><td>0.000528</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0699</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                            | 0.01197                                                                                                                                                      | <d.l.< td=""><td>0.000528</td><td><d.l.< td=""><td><d.l.< td=""><td>0.0699</td></d.l.<></td></d.l.<></td></d.l.<>              | 0.000528                                                                                         | <d.l.< td=""><td><d.l.< td=""><td>0.0699</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.0699</td></d.l.<> | 0.0699                          |
| T12-M                      | 0.000291                                                                                                                                                                                                                                     | <d.l.< td=""><td>0.012276</td><td>0.01131</td><td>0.07998</td><td>0.015621</td><td><d.l.< td=""><td>0.025935</td><td><d.l.< td=""><td>0.0001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.1455</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                            | 0.012276         | 0.01131         | 0.07998          | 0.015621         | <d.l.< td=""><td>0.025935</td><td><d.l.< td=""><td>0.0001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.1455</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>                          | 0.025935                                                                                                                                                     | <d.l.< td=""><td>0.0001056</td><td><d.l.< td=""><td><d.l.< td=""><td>0.1455</td></d.l.<></td></d.l.<></td></d.l.<>             | 0.0001056                                                                                        | <d.l.< td=""><td><d.l.< td=""><td>0.1455</td></d.l.<></td></d.l.<> | <d.l.< td=""><td>0.1455</td></d.l.<> | 0.1455                          |

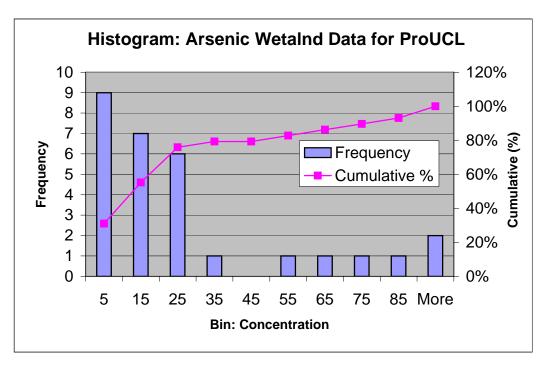
APPENDIX B Statistical Analysis of Sediment and Soil Quality Data

# **Appendix B: Statistical Data Summaries**

The statistical analyses outputs from ProUCL, the datasets that these analyses are based on and histograms showing the distribution of concentrations of contaminants in soil and sediments for the Wetlands and Upland areas are provided on the following pages.

Wetland Area COCs

# Lyon's Creek West: Arsenic Concentrations in Sediment (Wetland Area)


| ProUCL Statistical Summary:    |          | Arsenic Wetlands                                               | 1          |  |  |  |  |
|--------------------------------|----------|----------------------------------------------------------------|------------|--|--|--|--|
| Raw Statistics                 |          | Normal Distribution Test                                       |            |  |  |  |  |
| Number of Valid Samples        | 29       | Shapiro-Wilk Test Statisitic                                   | 0.39440147 |  |  |  |  |
| Number of Unique Samples       | 28       | Shapiro-Wilk 5% Critical Value                                 | 0.920      |  |  |  |  |
| Minimum                        | 2.3      | Data not normal at 5% significance level                       |            |  |  |  |  |
| Maximum                        | 480      |                                                                | •          |  |  |  |  |
| Mean                           | 37.21034 | 95% UCL (Assuming Normal Distribu                              | tion)      |  |  |  |  |
| Median                         | 13.8     | Student's-t UCL                                                | 65.256032  |  |  |  |  |
| Standard Deviation             | 88.78251 |                                                                | •          |  |  |  |  |
| Variance                       | 7882.334 | 7882.334 Gamma Distribution Test                               |            |  |  |  |  |
| Coefficient of Variation       | 2.385963 | A-D Test Statistic                                             | 1.6827805  |  |  |  |  |
| Skewness                       | 4.746599 | A-D 5% Critical Value                                          | 0.801879   |  |  |  |  |
|                                |          | K-S Test Statistic                                             | 0.1987248  |  |  |  |  |
| Gamma Statistics               |          | K-S 5% Critical Value                                          | 0.17104066 |  |  |  |  |
| k hat                          | 0.586486 | Data do not follow gamma distribution                          |            |  |  |  |  |
| k star (bias corrected)        | 0.548803 | at 5% significance level                                       |            |  |  |  |  |
| Theta hat                      | 63.44628 |                                                                |            |  |  |  |  |
| Theta star                     | 67.80269 | 95% UCLs (Assuming Gamma Distribution                          | on)        |  |  |  |  |
| nu hat                         | 34.01618 | Approximate Gamma UCL                                          | 59.412490  |  |  |  |  |
| nu star                        | 31.8306  | Adjusted Gamma UCL                                             | 61.139137  |  |  |  |  |
| Approx.Chi Square Value (.05)  | 19.93566 |                                                                |            |  |  |  |  |
| Adjusted Level of Significance | 0.0407   | Lognormal Distribution Test                                    |            |  |  |  |  |
| Adjusted Chi Square Value      | 19.37266 | Shapiro-Wilk Test Statisitic                                   | 0.937663   |  |  |  |  |
| č A                            | •        | Shapiro-Wilk 5% Critical Value                                 | 0.92       |  |  |  |  |
| Log-transformed Statistics     |          | Data are lognormal at 5% significance leve                     | 1          |  |  |  |  |
| Minimum of log data            | 0.832909 | ž ž                                                            |            |  |  |  |  |
| Maximum of log data            | 6.173786 | 95% UCLs (Assuming Lognormal Distri                            | bution)    |  |  |  |  |
| Mean of log data               | 2.559504 | 95% H-UCL                                                      | 64.940062  |  |  |  |  |
| Standard Deviation of log data | 1.332174 | 95% Chebyshev (MVUE) UCL                                       | 68.9904842 |  |  |  |  |
| Variance of log data           | 1.774688 | 97.5% Chebyshev (MVUE) UCL                                     | 85.962788  |  |  |  |  |
|                                |          | 99% Chebyshev (MVUE) UCL                                       | 119.30159  |  |  |  |  |
|                                | 1        | 95% Non-parametric UCLs                                        |            |  |  |  |  |
|                                |          | CLT UCL                                                        | 64.3282208 |  |  |  |  |
|                                |          | Adj-CLT UCL (Adjusted for skewness)                            | 79.8553924 |  |  |  |  |
|                                |          | Mod-t UCL (Adjusted for skewness)                              | 67.677957  |  |  |  |  |
|                                | + +      | Jackknife UCL                                                  | 65.256032  |  |  |  |  |
|                                | + +      | Standard Bootstrap UCL                                         | 64.078017  |  |  |  |  |
|                                | + +      | Bootstrap-t UCL                                                | 131.41972  |  |  |  |  |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                                           | 156.4237   |  |  |  |  |
| Data are lognormal (0.05)      |          | Percentile Bootstrap UCL                                       | 67.6172414 |  |  |  |  |
|                                | 1 1      | BCA Bootstrap UCL                                              | 86.1551724 |  |  |  |  |
| Use H-UCL                      |          | 95% Chebyshev (Mean, Sd) UCL                                   | 109.07332  |  |  |  |  |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL                                 | 140.16849  |  |  |  |  |
|                                | + +      | 97.5% Chebyshev (Mean, Sd) UCL<br>99% Chebyshev (Mean, Sd) UCL | 201.248928 |  |  |  |  |
|                                |          | 7770 Chebyshev (Ivicali, Su) UCL                               | 201.240920 |  |  |  |  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-1 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Arsenic Concentrations in Sediment (Wetland Area)

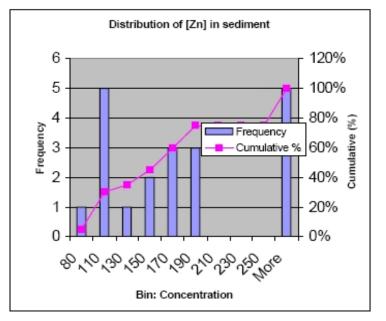
| Raw data     |  |
|--------------|--|
| As           |  |
| 5.3          |  |
| 4.5          |  |
| 5.2          |  |
| 23.9         |  |
| 2.3          |  |
| 18.5         |  |
| 11.0         |  |
| 3.9          |  |
| 3.1          |  |
| 2.8          |  |
| 2.9          |  |
| 24.5         |  |
| 2.9          |  |
| 2.4          |  |
| 45.7         |  |
| 8.2          |  |
| 71.1         |  |
| 4.4          |  |
| 14.3         |  |
| 80.2         |  |
| 480          |  |
| 19           |  |
| 58.7         |  |
| 95.2         |  |
| 13.8<br>33.9 |  |
|              |  |
| 16.8         |  |
| 8.6<br>16.0  |  |
| 10.0         |  |
|              |  |

|      | Histogram da | ta           |
|------|--------------|--------------|
| Bin  | Frequency    | Cumulative % |
| 5    | 9            | 31.0%        |
| 15   | 7            | 55.2%        |
| 25   | 6            | 75.9%        |
| 35   | 1            | 79.3%        |
| 45   | 0            | 79.3%        |
| 55   | 1            | 82.8%        |
| 65   | 1            | 86.2%        |
| 75   | 1            | 89.7%        |
| 85   | 1            | 93.1%        |
| More | 2            | 100.0%       |



Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-2 December, 2007 Dillon Consulting Limited

# Lyon's Creek West: Zinc Concentration in Soil (Wetland Area)


| ProUCL Statistical Summary:    |                        | Zinc Wetlands                               |         |  |  |  |  |  |
|--------------------------------|------------------------|---------------------------------------------|---------|--|--|--|--|--|
| Raw Statistics                 | 1                      | Normal Distribution Test                    |         |  |  |  |  |  |
| Number of Valid Samples        | 29                     | Shapiro-Wilk Test Statisitic                | 0.53697 |  |  |  |  |  |
| Number of Unique Samples       | 28                     | Shapiro-Wilk 5% Critical Value              | 0.92    |  |  |  |  |  |
| Minimum                        | 78                     | Data not normal at 5% significance level    |         |  |  |  |  |  |
| Maximum                        | 4120                   | 6                                           |         |  |  |  |  |  |
| Mean                           | 537.3793               | 95% UCL (Assuming Normal Distribution)      |         |  |  |  |  |  |
| Median                         | 149                    | Student's-t UCL                             | 838.165 |  |  |  |  |  |
| Standard Deviation             | 952.181                |                                             |         |  |  |  |  |  |
| Variance                       | 906648.7               | Gamma Distribution Test                     |         |  |  |  |  |  |
| Coefficient of Variation       | 1.771897               | A-D Test Statistic                          | 4.41937 |  |  |  |  |  |
| Skewness                       | 2.615779               | A-D 5% Critical Value                       | 0.79195 |  |  |  |  |  |
|                                |                        | K-S Test Statistic                          | 0.38190 |  |  |  |  |  |
| Gamma Statistics               |                        | K-S 5% Critical Value                       | 0.16992 |  |  |  |  |  |
| k hat                          | 0.675819               | Data do not follow gamma distribution       |         |  |  |  |  |  |
| k star (bias corrected)        | 0.628895               | at 5% significance level                    |         |  |  |  |  |  |
| Theta hat                      | 795.153                |                                             |         |  |  |  |  |  |
| Theta star                     | 854.4818               | 95% UCLs (Assuming Gamma Distribution       | n)      |  |  |  |  |  |
| nu hat                         | 39.19749               | Approximate Gamma UCL                       | 828.817 |  |  |  |  |  |
| nu star                        | 36.47591               | Adjusted Gamma UCL                          | 851.04  |  |  |  |  |  |
| Approx.Chi Square Value (.05)  | 23.64983               |                                             |         |  |  |  |  |  |
| Adjusted Level of Significance | 0.0407                 | Lognormal Distribution Test                 |         |  |  |  |  |  |
| Adjusted Chi Square Value      | 23.03215               | Shapiro-Wilk Test Statisitic                | 0.74152 |  |  |  |  |  |
|                                |                        | Shapiro-Wilk 5% Critical Value              | 0.92    |  |  |  |  |  |
| Log-transformed Statistics     |                        | Data not lognormal at 5% significance level |         |  |  |  |  |  |
| Minimum of log data            | 4.356709               |                                             |         |  |  |  |  |  |
| Maximum of log data            | 8.323608               | 95% UCLs (Assuming Lognormal Distrib        |         |  |  |  |  |  |
| Mean of log data               | 5.388036               | 95% H-UCL                                   | 769.267 |  |  |  |  |  |
| Standard Deviation of log data | 1.161565               | 95% Chebyshev (MVUE) UCL                    | 874.908 |  |  |  |  |  |
| Variance of log data           | 1.349233               | 97.5% Chebyshev (MVUE) UCL                  | 1074.32 |  |  |  |  |  |
|                                |                        | 99% Chebyshev (MVUE) UCL                    | 1466.04 |  |  |  |  |  |
|                                |                        | 95% Non-parametric UCLs                     |         |  |  |  |  |  |
|                                |                        | CLT UCL                                     | 828.21  |  |  |  |  |  |
|                                |                        | Adj-CLT UCL (Adjusted for skewness)         | 919.985 |  |  |  |  |  |
|                                |                        | Mod-t UCL (Adjusted for skewness)           | 852.480 |  |  |  |  |  |
|                                |                        | Jackknife UCL                               | 838.165 |  |  |  |  |  |
|                                | Standard Bootstrap UCL | 819.402                                     |         |  |  |  |  |  |
|                                |                        | Bootstrap-t UCL                             | 1056.52 |  |  |  |  |  |
| RECOMMENDATION                 |                        | Hall's Bootstrap UCL                        |         |  |  |  |  |  |
| Data are Non-parametric (0.0   | 5)                     | Percentile Bootstrap UCL                    |         |  |  |  |  |  |
|                                |                        | BCA Bootstrap UCL                           | 885.482 |  |  |  |  |  |
| Use 99% Chebyshev (Mean, So    | d) UCL                 | 95% Chebyshev (Mean, Sd) UCL                | 1308.10 |  |  |  |  |  |
|                                |                        | 97.5% Chebyshev (Mean, Sd) UCL              | 1641.59 |  |  |  |  |  |
|                                |                        | 99% Chebyshev (Mean, Sd) UCL                | 2296.67 |  |  |  |  |  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-3 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Zinc Concentration in Soil (Wetland Area)

| Raw data    |
|-------------|
| Zn          |
| 121         |
| 98          |
| 2110        |
| 149         |
| 900         |
| 165         |
| 273         |
| 94          |
| 101         |
| 109         |
| 184         |
| 78          |
| 172         |
| 185         |
| 140         |
| 167         |
| 93          |
| 2260        |
| 848         |
| 150         |
| 101         |
| 88          |
| 96          |
| 2290        |
| 120         |
| 90<br>4120  |
| 4120<br>176 |
| 1/6         |
| 100         |

| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 80             | 1         | 5.0%         |  |
| 110            | 5         | 30.0%        |  |
| 130            | 1         | 35.0%        |  |
| 150            | 2         | 45.0%        |  |
| 170            | 3         | 60.0%        |  |
| 190            | 3         | 75.0%        |  |
| 210            | 0         | 75.0%        |  |
| 230            | 0         | 75.0%        |  |
| 250            | 0         | 75.0%        |  |
| More           | 5         | 100.0%       |  |



Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

# Lyon's Creek West: PCB Concentrations in Sediment (Wetland Area)

| ProUCL Statistical Summary:    |          | PCB <sub>Total</sub> Wetlands              |           |
|--------------------------------|----------|--------------------------------------------|-----------|
| Raw Statistics                 |          | Normal Distribution Test                   |           |
| Number of Valid Samples        | 99       | Lilliefors Test Statisitic                 | 0.2089766 |
| Number of Unique Samples       | 82       | Lilliefors 5% Critical Value               | 0.0890464 |
| Minimum                        | 0.01     | Data not normal at 5% significance level   |           |
| Maximum                        | 86.9     |                                            |           |
| Mean                           | 18.6896  | 95% UCL (Assuming Normal Distribut         | tion)     |
| Median                         | 9.4      | Student's-t UCL                            | 22.4608   |
| Standard Deviation             | 22.59678 |                                            | •         |
| Variance                       | 510.6145 | Gamma Distribution Test                    |           |
| Coefficient of Variation       | 1.209057 | A-D Test Statistic                         | 1.465601  |
| Skewness                       | 1.427574 | A-D 5% Critical Value                      | 0.84061   |
|                                |          | K-S Test Statistic                         | 0.0947304 |
| Gamma Statistics               |          | K-S 5% Critical Value                      | 0.0962328 |
| k hat                          | 0.409826 | Data follow approximate gamma distibution  | 1         |
| k star (bias corrected)        | 0.404141 | at 5% significance level                   |           |
| Theta hat                      | 45.60377 |                                            |           |
| Theta star                     | 46.24526 | 95% UCLs (Assuming Gamma Distribution      | on)       |
| nu hat                         | 81.14549 | Approximate Gamma UCL                      | 24.75851  |
| nu star                        | 80.01987 | Adjusted Gamma UCL                         | 24.86173  |
| Approx.Chi Square Value (.05)  | 60.40503 |                                            |           |
| Adjusted Level of Significance | 0.047576 | Lognormal Distribution Test                |           |
| Adjusted Chi Square Value      | 60.15424 | Lilliefors Test Statisitic                 | 0.1904266 |
|                                | -        | Lilliefors 5% Critical Value               | 0.0890464 |
| Log-transformed Statistics     |          | Data not lognormal at 5% significance leve | 1         |
| Minimum of log data            | -4.60517 |                                            |           |
| Maximum of log data            | 4.464758 | 95% UCLs (Assuming Lognormal Distri        |           |
| Mean of log data               | 1.328571 | 95% H-UCL                                  | 490.4665  |
| Standard Deviation of log data | 2.722957 | 95% Chebyshev (MVUE) UCL                   | 411.48245 |
| Variance of log data           | 7.414494 | 97.5% Chebyshev (MVUE) UCL                 | 532.85117 |
|                                |          | 99% Chebyshev (MVUE) UCL                   | 771.2565  |
|                                |          | 95% Non-parametric UCLs                    |           |
|                                |          | CLT UCL                                    | 22.4251   |
|                                |          | Adj-CLT UCL (Adjusted for skewness)        | 22.7733   |
|                                | 1        | Mod-t UCL (Adjusted for skewness)          | 22.51511  |
|                                | 1        | Jackknife UCL                              | 22.4608   |
|                                | 1        | Standard Bootstrap UCL                     | 22.39703  |
|                                |          | Bootstrap-t UCL                            | 22.79247  |
| RECOMMENDATION                 | -        | Hall's Bootstrap UCL                       | 23.044784 |
| Assuming gamma distribut       | Ĩ        |                                            | 22.44010  |
|                                |          | BCA Bootstrap UCL 22.89136                 |           |
| Use Adjusted Gamma UCL         | -        | 95% Chebyshev (Mean, Sd) UCL               | 28.58892  |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL             | 32.87237  |
|                                | 1        | 99% Chebyshev (Mean, Sd) UCL               | 41.28637  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-5 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: PCB Concentrations in Sediment (Wetlands Area)

#### Raw data

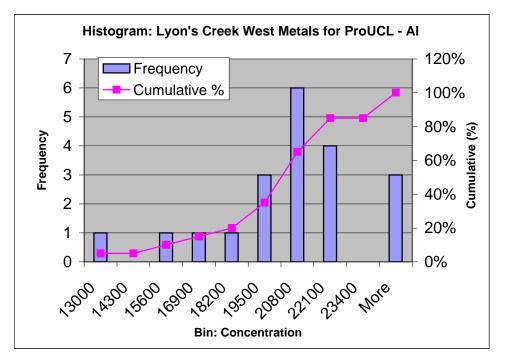
| PCB <sub>total</sub> |       |       |  |
|----------------------|-------|-------|--|
| 2.98                 | 78.00 | 0.13  |  |
| 19.90                | 0.01  | 0.025 |  |
| 21.00                | 19.00 | 0.025 |  |
| 86.90                | 0.01  | 5.36  |  |
| 55.60                | 0.01  | 0.025 |  |
| 26.00                | 2.13  | 0.025 |  |
| 4.30                 | 1.89  | 75.20 |  |
| 41.70                | 0.38  | 0.05  |  |
| 35.00                | 0.01  | 0.22  |  |
| 0.04                 | 8.00  | 5.83  |  |
| 17.60                | 57.90 | 4.16  |  |
| 71.20                | 28.60 | 10.5  |  |
| 21.80                | 10.00 | 40.5  |  |
| 64.10                | 32.00 | 22.6  |  |
| 27.80                | 3.30  | 9.03  |  |
| 9.40                 | 14.00 | 3.42  |  |
| 82.10                | 6.70  | 6.26  |  |
| 7.23                 | 32.00 | 11.60 |  |
| 44.80                | 6.50  | 18.60 |  |
| 11.80                | 11.00 | 27.30 |  |
| 24.40                | 16.00 | 0.41  |  |
| 17.60                | 40.00 | 0.52  |  |
| 9.40                 | 65.00 | 12.20 |  |
| 1.41                 | 34.00 | 11.50 |  |
| 45.00                | 6.30  | 1.41  |  |
| 72.60                | 15.00 |       |  |
| 25.10                | 42.00 |       |  |
| 43.90                | 7.70  |       |  |
| 8.59                 | 5.10  |       |  |
| 68.00                | 0.50  |       |  |
| 40.40                | 0.025 |       |  |
| 10.80                | 0.50  |       |  |
| 2.48                 | 0.50  |       |  |
| 0.58                 | 0.025 |       |  |
| 0.01                 | 11.40 |       |  |
| 0.01                 | 6.19  |       |  |
| 0.01                 | 0.15  |       |  |

| Histogram data |           |              |  |  |
|----------------|-----------|--------------|--|--|
| Bin            | Frequency | Cumulative % |  |  |
| 1              | 25        | 25.3%        |  |  |
| 8              | 20        | 45.5%        |  |  |
| 15             | 15        | 60.6%        |  |  |
| 22             | 9         | 69.7%        |  |  |
| 29             | 7         | 76.8%        |  |  |
| 36             | 4         | 80.8%        |  |  |
| 43             | 5         | 85.9%        |  |  |
| 50             | 3         | 88.9%        |  |  |
| 57             | 1         | 89.9%        |  |  |
| More           | 10        | 100.0%       |  |  |

•

**TT**• 4

#### Histogram: PCB Wetland Data 30 120% 25 100% 20 80% Cumulative (%) Frequency Frequency 60% 15 Cumulative % 40% 10 20% 5 0% 0 ° ~ ~ ~ ~ ~ 50 51 Note 2 ß **Bin: Concentration**


Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-6 December, 2007 Dillon Consulting Limited Upland Area COCs

# Lyon's Creek West: Aluminum Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:    | Aluminum                                     |                                                                |                      |
|--------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------|
|                                |                                              |                                                                |                      |
| Raw Statistics                 |                                              | Normal Distribution Test                                       |                      |
| Number of Valid Samples        | 20                                           | Shapiro-Wilk Test Statisitic 0.930                             |                      |
| Number of Unique Samples       | 16                                           | Shapiro-Wilk 5% Critical Value                                 | 0.905                |
| Minimum                        | 12900                                        | Data are normal at 5% significance level                       |                      |
| Maximum                        | 26400                                        |                                                                |                      |
| Mean                           | 19845                                        | 95% UCL (Assuming Normal Distrib                               |                      |
| Median                         | 19950                                        | Studen                                                         | 21083.25             |
| Standard Deviation             | 3202.544                                     |                                                                |                      |
| Variance                       | 10256289                                     | Gamma Distribution Test                                        |                      |
| Coefficient of Variation       | 0.161378                                     | A-D Test Statistic                                             | 0.788414             |
| Skewness                       | -0.02821                                     | A-D 5% Critical Value                                          | 0.739927             |
|                                |                                              | K-S Test Statistic                                             | 0.191454             |
| Gamma Statistics               |                                              | K-S 5% Critical Value                                          | 0.193443             |
| k hat                          | 38.66627                                     | Data follow approximate gamma distibut                         | ion                  |
| k star (bias corrected)        | 32.89967                                     | at 5% significance level                                       |                      |
| Theta hat                      | 513.238                                      |                                                                |                      |
| Theta star                     | 603.1976                                     | 95% UCLs (Assuming Gamma Distribu                              |                      |
| nu hat                         | 1546.651                                     | Approximate Gamma UCL                                          | 21185.2              |
| nu star                        | 1315.987                                     | Adjusted Gamma UCL                                             | 21294.93             |
| Approx.Chi Square Value (.05)  | 1232.736                                     |                                                                |                      |
| Adjusted Level of Significance | 0.038                                        | Lognormal Distribution Test                                    |                      |
| Adjusted Chi Square Value      | 1226.383                                     | Shapiro-Wilk Test Statisitic                                   | 0.914                |
|                                |                                              | Shapiro-Wilk 5% Critical Value                                 | 0.905                |
| Log-transformed Statistics     |                                              | Data are lognormal at 5% significance le                       | vel                  |
| Minimum of log data            | 9.464983                                     |                                                                |                      |
| Maximum of log data            | 10.18112                                     | 95% UCLs (Assuming Lognormal Dist                              |                      |
| Mean of log data               | 9.88272                                      | 95% H-UCL                                                      | 21263.02             |
| Standard Deviation of log data | 0.168121                                     | 95% Chebyshev (MVUE) UCL                                       | 23121.26             |
| Variance of log data           | 0.028265                                     | 97.5% Chebyshev (MVUE) UCL                                     | 24535.2              |
|                                |                                              | 99% Chebyshev (MVUE) UCL                                       | 27312.62             |
|                                | <b></b>                                      |                                                                |                      |
|                                |                                              | 95% Non-parametric UCLs                                        | 04000.0              |
|                                |                                              |                                                                | 21022.9<br>21018.07  |
|                                |                                              | Adj-CLT UCL (Adjusted for skewness)                            |                      |
|                                | <u>├</u> ───┼                                | Mod-t UCL (Adjusted for skewness)                              | 21082.5              |
|                                | <u> </u>                                     | Jackknife UCL 21083.2                                          |                      |
|                                | <u>├</u>                                     | Standard Bootstrap UCL 21021.9                                 |                      |
|                                | <u>├</u>                                     | Bootstrap-t UCL                                                | 21100.35             |
|                                | ├                                            | Hall's Bootstrap UCL                                           | 21143.21             |
| Da                             | ├                                            | Percentile Bootstrap UCL 20985                                 |                      |
|                                | <u>├</u>                                     | BCA Bootstrap UCL 21015                                        |                      |
| Use Sti                        | ├                                            | 95% Chebyshev (Mean, Sd) UCL 22966.4                           |                      |
|                                | ├                                            | 97.5% Chebyshev (Mean, Sd) UCL<br>99% Chebyshev (Mean, Sd) UCL | 24317.11<br>26970.21 |
|                                | <u>                                     </u> |                                                                | 20970.21             |
|                                |                                              |                                                                |                      |

|       | Histogram data |              |  |  |
|-------|----------------|--------------|--|--|
| Bin   | Frequency      | Cumulative % |  |  |
| 13000 | 1              | 5.0%         |  |  |
| 14300 | 0              | 5.0%         |  |  |
| 15600 | 1              | 10.0%        |  |  |
| 16900 | 1              | 15.0%        |  |  |
| 18200 | 1              | 20.0%        |  |  |
| 19500 | 3              | 35.0%        |  |  |
| 20800 | 6              | 65.0%        |  |  |
| 22100 | 4              | 85.0%        |  |  |
| 23400 | 0              | 85.0%        |  |  |
| More  | 3              | 100.0%       |  |  |



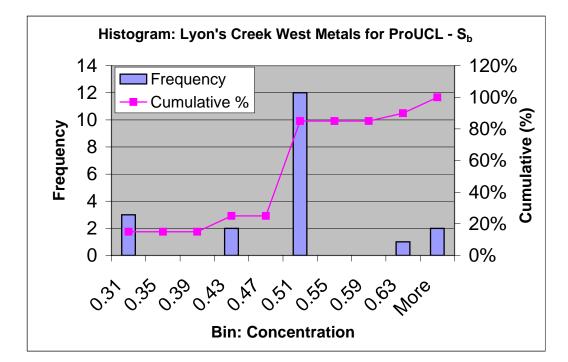


| Raw data |
|----------|
| Al       |
| 19800    |
| 23400    |
| 14400    |
| 19400    |
| 16300    |
| 20100    |
| 17400    |
| 20900    |
| 18900    |
| 19800    |
| 20800    |
| 26400    |
| 20100    |
| 20200    |
| 12900    |
| 19800    |
| 25800    |
| 21000    |
| 18600    |
| 20900    |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-8 December, 2007 Dillon Consulting Limited

# Lyon's Creek West: Antimony Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:    | Antimony |                                                        |             |
|--------------------------------|----------|--------------------------------------------------------|-------------|
|                                | • • •    | · · · ·                                                |             |
| Raw Statistics                 |          | Normal Distribution Test                               |             |
| Number of Valid Samples        | 20       | Shapiro-Wilk Test Statisitic 0.79506                   |             |
| Number of Unique Samples       | 6        | Shapiro-Wilk 5% Critical Value                         | 0.905       |
| Minimum                        | 0.3      | Data not normal at 5% significance leve                |             |
| Maximum                        | 0.9      |                                                        | <i>·</i> ·· |
| Mean                           | 0.495    | 95% UCL (Assuming Normal Distrik                       |             |
| Median                         | 0.5      | Studen                                                 | 0.54743969  |
| Standard Deviation<br>Variance | 0.135627 | Gamma Distribution Test                                |             |
| Coefficient of Variation       | 0.018395 | A-D Test Statistic                                     | 1.79676058  |
| Skewness                       | 1.224639 | A-D Test Statistic<br>A-D 5% Critical Value            | 0.7412779   |
| Skewness                       | 1.224039 | K-S Test Statistic                                     | 0.30025471  |
| Gamma Statistics               |          | K-S 5% Critical Value                                  | 0.19366263  |
| k hat                          | 15.06398 | Data do not follow gamma distribution                  | 0.1000200   |
| k star (bias corrected)        | 12.83771 | at 5% significance level                               |             |
| Theta hat                      | 0.03286  |                                                        |             |
| Theta star                     | 0.038558 | 95% UCLs (Assuming Gamma Distribu                      | ution)      |
| nu hat                         | 602.559  | Approximate Gamma UCL                                  | 0.55025165  |
| nu star                        | 513.5085 | Adjusted Gamma UCL                                     | 0.55488553  |
| Approx.Chi Square Value (.05)  | 461.9463 |                                                        | •           |
| Adjusted Level of Significance | 0.038    | Lognormal Distribution Test                            |             |
| Adjusted Chi Square Value      | 458.0885 | Shapiro-Wilk Test Statisitic                           | 0.83146245  |
|                                |          | Shapiro-Wilk 5% Critical Value                         | 0.905       |
| Log-transformed Statistics     |          | Data not lognormal at 5% significance le               | evel        |
| Minimum of log data            | -1.20397 |                                                        |             |
| Maximum of log data            | -0.10536 | 95% UCLs (Assuming Lognormal Dis                       |             |
| Mean of log data               | -0.73676 | 95% H-UCL                                              | 0.55376721  |
| Standard Deviation of log data | 0.265204 | 95% Chebyshev (MVUE) UCL                               | 0.62421899  |
| Variance of log data           | 0.070333 | 97.5% Chebyshev (MVUE) UCL<br>99% Chebyshev (MVUE) UCL | 0.68017576  |
|                                |          | 99% Chebysnev (MVOE) OCL                               | 0.79009199  |
|                                |          | 95% Non-parametric UCLs                                |             |
|                                |          | CLT UCL                                                | 0.54488374  |
|                                |          | Adj-CLT UCL (Adjusted for skewness)                    | 0.55375746  |
|                                |          | Mod-t L                                                | 0.54882381  |
|                                |          | Jackknife UCL                                          | 0.54743969  |
|                                |          | Standard Bootstrap UCL                                 | 0.54389893  |
|                                |          | Bootstrap-t UCL                                        | 0.56071261  |
| F                              |          | Hall's Bootstrap UCL                                   | 0.59459503  |
| Data                           |          | Percentile Bootstrap UCL                               | 0.545       |
|                                |          | BCA Bootstrap UCL 0.55                                 |             |
| Use Sti                        |          | 95% Chebyshev (Mean, Sd) UCL 0.62719304                |             |
| or Mod                         |          | 97.5% Chebyshev (Mean, Sd) UCL 0.6843930               |             |
|                                |          | 99% Chebyshev (Mean, Sd) UCL                           | 0.79675147  |
|                                |          |                                                        |             |


Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-9 December, 2007 Dillon Consulting Limited

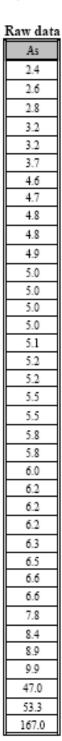
## Lyon's Creek West: Antimony Concentration in Soil (Upland Area)

| Raw data       |  |
|----------------|--|
| S <sub>b</sub> |  |
| 0.5            |  |
| 0.5            |  |
| 0.9            |  |
| 0.5            |  |
| 0.5            |  |
| 0.3            |  |
| 0.4            |  |
| 0.5            |  |
| 0.4            |  |
| 0.3            |  |
| 0.5            |  |
| 0.6            |  |
| 0.5            |  |
| 0.5            |  |
| 0.5            |  |
| 0.7<br>0.5     |  |
|                |  |
| 0.3            |  |
| 0.5<br>0.5     |  |
| 0.5            |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
| <u> </u>       |  |

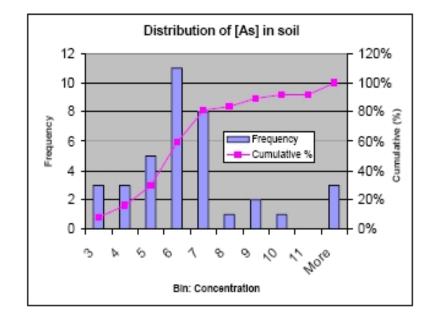
Raw data

| Histogram data |           |              |  |  |
|----------------|-----------|--------------|--|--|
| Bin            | Frequency | Cumulative % |  |  |
| 0.31           | 3         | 15.0%        |  |  |
| 0.35           | 0         | 15.0%        |  |  |
| 0.39           | 0         | 15.0%        |  |  |
| 0.43           | 2         | 25.0%        |  |  |
| 0.47           | 0         | 25.0%        |  |  |
| 0.51           | 12        | 85.0%        |  |  |
| 0.55           | 0         | 85.0%        |  |  |
| 0.59           | 0         | 85.0%        |  |  |
| 0.63           | 1         | 90.0%        |  |  |
| More           | 2         | 100.0%       |  |  |




Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-10 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: All Arsenic Concentrations in Soil (Upland Area)

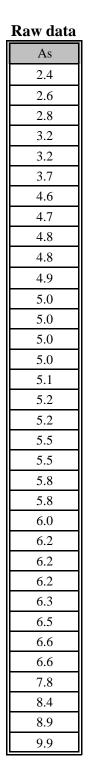

| ProUCL Statistical Summary:    |          | Arsenic Uplands (all samples)               |          |
|--------------------------------|----------|---------------------------------------------|----------|
| Raw Statistics                 | Т        | Normal Distribution Test                    |          |
| Number of Valid Samples        | 37       | Shapiro-Wilk Test Statisitic                | 0.324369 |
| Number of Unique Samples       | 26       | Shapiro-Wilk 5% Critical Value              | 0.93     |
| Minimum                        | 2.4      | Data not normal at 5% significance level    |          |
| Maximum                        | 167      |                                             |          |
| Mean                           | 12.23514 | 95% UCL (Assuming Normal Distribut          | tion)    |
| Median                         | 5.5      | Student's-t UCL                             | 20.0452  |
| Standard Deviation             | 28.13893 |                                             |          |
| Variance                       | 791.7996 | Gamma Distribution Test                     |          |
| Coefficient of Variation       | 2.299847 | A-D Test Statistic                          | 7.111522 |
| Skewness                       | 5.015932 | A-D 5% Critical Value                       | 0.780962 |
|                                | -        | K-S Test Statistic                          | 0.37738  |
| Gamma Statistics               |          | K-S 5% Critical Value                       | 0.149798 |
| k hat                          | 0.910668 | Data do not follow gamma distribution       |          |
| k star (bias corrected)        | 0.854848 | at 5% significance level                    |          |
| Theta hat                      | 13.43535 |                                             |          |
| Theta star                     | 14.31265 | 95% UCLs (Assuming Gamma Distribution       | on)      |
| nu hat                         | 67.3894  | Approximate Gamma UCL                       | 16.84068 |
| nu star                        | 63.25873 | Adjusted Gamma UCL                          | 17.0787  |
| Approx.Chi Square Value (.05)  | 45.95888 |                                             |          |
| Adjusted Level of Significance | 0.0431   | Lognormal Distribution Test                 |          |
| Adjusted Chi Square Value      | 45.3182  |                                             |          |
|                                |          | Shapiro-Wilk 5% Critical Value              | 0.93     |
| Log-transformed Statistics     |          | Data not lognormal at 5% significance level | 1        |
| Minimum of log data            | 0.875469 |                                             |          |
| Maximum of log data            | 5.117994 | 95% UCLs (Assuming Lognormal Distri         |          |
| Mean of log data               | 1.863291 | 95% H-UCL                                   | 12.15627 |
| Standard Deviation of log data | 0.818755 | 95% Chebyshev (MVUE) UCL                    | 14.73332 |
| Variance of log data           | 0.670359 | 97.5% Chebyshev (MVUE) UCL                  | 17.25502 |
|                                |          | 99% Chebyshev (MVUE) UCL                    | 22.20840 |
|                                |          | 95% Non-parametric UCLs                     |          |
|                                |          | CLT UCL                                     | 19.84424 |
|                                |          | Adj-CLT UCL (Adjusted for skewness)         | 23.92028 |
|                                |          | Mod-t UCL (Adjusted for skewness)           | 20.68099 |
|                                |          | Jackknife UCL                               | 20.0452  |
|                                |          | Standard Bootstrap UCL                      | 19.76198 |
|                                |          | Bootstrap-t UCL                             | 36.96906 |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL 3                      |          |
| Data are Non-parametric (0.0   | 5)       | Percentile Bootstrap UCL 20.                |          |
|                                |          | BCA Bootstrap UCL 25.621                    |          |
| Use 95% Chebyshev (Mean, So    | d) UCL   | 95% Chebyshev (Mean, Sd) UCL                | 32.39945 |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL              | 41.12457 |
|                                |          | 99% Chebyshev (Mean, Sd) UCL                | 58.26337 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-11 December, 2007 Dillon Consulting Limited

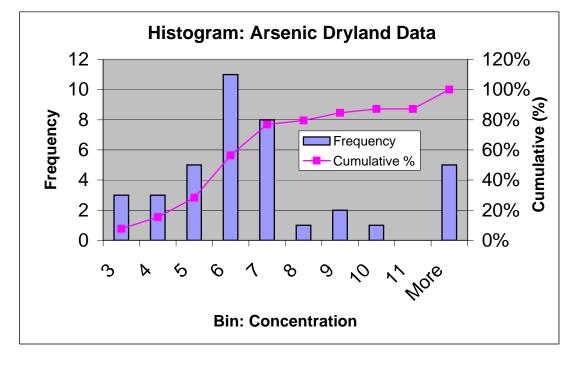
Lyons Creek West: All Arsenic Concentrations in soil (Upland Area)



| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 3              | 3         | 8.1%         |  |
| 4              | 3         | 16.2%        |  |
| 5              | 5         | 29.7%        |  |
| 6              | 11        | 59.5%        |  |
| 7              | 8         | 81.1%        |  |
| 8              | 1         | 83.8%        |  |
| 9              | 2         | 89.2%        |  |
| 10             | 1         | 91.9%        |  |
| 11             | 0         | 91.9%        |  |
| More           | 3         | 100.0%       |  |




## Lyon's Creek West: Arsenic Concentration in Soil LC-1, LC-2 and T1-M Removed (Upland Area)


| ProUCL Statistical Summary:    | A        | Arsenic Upland LC-1, LC-2 and T1-M Removed |              |
|--------------------------------|----------|--------------------------------------------|--------------|
| Dam Statistics                 | <u>г</u> | Nerreal Distribution Test                  |              |
| Raw Statistics                 | 24       | Normal Distribution Test                   | 0.040100251  |
| Number of Valid Samples        | 34<br>23 | Shapiro-Wilk Test Statisitic               | 0.949190251  |
| Number of Unique Samples       |          | Shapiro-Wilk 5% Critical Value             | 0.933        |
| Minimum                        | 2.4      | Data are normal at 5% significance level   |              |
| Maximum                        | 9.9      |                                            | · ` `        |
| Mean                           | 5.452941 | 95% UCL (Assuming Normal Distribu          |              |
| Median                         | 5.2      | Student's-t UCL                            | 5.942174484  |
| Standard Deviation             | 1.685632 |                                            |              |
| Variance                       | 2.841355 | Gamma Distribution Test                    | 0.505150.604 |
| Coefficient of Variation       | 0.309123 | A-D Test Statistic                         | 0.725178634  |
| Skewness                       | 0.489911 | A-D 5% Critical Value                      | 0.747664796  |
|                                |          | K-S Test Statistic                         | 0.15843639   |
| Gamma Statistics               |          | K-S 5% Critical Value                      | 0.150887722  |
| k hat                          | 10.33381 | Data follow approximate gamma distibutio   | n            |
| k star (bias corrected)        | 9.441611 | at 5% significance level                   |              |
| Theta hat                      | 0.52768  |                                            |              |
| Theta star                     | 0.577544 | 95% UCLs (Assuming Gamma Distributi        |              |
| nu hat                         | 702.6991 | Approximate Gamma UCL                      | 5.992365623  |
| nu star                        | 642.0295 | Adjusted Gamma UCL                         | 6.020362287  |
| Approx.Chi Square Value (.05)  | 584.2349 |                                            |              |
| Adjusted Level of Significance | 0.0422   | Lognormal Distribution Test                |              |
| Adjusted Chi Square Value      | 581.5181 | Shapiro-Wilk Test Statisitic               | 0.938629643  |
|                                |          | Shapiro-Wilk 5% Critical Value             | 0.933        |
| Log-transformed Statistics     |          | Data are lognormal at 5% significance leve | 1            |
| Minimum of log data            | 0.875469 |                                            |              |
| Maximum of log data            | 2.292535 | 95% UCLs (Assuming Lognormal Distri        | ibution)     |
| Mean of log data               | 1.646991 | 95% H-UCL                                  | 6.070394888  |
| Standard Deviation of log data | 0.327445 | 95% Chebyshev (MVUE) UCL                   | 6.833855437  |
| Variance of log data           | 0.10722  | 97.5% Chebyshev (MVUE) UCL                 | 7.424782009  |
|                                |          | 99% Chebyshev (MVUE) UCL                   | 8.585542833  |
|                                |          | • • •                                      | •            |
|                                |          | 95% Non-parametric UCLs                    |              |
|                                |          | CLT UCL                                    | 5.928441182  |
|                                | 1        | Adj-CLT UCL (Adjusted for skewness)        | 5.95439379   |
|                                |          | Mod-t UCL (Adjusted for skewness)          | 5.946222567  |
|                                |          | Jackknife UCL                              | 5.942174484  |
|                                |          | Standard Bootstrap UCL                     | 5.920986832  |
|                                |          | Bootstrap-t UCL                            | 5.980724043  |
| RECOMMENDATION                 | ·        | Hall's Bootstrap UCL 5.9749476             |              |
| Data are normal (0.05)         |          | Percentile Bootstrap UCL 5.9382352         |              |
|                                |          | BCA Bootstrap UCL 5.9470588                |              |
| Use Student's-t UCL            | <u> </u> | 95% Chebyshev (Mean, Sd) UCL               | 6.713026838  |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL             | 7.258266911  |
|                                | <u> </u> | 99% Chebyshev (Mean, Sd) UCL               | 8.329285454  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

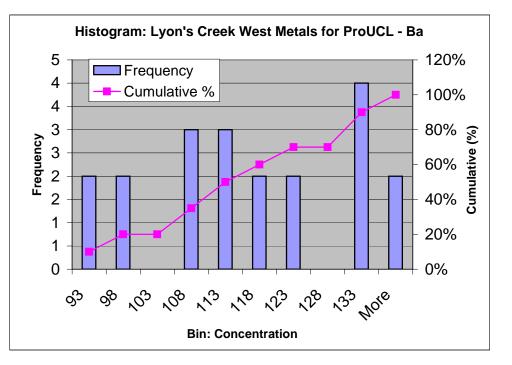
## Arsenic Dryland Data for ProUCL LC1 TM1LCLC-2 Removed



| Bin  | Frequency | Cumulative % |
|------|-----------|--------------|
| 3    | 3         | 7.7%         |
| 4    | 3         | 15.4%        |
| 5    | 5         | 28.2%        |
| 6    | 11        | 56.4%        |
| 7    | 8         | 76.9%        |
| 8    | 1         | 79.5%        |
| 9    | 2         | 84.6%        |
| 10   | 1         | 87.2%        |
| 11   | 0         | 87.2%        |
| More | 5         | 100.0%       |



Niagara Peninsula Conservation Authority Human Health Rik Assessment Lyon's Ceek West Page B-14 December, 2007 Dillon Consulting Limited


## Lyon's Creek West: Barium Concentration in Soil (Upland Area)

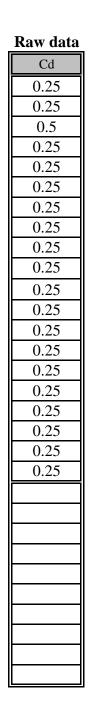
| ProUCL Statistical Summary:    |            | Barium                                      |           |
|--------------------------------|------------|---------------------------------------------|-----------|
| Raw Statistics                 |            | Normal Distribution Test                    |           |
| Number of Valid Samples        | 20         | Shapiro-Wilk Test Statisitic                | 0.8556275 |
| Number of Unique Samples       | 17         | Shapiro-Wilk 5% Critical Value              | 0.0000275 |
| Minimum                        | 48         | Data not normal at 5% significance level    | 0.902     |
| Maximum                        | 135        |                                             |           |
| Mean                           | 111.85     | 95% UCL (Assuming Normal Distribut          | tion)     |
| Median                         | 113.5      | Student's-t UCL                             | 119.5893  |
| Standard Deviation             | 20.01651   |                                             |           |
| Variance                       | 400.6605   | Gamma Distribution Test                     |           |
| Coefficient of Variation       | 0.178958   | A-D Test Statistic                          | 1.1272946 |
| Skewness                       | -1.683571  | A-D 5% Critical Value                       | 0.7405374 |
|                                |            | K-S Test Statistic                          | 0.1867186 |
| Gamma Statistics               |            | K-S 5% Critical Value                       | 0.193471  |
| k hat                          | 24.47973   | Data follow approximate gamma distibution   | 1         |
| k star (bias corrected)        | 20.8411    | at 5% significance level                    |           |
| Theta hat                      | 4.569086   |                                             |           |
| Theta star                     | 5.366798   | 95% UCLs (Assuming Gamma Distribution       | on)       |
| nu hat                         | 979.1892   | Approximate Gamma UCL                       | 121.46993 |
| nu star                        | 833.6441   | Adjusted Gamma UCL                          | 122.26563 |
| Approx.Chi Square Value (.05)  | 767.623    |                                             |           |
| Adjusted Level of Significance | 0.038      | Lognormal Distribution Test                 |           |
| Adjusted Chi Square Value      | 762.6272   |                                             |           |
|                                |            | Shapiro-Wilk 5% Critical Value              | 0.905     |
| Log-transformed Statistics     |            | Data not lognormal at 5% significance level | 1         |
| Minimum of log data            | 3.871201   |                                             |           |
| Maximum of log data            | 4.905275   | 95% UCLs (Assuming Lognormal Distri         |           |
| Mean of log data               | 4.696595   | 95% H-UCL                                   | 123.40626 |
| Standard Deviation of log data | 0.226602   | 95% Chebyshev (MVUE) UCL                    | 137.27167 |
| Variance of log data           | 0.051348   | 97.5% Chebyshev (MVUE) UCL                  | 148.08749 |
|                                |            | 99% Chebyshev (MVUE) UCL                    | 169.33305 |
|                                |            | 95% Non-parametric UCLs                     |           |
|                                |            | CLT UCL                                     | 119.21208 |
|                                | 1          | Adj-CLT UCL (Adjusted for skewness)         | 117.4116  |
|                                |            | Mod-t UCL (Adjusted for skewness)           | 119.30847 |
|                                |            | Jackknife UCL                               | 119.58930 |
|                                |            | Standard Bootstrap UCL                      | 119.0431  |
|                                |            | Bootstrap-t UCL 11                          |           |
| RECOMMENDATION                 |            | Hall's Bootstrap UCL                        | 118.12776 |
| Assuming gamma distribut       | ion (0.05) |                                             |           |
|                                |            | BCA Bootstrap UCL 117                       |           |
| Use Approximate Gamma UCI      |            | 95% Chebyshev (Mean, Sd) UCL                | 131.35968 |
|                                |            | 97.5% Chebyshev (Mean, Sd) UCL              | 139.80153 |
|                                |            | 99% Chebyshev (Mean, Sd) UCL                | 156.38392 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-15 December, 2007 Dillon Consulting Limited

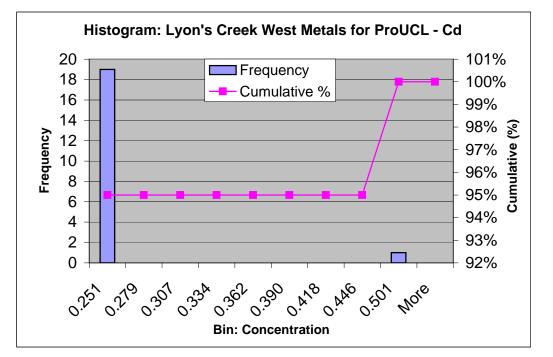
## Lyon's Creek West: Barium Concentration in Soil (Upland Area)

|      | Histogram data |              |  |  |  |
|------|----------------|--------------|--|--|--|
| Bin  | Frequency      | Cumulative % |  |  |  |
| 93   | 2              | 10.0%        |  |  |  |
| 98   | 2              | 20.0%        |  |  |  |
| 103  | 0              | 20.0%        |  |  |  |
| 108  | 3              | 35.0%        |  |  |  |
| 113  | 3              | 50.0%        |  |  |  |
| 118  | 2              | 60.0%        |  |  |  |
| 123  | 2              | 70.0%        |  |  |  |
| 128  | 0              | 70.0%        |  |  |  |
| 133  | 4              | 90.0%        |  |  |  |
| More | 2              | 100.0%       |  |  |  |




Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-16 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Cadmium Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    | roUCL Statistical Summary: Cadmium |                                            |          |
|--------------------------------|------------------------------------|--------------------------------------------|----------|
| Raw Statistics                 | г                                  | Normal Distribution Test                   | -        |
| Number of Valid Samples        | 20                                 | Shapiro-Wilk Test Statisitic               | 0.235903 |
| Number of Unique Samples       | 20                                 | Shapiro-Wilk 5% Critical Value             | 0.233903 |
| Minimum                        | 0.25                               | Data not normal at 5% significance level   | 0.903    |
| Maximum                        | 0.23                               | Data not normal at 5% significance level   |          |
| Mean                           | 0.2625                             | 95% UCL (Assuming Normal Distribu          | ution)   |
| Median                         | 0.2025                             | Student's-t UCL                            | 0.284114 |
| Standard Deviation             | 0.055902                           | Student S-t OCL                            | 0.20411- |
| Variance                       | 0.003125                           | Gamma Distribution Test                    |          |
| Coefficient of Variation       | 0.212959                           | A-D Test Statistic                         | 7.235096 |
| Skewness                       | 4.472136                           | A-D 5% Critical Value                      | 0.740062 |
|                                |                                    | K-S Test Statistic                         | 0.541873 |
| Gamma Statistics               |                                    | K-S 5% Critical Value                      | 0.193449 |
| k hat                          | 35.54456                           | Data do not follow gamma distribution      | 0.175115 |
| k star (bias corrected)        | 30.24621                           | at 5% significance level                   |          |
| Theta hat                      | 0.007385                           |                                            |          |
| Theta star                     | 0.008679                           | 95% UCLs (Assuming Gamma Distributi        | on)      |
| nu hat                         | 1421.782                           | Approximate Gamma UCL                      | 0.281031 |
| nu star                        | 1209.848                           | Adjusted Gamma UCL                         | 0.28255  |
| Approx.Chi Square Value (.05)  | 1130.073                           | 5                                          |          |
| Adjusted Level of Significance | 0.038                              | Lognormal Distribution Test                |          |
| Adjusted Chi Square Value      | 1123.995                           |                                            |          |
| ¥ ¥                            | •                                  | Shapiro-Wilk 5% Critical Value 0.9         |          |
| Log-transformed Statistics     |                                    | Data not lognormal at 5% significance leve | el       |
| Minimum of log data            | -1.386294                          |                                            |          |
| Maximum of log data            | -0.693147                          | 95% UCLs (Assuming Lognormal Distr         | ibution) |
| Mean of log data               | -1.351637                          | 95% H-UCL                                  | 0.278789 |
| Standard Deviation of log data | 0.154992                           | 95% Chebyshev (MVUE) UCL                   | 0.301481 |
| Variance of log data           | 0.024023                           | 97.5% Chebyshev (MVUE) UCL                 | 0.318658 |
|                                |                                    | 99% Chebyshev (MVUE) UCL                   | 0.352399 |
|                                |                                    | 95% Non-parametric UCLs                    |          |
|                                |                                    | CLT UCL                                    | 0.283061 |
|                                |                                    | Adj-CLT UCL (Adjusted for skewness)        | 0.285001 |
|                                |                                    | Mod-t UCL (Adjusted for skewness)          | 0.290417 |
|                                |                                    | Jackknife UCL                              | 0.280197 |
|                                | + +                                | Standard Bootstrap UCL                     | N/R      |
|                                | + +                                | Bootstrap-t UCL                            | N/R      |
| RECOMMENDATION                 |                                    |                                            | N/A      |
| Data are Non-parametric (0.0   | )5)                                | Percentile Bootstrap UCL N/F               |          |
|                                |                                    | BCA Bootstrap UCL                          | N/R      |
| Use Student's-t UCL            |                                    | 95% Chebyshev (Mean, Sd) UCL               | 0.316986 |
| or Modified-t UCL              |                                    |                                            |          |
|                                |                                    | 99% Chebyshev (Mean, Sd) UCL               | 0.340562 |

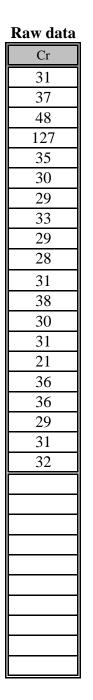
Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-17 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Cadmium Concentration in Soil (Upland Area)

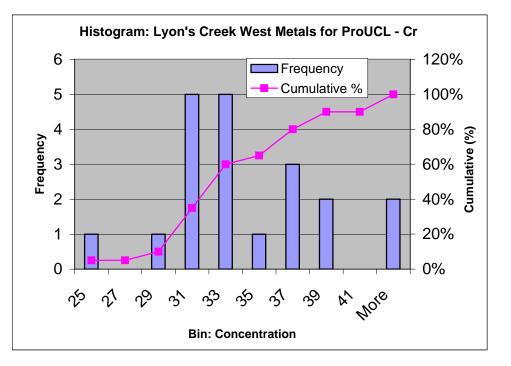


| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 0.251          | 19        | 95.0%        |  |
| 0.279          | 0         | 95.0%        |  |
| 0.307          | 0         | 95.0%        |  |
| 0.334          | 0         | 95.0%        |  |
| 0.362          | 0         | 95.0%        |  |
| 0.390          | 0         | 95.0%        |  |
| 0.418          | 0         | 95.0%        |  |
| 0.446          | 0         | 95.0%        |  |
| 0.501          | 1         | 100.0%       |  |
| More           | 0         | 100.0%       |  |




Page B-18 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Chromium Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    | Chromium (Total) |                                            | 1        |
|--------------------------------|------------------|--------------------------------------------|----------|
| Raw Statistics                 | <u>т г</u>       | Normal Distribution Test                   |          |
| Number of Valid Samples        | 20               | Shapiro-Wilk Test Statisitic               | 0.442555 |
| Number of Unique Samples       | 13               | Shapiro-Wilk 5% Critical Value             | 0.44233  |
| Minimum                        | 21               | Data not normal at 5% significance level   | 0.70.    |
| Maximum                        | 127              | Data not normal at 5 /0 significance lever |          |
| Mean                           | 37.1             | 95% UCL (Assuming Normal Distribu          | tion)    |
| Median                         | 31               | Student's-t UCL                            | 45.53366 |
| Standard Deviation             | 21.81236         | Students ( COL                             | 10100000 |
| Variance                       | 475.7789         | Gamma Distribution Test                    |          |
| Coefficient of Variation       | 0.587934         | A-D Test Statistic                         | 3.001941 |
| Skewness                       | 4.054459         | A-D 5% Critical Value                      | 0.744291 |
|                                |                  | K-S Test Statistic                         | 0.323509 |
| Gamma Statistics               |                  | K-S 5% Critical Value                      | 0.194298 |
| k hat                          | 6.385362         | Data do not follow gamma distribution      |          |
| k star (bias corrected)        | 5.460891         | at 5% significance level                   |          |
| Theta hat                      | 5.810164         |                                            |          |
| Theta star                     | 6.793764         | 95% UCLs (Assuming Gamma Distributi        | on)      |
| nu hat                         | 255.4145         | Approximate Gamma UCL                      | 43.75244 |
| nu star                        | 218.4356         | Adjusted Gamma UCL                         | 44.33025 |
| Approx.Chi Square Value (.05)  | 185.2231         | * · · · · · · · · · · · · · · · · · · ·    |          |
| Adjusted Level of Significance | 0.038            | Lognormal Distribution Test                |          |
| Adjusted Chi Square Value      | 182.8089         |                                            |          |
|                                |                  | Shapiro-Wilk 5% Critical Value 0.9         |          |
| Log-transformed Statistics     |                  | Data not lognormal at 5% significance leve | el       |
| Minimum of log data            | 3.044522         |                                            |          |
| Maximum of log data            | 4.844187         | 95% UCLs (Assuming Lognormal Distr         | ibution) |
| Mean of log data               | 3.533274         | 95% H-UCL                                  | 42.23845 |
| Standard Deviation of log data | 0.347723         | 95% Chebyshev (MVUE) UCL                   | 48.76787 |
| Variance of log data           | 0.120912         | 97.5% Chebyshev (MVUE) UCL                 | 54.18261 |
|                                |                  | 99% Chebyshev (MVUE) UCL                   | 64.81882 |
|                                |                  | 95% Non-parametric UCLs                    |          |
|                                | +                | CLT UCL                                    | 45.1226  |
|                                | + +              | Adj-CLT UCL (Adjusted for skewness)        | 49.84742 |
|                                | + +              | Mod-t UCL (Adjusted for skewness)          | 46.27063 |
|                                | + +              | Jackknife UCL                              | 45.53366 |
|                                | + +              | Standard Bootstrap UCL                     | 44.73633 |
|                                | + +              | Bootstrap-t UCL                            | 70.0035  |
| RECOMMENDATION                 | <u> </u>         | Hall's Bootstrap UCL                       | 82.51444 |
| Data are Non-parametric (0.0   | 5)               | Percentile Bootstrap UCL                   | 46.3     |
|                                |                  | BCA Bootstrap UCL                          | 51.9     |
| Use Student's-t UCL            | <u> </u>         | 95% Chebyshev (Mean, Sd) UCL               | 58.36006 |
| or Modified-t UCL              |                  | 97.5% Chebyshev (Mean, Sd) UCL             | 67.5593  |
|                                | <u>₁ †</u>       | 99% Chebyshev (Mean, Sd) UCL               | 85.62943 |

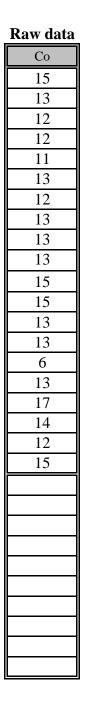
Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

## Lyon's Creek West: Chromium Concentration in Soil (Upland Area)

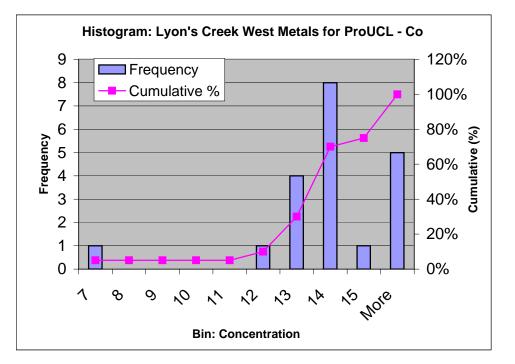


| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 25             | 1         | 5.0%         |  |
| 27             | 0         | 5.0%         |  |
| 29             | 1         | 10.0%        |  |
| 31             | 5         | 35.0%        |  |
| 33             | 5         | 60.0%        |  |
| 35             | 1         | 65.0%        |  |
| 37             | 3         | 80.0%        |  |
| 39             | 2         | 90.0%        |  |
| 41             | 0         | 90.0%        |  |
| More           | 2         | 100.0%       |  |




Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek Page B-20 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Cobalt Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    | Cobalt    |                                             |           |
|--------------------------------|-----------|---------------------------------------------|-----------|
| Raw Statistics                 |           | Normal Distribution Test                    |           |
| Number of Valid Samples        | 20        | Shapiro-Wilk Test Statisitic                | 0.833169  |
| Number of Unique Samples       | 7         | Shapiro-Wilk 5% Critical Value              | 0.905     |
| Minimum                        | 6         | Data not normal at 5% significance level    |           |
| Maximum                        | 17        |                                             |           |
| Mean                           | 13        | 95% UCL (Assuming Normal Distribut          | ion)      |
| Median                         | 13        | Student's-t UCL                             | 13.841507 |
| Standard Deviation             | 2.176429  |                                             |           |
| Variance                       | 4.736842  | Gamma Distribution Test                     |           |
| Coefficient of Variation       | 0.167418  | A-D Test Statistic                          | 1.5859989 |
| Skewness                       | -1.463492 | A-D 5% Critical Value                       | 0.7403388 |
|                                |           | K-S Test Statistic                          | 0.2579907 |
| Gamma Statistics               | _         | K-S 5% Critical Value                       | 0.1934618 |
| k hat                          | 29.09758  | Data do not follow gamma distribution       |           |
| k star (bias corrected)        | 24.76628  | at 5% significance level                    |           |
| Theta hat                      | 0.446773  |                                             |           |
| Theta star                     | 0.524907  | 95% UCLs (Assuming Gamma Distribution       |           |
| nu hat                         | 1163.903  | Approximate Gamma UCL                       | 14.020046 |
| nu star                        | 990.651   | Adjusted Gamma UCL                          | 14.104072 |
| Approx.Chi Square Value (.05)  | 918.575   |                                             |           |
| Adjusted Level of Significance | 0.038     | Lognormal Distribution Test                 |           |
| Adjusted Chi Square Value      | 913.1025  |                                             |           |
|                                |           | Shapiro-Wilk 5% Critical Value              | 0.905     |
| Log-transformed Statistics     | 1 501550  | Data not lognormal at 5% significance level |           |
| Minimum of log data            | 1.791759  |                                             |           |
| Maximum of log data            | 2.833213  | 95% UCLs (Assuming Lognormal Distri         |           |
| Mean of log data               | 2.547667  | 95% H-UCL                                   | 14.195423 |
| Standard Deviation of log data | 0.205804  | 95% Chebyshev (MVUE) UCL                    | 15.669059 |
| Variance of log data           | 0.042355  | 97.5% Chebyshev (MVUE) UCL                  | 16.808091 |
|                                |           | 99% Chebyshev (MVUE) UCL                    | 19.045499 |
|                                |           | 95% Non-parametric UCLs                     |           |
|                                |           | CLT UCL                                     | 13.800491 |
|                                |           | Adj-CLT UCL (Adjusted for skewness)         | 13.630321 |
|                                |           | Mod-t UCL (Adjusted for skewness)           | 13.814964 |
|                                |           | Jackknife UCL                               | 13.841507 |
|                                |           | Standard Bootstrap UCL                      | 13.782286 |
|                                |           | Bootstrap-t UCL                             | 13.707107 |
|                                |           | Hall's Bootstrap UCL                        | 13.730262 |
| Data are Non-parametric (0.0   | )5)       | Percentile Bootstrap UCL                    |           |
|                                |           | Percentile Bootstrap UCL1BCA Bootstrap UCL1 |           |
| Use Student's-t UCL            |           | 95% Chebyshev (Mean, Sd) UCL 15.12          |           |
| or Modified-t UCL              |           | 97.5% Chebyshev (Mean, Sd) UCL 16.          |           |
|                                |           | 99% Chebyshev (Mean, Sd) UCL                | 17.842248 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-21 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Cobalt Concentration in Soil (Upland Area)



| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 7              | 1         | 5.0%         |  |
| 8              | 0         | 5.0%         |  |
| 9              | 0         | 5.0%         |  |
| 10             | 0         | 5.0%         |  |
| 11             | 0         | 5.0%         |  |
| 12             | 1         | 10.0%        |  |
| 13             | 4         | 30.0%        |  |
| 14             | 8         | 70.0%        |  |
| 15             | 1         | 75.0%        |  |
| More           | 5         | 100.0%       |  |

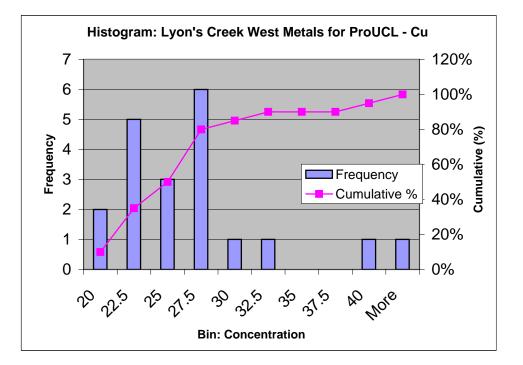


#### Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-22 December, 2007 Dillon Consulting Limited

# Lyon's Creek West: Copper Concentration in Soil (Upland Area)

| ProUCL Statistical St   | ummary:                 | Copper   |                                             |             |
|-------------------------|-------------------------|----------|---------------------------------------------|-------------|
|                         |                         |          |                                             | <u> </u>    |
| Raw Statisti            |                         |          | Normal Distribution Test                    |             |
| Number of Valid San     |                         | 20       | Shapiro-Wilk Test Statisitic                | 0.7819182   |
|                         | umber of Unique Samples |          | Shapiro-Wilk 5% Critical Value              | 0.905       |
| Minimum                 |                         | 10       | Data not normal at 5% significance level    |             |
| Maximum                 |                         | 57       |                                             |             |
| Mean                    |                         | 25.8     | 95% UCL (Assuming Normal Distribu           |             |
| Median                  |                         | 24.5     | Student's                                   | 29.358291   |
| Standard Deviation      |                         | 9.202974 |                                             |             |
| Variance                |                         | 84.69474 | Gamma Distribution Test                     | -           |
| Coefficient of Variati  | on                      | 0.356704 | A-D Test Statistic                          | 1.0783332   |
| Skewness                |                         | 2.084384 | A-D 5% Critical Value                       | 0.7419436   |
|                         |                         |          | K-S Test Statistic                          | 0.2071534   |
| Gamma S                 | tatistics               |          | K-S 5% Critical Value                       | 0.193869    |
| k hat                   |                         | 9.847124 | Data do not follow gamma distribution       |             |
| k star (bias corrected) | )                       | 8.403389 | at 5% significance level                    |             |
| Theta hat               |                         | 2.620054 |                                             |             |
| Theta star              |                         | 3.07019  | 95% UCLs (Assuming Gamma Distribution       |             |
| nu hat                  |                         | 393.885  | Approximate Gamma UCL                       | 29.432947   |
| nu star                 |                         | 336.1356 | Adjusted Gamma UCL                          | 29.742355   |
| Approx.Chi Square V     |                         | 294.6459 |                                             |             |
| Adjusted Level of Sig   |                         | 0.038    | Lognormal Distribution Test                 |             |
| Adjusted Chi Square     | Value                   | 291.5807 | Shapiro-Wilk Test Statisitic                | 0.879098998 |
|                         |                         |          | Shapiro-Wilk 5% Critical Value 0            |             |
| Log-transformed S       |                         |          | Data not lognormal at 5% significance level |             |
| Minimum of log data     |                         | 2.302585 |                                             |             |
| Maximum of log data     | ۱ <u> </u>              | 4.043051 | 95% UCLs (Assuming Lognormal Distri         |             |
| Mean of log data        |                         | 3.19874  | 95% H-UCL                                   | 29.725207   |
| Standard Deviation of   | f log data              | 0.327298 | 95% Chebyshev (MVUE) UCL                    | 34.135716   |
| Variance of log data    |                         | 0.107124 | 97.5% Chebyshev (MVUE) UCL 37.              |             |
|                         |                         |          | 99% Chebyshev (MVUE) UCL 44.856             |             |
|                         |                         |          |                                             |             |
|                         |                         |          | 95% Non-parametric UCLs                     |             |
|                         |                         | + +      | CLT UCL                                     | 29.184858   |
|                         |                         | + +      | Adj-CLT UCL (Adjusted for skewness)         | 30.209699   |
|                         |                         | + +      | Mod-t U                                     | 29.518146   |
|                         |                         | + +      | Jackknife UCL 29.358                        |             |
|                         |                         | + +      | Standard Bootstrap UCL 29.105               |             |
|                         |                         | ┥──┤     | Bootstrap-t UCL 31.49                       |             |
| RI                      |                         | + +      | Hall's Bootstrap UCL   50.17                |             |
| Data a                  |                         | ┥───┤    | Percentile Bootstrap UCL 29                 |             |
|                         |                         | ┥───┤    | BCA Bootstrap UCL 30                        |             |
| Use Stud                |                         | ┥───┤    | 95% Chebyshev (Mean, Sd) UCL 34.            |             |
| or Modi                 |                         |          | 97.5% Chebyshev (Mean, Sd) UCL 38.6         |             |
|                         | 1                       |          | 99% Chebyshev (Mean, Sd) UCL                | 46.275325   |


Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-23 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Copper Concentration in Soil (Upland Area)

#### Raw data

| Cu             |   |
|----------------|---|
| 24             |   |
| 18             |   |
| 57             |   |
| 20             |   |
| 30             |   |
| 24             |   |
| 28             |   |
| 21             |   |
| 22             |   |
| 25             |   |
| 27             |   |
| 27<br>21<br>27 |   |
| 27             |   |
| 23             |   |
| 10             |   |
| 39             |   |
| 22             |   |
| 26             |   |
| 27             |   |
| 25             |   |
|                |   |
|                |   |
|                |   |
|                |   |
|                | I |
|                |   |
|                |   |
|                |   |
|                |   |
|                |   |

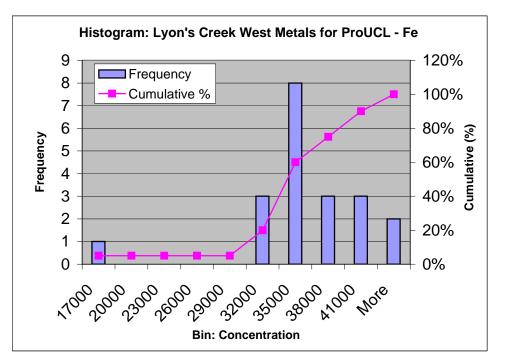
| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 20             | 2         | 10.0%        |  |
| 22.5           | 5         | 35.0%        |  |
| 25             | 3         | 50.0%        |  |
| 27.5           | 6         | 80.0%        |  |
| 30             | 1         | 85.0%        |  |
| 32.5           | 1         | 90.0%        |  |
| 35             | 0         | 90.0%        |  |
| 37.5           | 0         | 90.0%        |  |
| 40             | 1         | 95.0%        |  |
| More           | 1         | 100.0%       |  |



#### Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-24 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Iron Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |           | Iron                                        |                                                |
|--------------------------------|-----------|---------------------------------------------|------------------------------------------------|
| Raw Statistics                 | <u>т</u>  | Normal Distribution Test                    |                                                |
| Number of Valid Samples        | 20        | Shapiro-Wilk Test Statisitic                | 0.8600792                                      |
| Number of Unique Samples       | 19        | Shapiro-Wilk 5% Critical Value              | 0.90                                           |
| Minimum                        | 15700     | Data not normal at 5% significance level    |                                                |
| Maximum                        | 49800     | 8                                           |                                                |
| Mean                           | 34665     | 95% UCL (Assuming Normal Distribut          | ion)                                           |
| Median                         | 34200     | Student's-t UCL                             | 37119.55                                       |
| Standard Deviation             | 6348.334  |                                             | •                                              |
| Variance                       | 40301342  | Gamma Distribution Test                     |                                                |
| Coefficient of Variation       | 0.183134  | A-D Test Statistic                          | 1.424246                                       |
| Skewness                       | -0.664195 | A-D 5% Critical Value                       | 0.740480                                       |
|                                |           | K-S Test Statistic                          | 0.240022                                       |
| Gamma Statistics               |           | K-S 5% Critical Value                       | 0.193468                                       |
| k hat                          | 25.79254  | Data do not follow gamma distribution       |                                                |
| k star (bias corrected)        | 21.95699  | at 5% significance level                    |                                                |
| Theta hat                      | 1343.993  |                                             |                                                |
| Theta star                     | 1578.768  | 95% UCLs (Assuming Gamma Distribution       |                                                |
| nu hat                         | 1031.701  | Approximate Gamma UCL                       | 37564.71                                       |
| nu star                        | 878.2796  | Adjusted Gamma UCL                          | 37804.25                                       |
| Approx.Chi Square Value (.05)  | 810.483   |                                             |                                                |
| Adjusted Level of Significance | 0.038     | Lognormal Distribution Test                 |                                                |
| Adjusted Chi Square Value      | 805.3474  | Shapiro-Wilk Test Statisitic                | 0.748394                                       |
|                                |           | Shapiro-Wilk 5% Critical Value              | 0.90                                           |
| Log-transformed Statistics     |           | Data not lognormal at 5% significance level | -                                              |
| Minimum of log data            | 9.661416  |                                             |                                                |
| Maximum of log data            | 10.81577  | 95% UCLs (Assuming Lognormal Distril        |                                                |
| Mean of log data               | 10.43398  | 95% H-UCL                                   | 38031.65                                       |
| Standard Deviation of log data | 0.21651   | 95% Chebyshev (MVUE) UCL                    | 42148.80 <sup>°</sup><br>45346.01 <sup>°</sup> |
| Variance of log data           | 0.046877  |                                             |                                                |
|                                |           | 99% Chebyshev (MVUE) UCL                    | 51626.3                                        |
|                                |           | 95% Non-parametric UCLs                     |                                                |
|                                |           | CLT UCL                                     | 36999.9                                        |
|                                |           | Adj-CLT UCL (Adjusted for skewness)         | 36774.64                                       |
|                                | 1         | Mod-t UCL (Adjusted for skewness)           | 37084.41                                       |
|                                | 1         | Jackknife UCL                               | 37119.55                                       |
|                                |           | Standard Bootstrap UCL                      | 36927.82                                       |
|                                |           | Bootstrap-t UCL                             | 36929.27                                       |
| RECOMMENDATION                 |           | Hall's Bootstrap UCL                        | 37225.6                                        |
| Data are Non-parametric (0.05) |           | Percentile Bootstrap UCL                    | 3691                                           |
|                                |           | BCA Bootstrap UCL                           | 3655                                           |
| Use Student's-t UCL            | •         | 95% Chebyshev (Mean, Sd) UCL                | 40852.5                                        |
| or Modified-t UCL              |           | 97.5% Chebyshev (Mean, Sd) UCL              | 43529.96                                       |
|                                |           | 99% Chebyshev (Mean, Sd) UCL                | 48789.15                                       |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-25 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Iron Concentration in Soil (Upland Area)

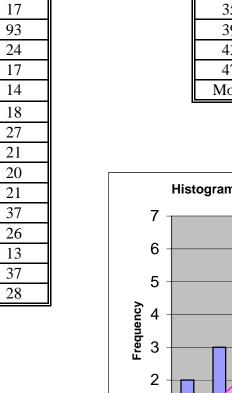
| Fe           35800           33800           49800           29200           42000           33800           31700           33000 |
|------------------------------------------------------------------------------------------------------------------------------------|
| 33800         49800         29200         42000         33800         31700         33000                                          |
| 49800<br>29200<br>42000<br>33800<br>31700<br>33000                                                                                 |
| 29200<br>42000<br>33800<br>31700<br>33000                                                                                          |
| 42000<br>33800<br>31700<br>33000                                                                                                   |
| 33800<br>31700<br>33000                                                                                                            |
| 31700<br>33000                                                                                                                     |
| 33000                                                                                                                              |
|                                                                                                                                    |
|                                                                                                                                    |
| 31500                                                                                                                              |
| 33100                                                                                                                              |
| 34700                                                                                                                              |
| 39200                                                                                                                              |
| 33900                                                                                                                              |
| 32800                                                                                                                              |
| 15700                                                                                                                              |
| 38200<br>40000                                                                                                                     |
| 35500                                                                                                                              |
| 34500                                                                                                                              |
| 34300                                                                                                                              |
| 33100                                                                                                                              |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |

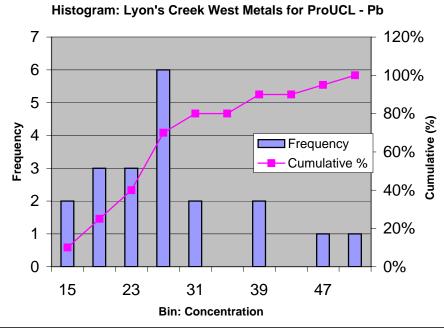
| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 17000          | 1         | 5.0%         |  |
| 20000          | 0         | 5.0%         |  |
| 23000          | 0         | 5.0%         |  |
| 26000          | 0         | 5.0%         |  |
| 29000          | 0         | 5.0%         |  |
| 32000          | 3         | 20.0%        |  |
| 35000          | 8         | 60.0%        |  |
| 38000          | 3         | 75.0%        |  |
| 41000          | 3         | 90.0%        |  |
| More           | 2         | 100.0%       |  |



Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-26 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Lead Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |          | Lead                                       |                                       |
|--------------------------------|----------|--------------------------------------------|---------------------------------------|
| Raw Statistics                 |          | Normal Distribution Test                   |                                       |
| Number of Valid Samples        | 20       | Shapiro-Wilk Test Statisitic               | 0.651984852                           |
| Number of Unique Samples       | 14       | Shapiro-Wilk 5% Critical Value             | 0.905                                 |
| Minimum                        | 13       | Data not normal at 5% significance level   |                                       |
| Maximum                        | 93       |                                            |                                       |
| Mean                           | 27.9     | 95% UCL (Assuming Normal Distribution      | tion)                                 |
| Median                         | 24       | Student's-t UCL                            | 34.59795887                           |
| Standard Deviation             | 17.32324 |                                            |                                       |
| Variance                       | 300.0947 | Gamma Distribution Test                    |                                       |
| Coefficient of Variation       | 0.620905 | A-D Test Statistic                         | 1.05188426                            |
| Skewness                       | 3.064363 | A-D 5% Critical Value                      | 0.745346609                           |
|                                | •        | K-S Test Statistic                         | 0.23502557                            |
| Gamma Statistics               |          | K-S 5% Critical Value                      | 0.194536078                           |
| k hat                          | 4.611303 | Data do not follow gamma distribution      |                                       |
| k star (bias corrected)        | 3.952941 | at 5% significance level                   |                                       |
| Theta hat                      | 6.050351 |                                            |                                       |
| Theta star                     | 7.058036 | 95% UCLs (Assuming Gamma Distributi        | on)                                   |
| nu hat                         | 184.4521 | Approximate Gamma UCL                      | 33.92352736                           |
| nu star                        | 158.1176 | Adjusted Gamma UCL                         | 34.45622864                           |
| Approx.Chi Square Value (.05)  | 130.042  |                                            |                                       |
| Adjusted Level of Significance | 0.038    | Lognormal Distribution Test                |                                       |
| Adjusted Chi Square Value      | 128.0315 | Shapiro-Wilk Test Statisitic               | 0.900475626                           |
|                                |          | Shapiro-Wilk 5% Critical Value             | 0.905                                 |
| Log-transformed Statistics     |          | Data not lognormal at 5% significance leve | el                                    |
| Minimum of log data            | 2.564949 |                                            |                                       |
| Maximum of log data            | 4.532599 | 95% UCLs (Assuming Lognormal Distr         | · · · · · · · · · · · · · · · · · · · |
| Mean of log data               | 3.216297 | 95% H-UCL                                  | 33.50626373                           |
| Standard Deviation of log data | 0.44198  | 95% Chebyshev (MVUE) UCL                   | 39.47394167                           |
| Variance of log data           | 0.195346 | 97.5% Chebyshev (MVUE) UCL                 | 44.72041041                           |
|                                |          | 99% Chebyshev (MVUE) UCL                   | 55.02608233                           |
|                                | 1        | 95% Non-parametric UCLs                    |                                       |
|                                | 1 1      | CLT UCL                                    | 34.2714965                            |
|                                |          | Adj-CLT UCL (Adjusted for skewness)        | 37.10758558                           |
|                                | 1 1      | Mod-t UCL (Adjusted for skewness)          | 35.04033146                           |
|                                | 1 1      | Jackknife UCL                              | 34.59795887                           |
|                                | 1 1      | Standard Bootstrap UCL                     | 34.1784295                            |
|                                |          | Bootstrap-t UCL                            | 41.3716881                            |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                       | 62.03458787                           |
| Data are Non-parametric (0.05) |          | Percentile Bootstrap UCL                   | 34.85                                 |
|                                |          | BCA Bootstrap UCL                          | 37                                    |
| Use Student's-t UCL            |          | 95% Chebyshev (Mean, Sd) UCL               | 44.78460838                           |
| or Modified-t UCL              |          | 97.5% Chebyshev (Mean, Sd) UCL             | 52.09059191                           |
|                                |          | 99% Chebyshev (Mean, Sd) UCL               | 66.44178184                           |


Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-27 December, 2007 Dillon Consulting Limited

# Lyon's Creek West: Lead Concentration in Soil (Upland Area)

#### Raw data Pb

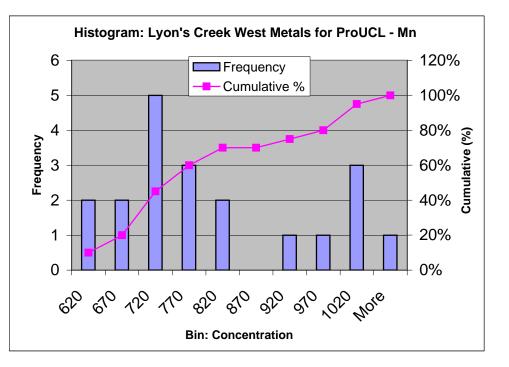
| Histogram data |           |              |  |  |
|----------------|-----------|--------------|--|--|
| Bin            | Frequency | Cumulative % |  |  |
| 15             | 2         | 10.0%        |  |  |
| 19             | 3         | 25.0%        |  |  |
| 23             | 3         | 40.0%        |  |  |
| 27             | 6         | 70.0%        |  |  |
| 31             | 2         | 80.0%        |  |  |
| 35             | 0         | 80.0%        |  |  |
| 39             | 2         | 90.0%        |  |  |
| 43             | 0         | 90.0%        |  |  |
| 47             | 1         | 95.0%        |  |  |
| More           | 1         | 100.0%       |  |  |





Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

## Lyon's Creek West: Manganese Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |           | Manganese                                  | 1        |
|--------------------------------|-----------|--------------------------------------------|----------|
| Raw Statistics                 |           | Normal Distribution Test                   |          |
| Number of Valid Samples        | 20        | Shapiro-Wilk Test Statisitic               | 0.947442 |
| Number of Unique Samples       | 20        | Shapiro-Wilk 5% Critical Value             | 0.947442 |
| Minimum                        | 451       | Data are normal at 5% significance level   | 0.705    |
| Maximum                        | 1220      | Data die normal at 570 significance lever  |          |
| Mean                           | 782.9     | 95% UCL (Assuming Normal Distribu          | ition)   |
| Median                         | 733       | Student's-t UCL                            | 851.643  |
| Standard Deviation             | 177.7932  | Statents to on                             | 001101   |
| Variance                       | 31610.41  | Gamma Distribution Test                    |          |
| Coefficient of Variation       | 0.227096  | A-D Test Statistic                         | 0.391723 |
| Skewness                       | 0.66042   | A-D 5% Critical Value                      | 0.740689 |
|                                | -         | K-S Test Statistic                         | 0.122424 |
| Gamma Statistics               |           | K-S 5% Critical Value                      | 0.193478 |
| k hat                          | 20.96413  | Data follow gamma distribution             | •        |
| k star (bias corrected)        | 17.85285  | at 5% significance level                   |          |
| Theta hat                      | 37.34473  |                                            |          |
| Theta star                     | 43.85295  | 95% UCLs (Assuming Gamma Distributi        | on)      |
| nu hat                         | 838.56536 | Approximate Gamma UCL                      | 856.0445 |
| nu star                        | 714.1139  | Adjusted Gamma UCL                         | 862.1193 |
| Approx.Chi Square Value (.05)  | 653.0966  |                                            |          |
| Adjusted Level of Significance | 0.038     | Lognormal Distribution Test                |          |
| Adjusted Chi Square Value      | 648.4947  | Shapiro-Wilk Test Statisitic               | 0.966625 |
|                                |           | Shapiro-Wilk 5% Critical Value 0.9         |          |
| Log-transformed Statistics     |           | Data are lognormal at 5% significance leve | el       |
| Minimum of log data            | 6.111467  |                                            |          |
| Maximum of log data            | 7.106606  | 95% UCLs (Assuming Lognormal Distr         |          |
| Mean of log data               | 6.638965  | 95% H-UCL                                  | 860.0366 |
| Standard Deviation of log data | 0.225289  | 95% Chebyshev (MVUE) UCL                   | 956.2125 |
| Variance of log data           | 0.050755  | 97.5% Chebyshev (MVUE) UCL                 | 1031.191 |
|                                |           | 99% Chebyshev (MVUE) UCL                   | 1178.472 |
|                                |           | 95% Non-parametric UCLs                    |          |
|                                |           | CLT UCL                                    | 848.2924 |
|                                |           | Adj-CLT UCL (Adjusted for skewness)        | 854.5656 |
|                                |           | Mod-t UCL (Adjusted for skewness)          | 852.6215 |
|                                |           | Jackknife UCL                              | 851.643  |
|                                |           | Standard Bootstrap UCL                     | 847.2804 |
|                                |           | Bootstrap-t UCL                            | 859.0112 |
| RECOMMENDATION                 |           | Hall's Bootstrap UCL                       | 862.8348 |
| Data are normal (0.05)         |           | Percentile Bootstrap UCL                   | 849.65   |
|                                |           | BCA Bootstrap UCL                          | 852.2    |
| Use Student's-t UCL            | -         | 95% Chebyshev (Mean, Sd) UCL               | 956.1913 |
|                                |           | 97.5% Chebyshev (Mean, Sd) UCL             | 1031.175 |
|                                |           | 99% Chebyshev (Mean, Sd) UCL               | 1178.465 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-29 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Manganese Concentration on Soil (Upland Area)

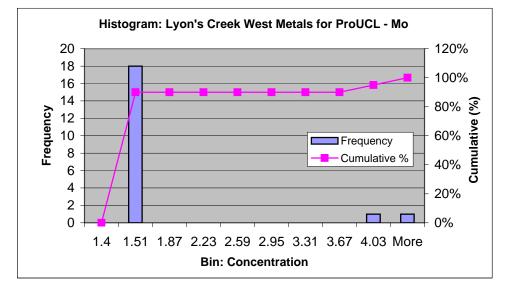
| Raw data   |  |
|------------|--|
| Mn         |  |
| 987        |  |
| 996        |  |
| 997        |  |
| 816        |  |
| 720        |  |
| 746        |  |
| 761        |  |
| 788        |  |
| 699        |  |
| 626        |  |
| 691        |  |
| 903        |  |
| 634        |  |
| 687        |  |
| 451        |  |
| 674        |  |
| 1220       |  |
| 719        |  |
| 602<br>941 |  |
| 941        |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |
|            |  |

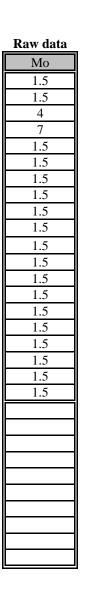
| Histogram data |           |              |  |  |
|----------------|-----------|--------------|--|--|
| Bin            | Frequency | Cumulative % |  |  |
| 620            | 2         | 10.0%        |  |  |
| 670            | 2         | 20.0%        |  |  |
| 720            | 5         | 45.0%        |  |  |
| 770            | 3         | 60.0%        |  |  |
| 820            | 2         | 70.0%        |  |  |
| 870            | 0         | 70.0%        |  |  |
| 920            | 1         | 75.0%        |  |  |
| 970            | 1         | 80.0%        |  |  |
| 1020           | 3         | 95.0%        |  |  |
| More           | 1         | 100.0%       |  |  |



Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-30 December, 2007 **Dillon Consulting Limited** 


## Lyon's Creek West: Molybdenum Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |            | Molybdenum                                 |                     |
|--------------------------------|------------|--------------------------------------------|---------------------|
| Raw Statistics                 |            | Normal Distribution Test                   |                     |
| Number of Valid Samples        | 20         | Shapiro-Wilk Test Statisitic               | 0.348460            |
| Number of Unique Samples       | 3          | Shapiro-Wilk 5% Critical Value             | 0.905               |
| Minimum                        | 1.5        | Data not normal at 5% significance level   |                     |
| Maximum                        | 7          |                                            |                     |
| Mean                           | 1.9        | 95% UCL (Assuming Normal Distribu          | tion)               |
| Median                         | 1.5        | Student's-t UCL                            | 2.41186             |
| Standard Deviation             | 1.32387    |                                            | •                   |
| Variance                       | \$1.752632 | Gamma Distribution Test                    |                     |
| Coefficient of Variation       | \$0.696774 | A-D Test Statistic                         | 6.34075             |
| Skewness                       | \$3.547703 | A-D 5% Critical Value                      | 0.745322            |
|                                | •          | K-S Test Statistic                         | 0.531284            |
| Gamma Statistics               |            | K-S 5% Critical Value                      | 0.194522            |
| k hat                          | 4.69232    | Data do not follow gamma distribution      |                     |
| k star (bias corrected)        | 4.021806   | at 5% significance level                   |                     |
| Theta hat                      | 0.404917   |                                            |                     |
| Theta star                     | 0.472425   | 95% UCLs (Assuming Gamma Distributi        | on)                 |
| nu hat                         | 187.6928   | Approximate Gamma UCL                      | 2.30610             |
| nu star                        | 160.8722   | Adjusted Gamma UCL                         | 2.34198             |
| Approx.Chi Square Value (.05)  | 132.5424   |                                            |                     |
| Adjusted Level of Significance | 0.038      | Lognormal Distribution Test                |                     |
| Adjusted Chi Square Value      | 130.512    | Shapiro-Wilk Test Statisitic               | 0.36137             |
|                                |            | Shapiro-Wilk 5% Critical Value             | 0.903               |
| Log-transformed Statistics     |            | Data not lognormal at 5% significance leve | el                  |
| Minimum of log data            | 0.405465   |                                            |                     |
| Maximum of log data            | 1.94591    | 95% UCLs (Assuming Lognormal Distr         |                     |
| Mean of log data               | 0.531529   | 95% H-UCL                                  | 2.19445             |
| Standard Deviation of log data | 0.398494   | 95% Chebyshev (MVUE) UCL                   | 2.563879<br>2.87954 |
| Variance of log data           | 0.158798   |                                            |                     |
|                                |            | 99% Chebyshev (MVUE) UCL                   | 3.49961             |
|                                |            | 95% Non-parametric UCLs                    |                     |
|                                |            | CLT UCL                                    | 2.38692             |
|                                |            | Adj-CLT UCL (Adjusted for skewness)        | 2.63784             |
|                                | 1          | Mod-t UCL (Adjusted for skewness)          | 2.45100             |
|                                | 1 i        | Jackknife UCL                              | 2.41186             |
|                                |            | Standard Bootstrap UCL                     | N/R                 |
|                                |            | Bootstrap-t UCL                            | N/R                 |
| RECOMMENDATION                 |            | Hall's Bootstrap UCL                       | N/R                 |
| Data are Non-parametric (0.05) |            | Percentile Bootstrap UCL                   | N/R                 |
|                                |            | BCA Bootstrap UCL N/R                      |                     |
| Use Student's-t UCL            | ·          | 95% Chebyshev (Mean, Sd) UCL               | 3.19034             |
|                                |            | 97.5% Chebyshev (Mean, Sd) UCL             | 3.748684            |
|                                |            | 99% Chebyshev (Mean, Sd) UCL               | 4.845425            |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-31 December, 2007 Dillon Consulting Limited

| Histogram data |           |              |  |  |
|----------------|-----------|--------------|--|--|
| Bin            | Frequency | Cumulative % |  |  |
| 1.4            | 0         | .0%          |  |  |
| 1.51           | 18        | 90.0%        |  |  |
| 1.87           | 0         | 90.0%        |  |  |
| 2.23           | 0         | 90.0%        |  |  |
| 2.59           | 0         | 90.0%        |  |  |
| 2.95           | 0         | 90.0%        |  |  |
| 3.31           | 0         | 90.0%        |  |  |
| 3.67           | 0         | 90.0%        |  |  |
| 4.03           | 1         | 95.0%        |  |  |
| More           | 1         | 100.0%       |  |  |



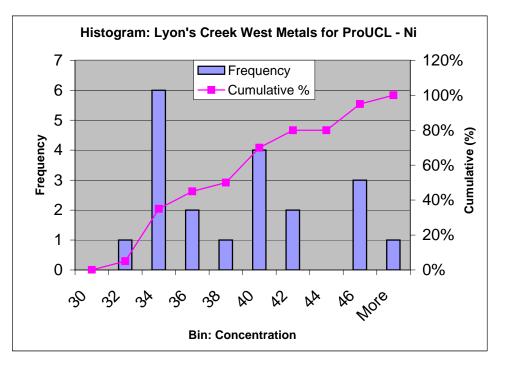




## Lyon's Creek West: Nickel Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:    |          | Nickel                                      |         |
|--------------------------------|----------|---------------------------------------------|---------|
| Raw Statistics                 |          | Normal Distribution Test                    |         |
| Number of Valid Samples        | 20       | Shapiro-Wilk Test Statisitic                | 0.54418 |
| Number of Unique Samples       | 13       | Shapiro-Wilk 5% Critical Value              | 0.90    |
| Minimum                        | 31       | Data not normal at 5% significance level    | 0.90    |
| Maximum                        | 91       | Data not normal at 570 significance level   |         |
| Mean                           | 39.45    | 95% UCL (Assuming Normal Distributi         | on)     |
| Median                         | 37       | Student's-t UCL                             | 44.4386 |
| Standard Deviation             | 12.90237 |                                             |         |
| Variance                       | 166.4711 | Gamma Distribution Test                     |         |
| Coefficient of Variation       | 0.327056 | A-D Test Statistic                          | 1.99615 |
| Skewness                       | 3.659362 | A-D 5% Critical Value                       | 0.74122 |
|                                | •        | K-S Test Statistic                          | 0.21948 |
| Gamma Statistics               |          | K-S 5% Critical Value                       | 0.19364 |
| k hat                          | 15.54796 | Data do not follow gamma distribution       |         |
| k star (bias corrected)        | 13.2491  | at 5% significance level                    |         |
| Theta hat                      | 2.537311 | × · · · · ·                                 |         |
| Theta star                     | 2.977561 | 95% UCLs (Assuming Gamma Distribution       | n)      |
| nu hat                         | 621.9183 | Approximate Gamma UCL                       | 43.7786 |
| nu star                        | 529.9639 | Adjusted Gamma UCL                          | 44.1413 |
| Approx.Chi Square Value (.05)  | 477.5632 |                                             |         |
| Adjusted Level of Significance | 0.038    | Lognormal Distribution Test                 |         |
| Adjusted Chi Square Value      | 473.6395 | Shapiro-Wilk Test Statisitic                | 0.69913 |
|                                |          | Shapiro-Wilk 5% Critical Value              | 0.90    |
| Log-transformed Statistics     |          | Data not lognormal at 5% significance level |         |
| Minimum of log data            | 3.433987 |                                             |         |
| Maximum of log data            | 4.51086  | 95% UCLs (Assuming Lognormal Distrib        |         |
| Mean of log data               | 3.642531 | 95% H-UCL                                   | 43.2714 |
| Standard Deviation of log data | 0.235594 | 95% Chebyshev (MVUE) UCL                    | 48.2881 |
| Variance of log data           | 0.055505 | 97.5% Chebyshev (MVUE) UCL 52               |         |
|                                |          | 99% Chebyshev (MVUE) UCL                    | 59.9358 |
|                                |          | 95% Non-parametric UCLs                     |         |
|                                |          | CLT UCL                                     | 44.195  |
|                                |          | Adj-CLT UCL (Adjusted for skewness)         | 46.7179 |
|                                |          | Mod-t UCL (Adjusted for skewness)           | 44.832  |
|                                |          | Jackknife UCL                               | 44.438  |
|                                |          | Standard Bootstrap UCL                      | 44.278  |
|                                |          | Bootstrap-t UCL                             | 51.759  |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                        | 62.646  |
| Data are Non-parametric (0.05) |          | Percentile Bootstrap UCL                    |         |
|                                |          | BCA Bootstrap UCL                           |         |
| Use Student's-t UCL            |          | 95% Chebyshev (Mean, Sd) UCL 5              |         |
| or Modified-t UCL              |          | 97.5% Chebyshev (Mean, Sd) UCL              | 57.4671 |
|                                |          | 99% Chebyshev (Mean, Sd) UCL                | 68.1559 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-33 December, 2007 Dillon Consulting Limited


## Lyon's Creek West: Nickel Concentration in Soil (Upland Area)

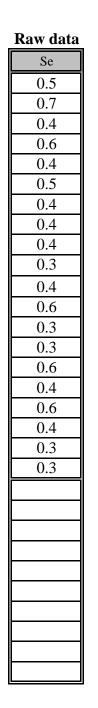
тт• 4

| Raw data |  |  |
|----------|--|--|
| Ni       |  |  |
| 36       |  |  |
| 45       |  |  |
| 44       |  |  |
| 91       |  |  |
| 34       |  |  |
| 32       |  |  |
| 32       |  |  |
| 41       |  |  |
| 33       |  |  |
| 33       |  |  |
| 35       |  |  |
| 39       |  |  |
| 32<br>33 |  |  |
| 33       |  |  |
| 40       |  |  |
| 40       |  |  |
| 31       |  |  |
| 38       |  |  |
| 38       |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |

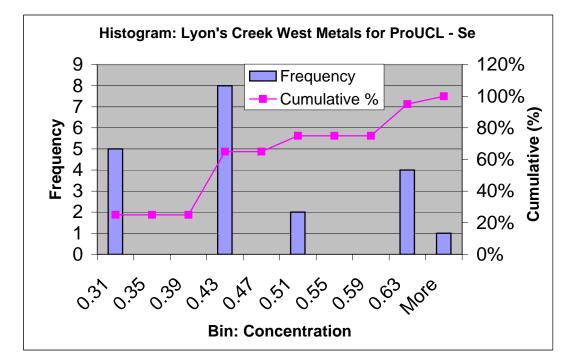
| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 30             | 0         | .0%          |  |
| 32             | 1         | 5.0%         |  |
| 34             | 6         | 35.0%        |  |
| 36             | 2         | 45.0%        |  |
| 38             | 1         | 50.0%        |  |
| 40             | 4         | 70.0%        |  |
| 42             | 2         | 80.0%        |  |
| 44             | 0         | 80.0%        |  |
| 46             | 3         | 95.0%        |  |
| More           | 1         | 100.0%       |  |

.




Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-34 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Selenium Concentration in Soil (Upland Area)

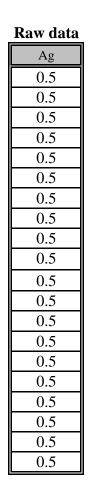

| ProUCL Statistical Summary:    |            | Selenium                                   |             |
|--------------------------------|------------|--------------------------------------------|-------------|
| Raw Statistics                 | <u>т</u> т | Normal Distribution Test                   |             |
| Number of Valid Samples        | 20         | Shapiro-Wilk Test Statisitic               | 0.865418672 |
| Number of Unique Samples       | 5          | Shapiro-Wilk 5% Critical Value             | 0.90        |
| Minimum                        | 0.3        | Data not normal at 5% significance level   |             |
| Maximum                        | 0.7        |                                            |             |
| Mean                           | 0.44       | 95% UCL (Assuming Normal Distribution      | tion)       |
| Median                         | 0.4        | Student's-t UCL                            | 0.48760282  |
| Standard Deviation             | 0.123117   |                                            |             |
| Variance                       | 0.015158   | Gamma Distribution Test                    |             |
| Coefficient of Variation       | 0.279812   | A-D Test Statistic                         | 1.08438276  |
| Skewness                       | 0.631737   | A-D 5% Critical Value                      | 0.74138328  |
|                                |            | K-S Test Statistic                         | 0.25369311  |
| Gamma Statistics               |            | K-S 5% Critical Value                      | 0.19369776  |
| k hat                          | 14.11455   | Data do not follow gamma distribution      |             |
| k star (bias corrected)        | 12.0307    | at 5% significance level                   |             |
| Theta hat                      | 0.031174   |                                            |             |
| Theta star                     | \$0.036573 | 95% UCLs (Assuming Gamma Distributi        | on)         |
| nu hat                         | 564.5819   | Approximate Gamma UCL                      | 0.49087745  |
| nu star                        | 481.2279   | Adjusted Gamma UCL                         | 0.49515360  |
| Approx.Chi Square Value (.05)  | 431.3506   |                                            |             |
| Adjusted Level of Significance | 0.038      | Lognormal Distribution Test                |             |
| Adjusted Chi Square Value      | 427.6255   | Shapiro-Wilk Test Statisitic   0.87993     |             |
|                                | _          | Shapiro-Wilk 5% Critical Value             | 0.90        |
| Log-transformed Statistics     |            | Data not lognormal at 5% significance leve | el          |
| Minimum of log data            | -1.203973  |                                            |             |
| Maximum of log data            | -0.356675  | 95% UCLs (Assuming Lognormal Distr         |             |
| Mean of log data               | -0.856823  | 95% H-UCL                                  | 0.49381735  |
| Standard Deviation of log data | 0.272748   | 95% Chebyshev (MVUE) UCL                   | 0.558001212 |
| Variance of log data           | 0.074392   | 97.5% Chebyshev (MVUE) UCL                 | 0.6091681   |
|                                |            | 99% Chebyshev (MVUE) UCL                   | 0.709675572 |
|                                |            | 95% Non-parametric UCLs                    |             |
|                                |            | CLT UCL                                    | 0.48528263  |
|                                |            | Adj-CLT UCL (Adjusted for skewness)        | 0.4894379   |
|                                |            | Mod-t UCL (Adjusted for skewness)          | 0.48825097  |
|                                |            | Jackknife UCL                              | 0.48760282  |
|                                |            | Standard Bootstrap UCL                     | 0.48345844  |
|                                |            | Bootstrap-t UCL                            | 0.49059644  |
| RECOMMENDATION                 |            | Hall's Bootstrap UCL                       | 0.48802915  |
| Data are Non-parametric (0.05) |            | Percentile Bootstrap UCL                   |             |
|                                |            | BCA Bootstrap UCL                          |             |
| Use Student's-t UCL            |            | 95% Chebyshev (Mean, Sd) UCL               | 0.5         |
| or Modified-t UCL              |            | 97.5% Chebyshev (Mean, Sd) UCL             | 0.61192409  |
|                                |            | 99% Chebyshev (Mean, Sd) UCL               | 0.71391892  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-35 December, 2007 Dillon Consulting Limited

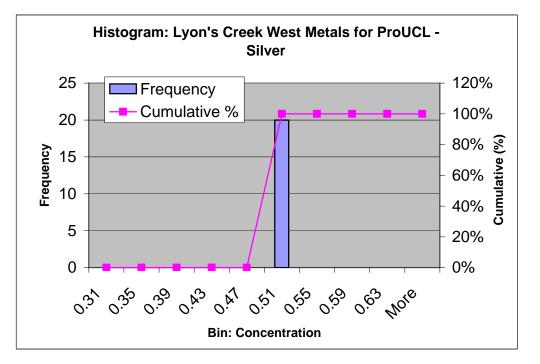
#### Lyon's Creek West: Selenium Concentration in Soil (Upland ARea)



| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 0.31           | 5         | 25.0%        |  |
| 0.35           | 0         | 25.0%        |  |
| 0.39           | 0         | 25.0%        |  |
| 0.43           | 8         | 65.0%        |  |
| 0.47           | 0         | 65.0%        |  |
| 0.51           | 2         | 75.0%        |  |
| 0.55           | 0         | 75.0%        |  |
| 0.59           | 0         | 75.0%        |  |
| 0.63           | 4         | 95.0%        |  |
| More           | 1         | 100.0%       |  |




Page B-36 December, 2007 Dillon Consulting Limited


## Lyon's Creek West: Silver Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:                        | Silver           |                  |                    |  |
|----------------------------------------------------|------------------|------------------|--------------------|--|
|                                                    |                  |                  |                    |  |
| Raw Statistics                                     |                  |                  |                    |  |
| Number of Valid Samples                            | 20               |                  |                    |  |
| Number of Unique Samples                           | 1                |                  |                    |  |
| Minimum                                            | 0.5              |                  |                    |  |
| Maximum                                            | 0.5              |                  |                    |  |
| Mean                                               | 0.5              |                  |                    |  |
| Median                                             | 0.5              |                  |                    |  |
|                                                    |                  |                  |                    |  |
| Data conta                                         | ins constant obs | ervations with r | no distinct values |  |
| There is no need to calculate lognormal statistics |                  |                  |                    |  |

## Lyon's Creek West: Silver Concentration in Soil (Upland Area)



| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 0.31           | 0         | .0%          |  |
| 0.35           | 0         | .0%          |  |
| 0.39           | 0         | .0%          |  |
| 0.43           | 0         | .0%          |  |
| 0.47           | 0         | .0%          |  |
| 0.51           | 20        | 100.0%       |  |
| 0.55           | 0         | 100.0%       |  |
| 0.59           | 0         | 100.0%       |  |
| 0.63           | 0         | 100.0%       |  |
| More           | 0         | 100.0%       |  |

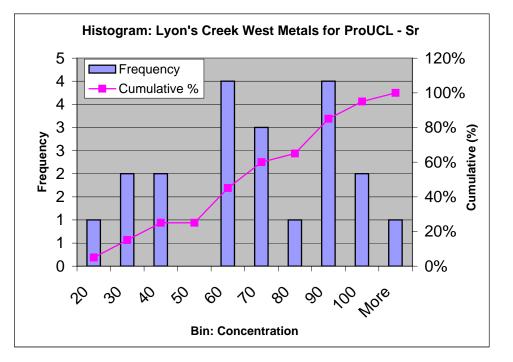


Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-38 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Strontium Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:                             |            | Strontium                                        |              |
|---------------------------------------------------------|------------|--------------------------------------------------|--------------|
| Raw Statistics                                          |            | Normal Distribution Test                         |              |
| Number of Valid Samples                                 | 20         | Shapiro-Wilk Test Statisitic                     | 0.965048177  |
| Number of Unique Samples                                | 19         | Shapiro-Wilk 5% Critical Value                   | 0.903048177  |
| Minimum                                                 | 19         | Data are normal at 5% significance level         | 0.902        |
| Maximum                                                 | 111        | Data are normal at 5% significance lever         |              |
| Mean                                                    | 64.255     | 95% UCL (Assuming Normal Distribu                | tion)        |
| Median                                                  | 63.65      | Student's-t UCL                                  | 74.76962166  |
| Standard Deviation                                      | 27.19446   |                                                  | / 11/0/02100 |
| Variance                                                | 739.5384   | Gamma Distribution Test                          |              |
| Coefficient of Variation                                | 0.423227   | A-D Test Statistic                               | 0.539416753  |
| Skewness                                                | -0.149596  | A-D 5% Critical Value                            | 0.745350469  |
|                                                         |            | K-S Test Statistic                               | 0.150997949  |
| Gamma Statistics                                        |            | K-S 5% Critical Value                            | 0.194538266  |
| k hat                                                   | 4.598437   | Data follow gamma distribution                   | •            |
| k star (bias corrected)                                 | 3.942005   | at 5% significance level                         |              |
| Theta hat                                               | 13.97323   |                                                  |              |
| Theta star                                              | 16.30008   | 95% UCLs (Assuming Gamma Distributi              | on)          |
| nu hat                                                  | 183.9375   | Approximate Gamma UCL                            | 78.14983183  |
| nu star                                                 | 157.6802   | Adjusted Gamma UCL                               | 79.37885331  |
| Approx.Chi Square Value (.05)                           | 129.6451   |                                                  |              |
| Adjusted Level of Significance                          | 0.038      | Lognormal Distribution Test                      |              |
| Adjusted Chi Square Value                               | 127.6378   | Shapiro-Wilk Test Statisitic                     | 0.899919049  |
|                                                         |            | Shapiro-Wilk 5% Critical Value                   | 0.905        |
| Log-transformed Statistics                              |            | Data not lognormal at 5% significance leve       | -1           |
| Minimum of log data                                     | 2.687847   |                                                  |              |
| Maximum of log data                                     | 4.70953    | 95% UCLs (Assuming Lognormal Distri              |              |
| Mean of log data                                        | 4.050204   | 95% H-UCL                                        | 84.6755414   |
| Standard Deviation of log data                          | 0.531148   | 95% Chebyshev (MVUE) UCL                         | 100.9327979  |
| Variance of log data                                    | 0.282118   | 97.5% Chebyshev (MVUE) UCL                       | 116.2272175  |
|                                                         |            | 99% Chebyshev (MVUE) UCL                         | 146.2701432  |
|                                                         |            | 050/ Non nonmetric LICL                          |              |
|                                                         |            | 95% Non-parametric UCLs<br>CLT UCL               | 74 05712004  |
|                                                         |            |                                                  | 74.25713294  |
|                                                         |            | Adj-CLT UCL (Adjusted for skewness)              | 74.03978697  |
|                                                         |            |                                                  |              |
|                                                         |            | Jackknife UCL74.769Standard Bootstrap UCL73.9874 |              |
|                                                         |            | Bootstrap-t UCL                                  | 73.98745139  |
| RECOMMENDATION                                          |            | Hall's Bootstrap UCL                             | 74.04877522  |
| Data are normal (0.05)         Percentile Bootstrap UCL |            | 73.94                                            |              |
|                                                         |            | BCA Bootstrap UCL                                | 74.045       |
| Use Student's-t UCL                                     | <b>I</b> I | 95% Chebyshev (Mean, Sd) UCL                     | 90.76087624  |
|                                                         |            | 97.5% Chebyshev (Mean, Sd) UCL                   | 102.2299901  |
|                                                         |            | 99% Chebyshev (Mean, Sd) UCL                     | 124.7588433  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-39 December, 2007 Dillon Consulting Limited


## Lyon's Creek West: Strontium Concentration in Soil (Upland Area)

| Raw data |  |
|----------|--|
| Sr       |  |
| 51.7     |  |
| 27.5     |  |
| 59.2     |  |
| 32       |  |
| 56.2     |  |
| 89.4     |  |
| 83.4     |  |
| 59       |  |
| 86.3     |  |
| 99.1     |  |
| 88.2     |  |
| 27.5     |  |
| 98.4     |  |
| 61.3     |  |
| 14.7     |  |
| 70.7     |  |
| 34.6     |  |
| 111      |  |
| 66       |  |
| 68.9     |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |

ъ

1 4

|      | Histogram data |              |  |  |
|------|----------------|--------------|--|--|
| Bin  | Frequency      | Cumulative % |  |  |
| 20   | 1              | 5.0%         |  |  |
| 30   | 2              | 15.0%        |  |  |
| 40   | 2              | 25.0%        |  |  |
| 50   | 0              | 25.0%        |  |  |
| 60   | 4              | 45.0%        |  |  |
| 70   | 3              | 60.0%        |  |  |
| 80   | 1              | 65.0%        |  |  |
| 90   | 4              | 85.0%        |  |  |
| 100  | 2              | 95.0%        |  |  |
| More | 1              | 100.0%       |  |  |



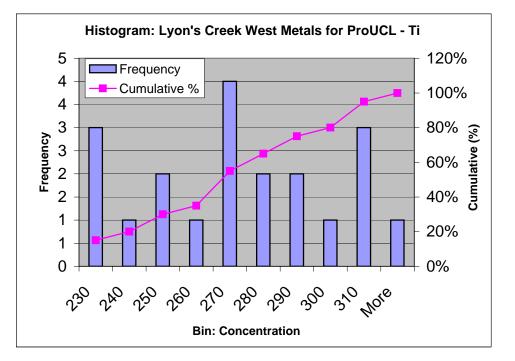
#### Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-40 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Titanium Concentration in Soil (Upland Area)

| ProUCL Statistical Summary:    |           | Titanium                                    |          |
|--------------------------------|-----------|---------------------------------------------|----------|
| Raw Statistics                 | ТТ        | Normal Distribution Test                    |          |
| Number of Valid Samples        | 20        | Shapiro-Wilk Test Statisitic                | 0.961842 |
| Number of Unique Samples       | 20        | Shapiro-Wilk 5% Critical Value              |          |
| Minimum                        | 183       | Data are normal at 5% significance level    | 0.903    |
| Maximum                        | 351       |                                             |          |
| Mean                           | 265.3     | 95% UCL (Assuming Normal Distribut          | ion)     |
| Median                         | 268       | Student's-t UCL                             | 280.767  |
| Standard Deviation             | 40.00408  |                                             |          |
| Variance                       | 1600.326  | Gamma Distribution Test                     |          |
| Coefficient of Variation       | 0.150788  | A-D Test Statistic                          | 0.49569  |
| Skewness                       | -0.278785 | A-D 5% Critical Value                       | 0.73970  |
|                                | ·         | K-S Test Statistic                          | 0.13716  |
| Gamma Statistics               |           | K-S 5% Critical Value                       | 0.19343  |
| k hat                          | 43.77446  | Data follow gamma distribution              |          |
| k star (bias corrected)        | 37.24162  | at 5% significance level                    |          |
| Theta hat                      | 6.060612  |                                             |          |
| Theta star                     | 7.123749  | 95% UCLs (Assuming Gamma Distribution       | n)       |
| nu hat                         | 1750.978  | Approximate Gamma UCL                       | 282.086  |
| nu star                        | 1489.665  | Adjusted Gamma UCL                          | 283.45   |
| Approx.Chi Square Value (.05)  | 1401.016  |                                             |          |
| Adjusted Level of Significance | 0.038     | Lognormal Distribution Test                 |          |
| Adjusted Chi Square Value      | 1394.239  | Shapiro-Wilk Test Statisitic                | 0.9367   |
|                                | _         | Shapiro-Wilk 5% Critical Value              | 0.90     |
| Log-transformed Statistics     |           | Data are lognormal at 5% significance level |          |
| Minimum of log data            | 5.209486  |                                             |          |
| Maximum of log data            | 5.860786  | 95% UCLs (Assuming Lognormal Distrib        |          |
| Mean of log data               | 5.569396  | 95% H-UCL                                   | 283.027  |
| Standard Deviation of log data | 0.158125  | 95% Chebyshev (MVUE) UCL                    | 306.472  |
| Variance of log data           | 0.025003  | 97.5% Chebyshev (MVUE) UCL                  | 324.241  |
|                                |           | 99% Chebyshev (MVUE) UCL                    | 359.145  |
|                                |           | 95% Non-parametric UCLs                     |          |
|                                | 1 1       | CLT UCL                                     | 280.013  |
|                                |           | Adj-CLT UCL (Adjusted for skewness)         | 279.417  |
|                                | 1 1       | Mod-t UCL (Adjusted for skewness)           | 280.674  |
|                                | 1 1       | Jackknife UCL                               | 280.767  |
|                                |           | Standard Bootstrap UCL                      | 279.525  |
|                                |           | Bootstrap-t UCL                             | 279.685  |
| RECOMMENDATION                 |           | Hall's Bootstrap UCL                        | 280.313  |
| Data are normal (0.05)         |           | Percentile Bootstrap UCL                    | 279.4    |
|                                |           | BCA Bootstrap UCL                           | 27       |
| Use Student's-t UCL            |           | 95% Chebyshev (Mean, Sd) UCL                | 304.291  |
|                                |           | 97.5% Chebyshev (Mean, Sd) UCL              | 321.162  |
|                                |           | 99% Chebyshev (Mean, Sd) UCL                | 354.303  |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-41 December, 2007 Dillon Consulting Limited


## Lyon's Creek West: Titanium Concentration in Soil (Upland Area)

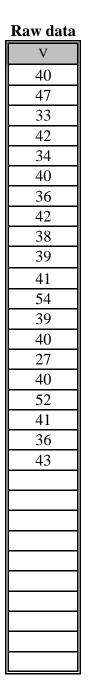
| Raw data   |  |  |  |
|------------|--|--|--|
| Ti         |  |  |  |
| 256        |  |  |  |
| 202        |  |  |  |
| 183        |  |  |  |
| 239        |  |  |  |
| 248        |  |  |  |
| 289        |  |  |  |
| 267<br>241 |  |  |  |
|            |  |  |  |
| 277        |  |  |  |
| 305        |  |  |  |
| 300        |  |  |  |
| 199        |  |  |  |
| 302        |  |  |  |
| 272        |  |  |  |
| 264        |  |  |  |
| 283        |  |  |  |
| 262        |  |  |  |
| 351        |  |  |  |
| 269        |  |  |  |
| 297        |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
| ┣────┨     |  |  |  |
| ┣────┨     |  |  |  |
| ┣────┦     |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |

ъ

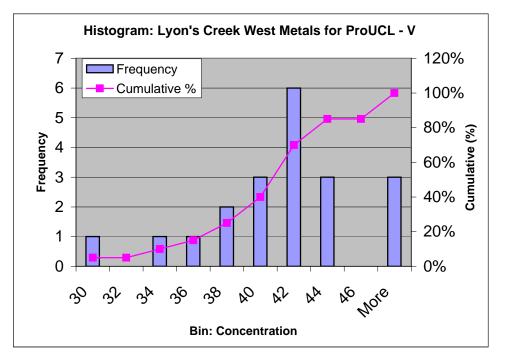
1 4

| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 230            | 3         | 15.0%        |  |
| 240            | 1         | 20.0%        |  |
| 250            | 2         | 30.0%        |  |
| 260            | 1         | 35.0%        |  |
| 270            | 4         | 55.0%        |  |
| 280            | 2         | 65.0%        |  |
| 290            | 2         | 75.0%        |  |
| 300            | 1         | 80.0%        |  |
| 310            | 3         | 95.0%        |  |
| More           | 1         | 100.0%       |  |




Page B-42 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Vanadium Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |                   | Vanadium                                    |           |
|--------------------------------|-------------------|---------------------------------------------|-----------|
| Raw Statistics                 |                   | Normal Distribution Test                    |           |
| Number of Valid Samples        | 20                | Shapiro-Wilk Test Statisitic                | 0.934863  |
| Number of Unique Samples       | 13                | Shapiro-Wilk 5% Critical Value              |           |
| Minimum                        | 27                | Data are normal at 5% significance level    | 0.905     |
| Maximum                        | 54                | Duta die normal at 576 significance lever   |           |
| Mean                           | 40.2              | 95% UCL (Assuming Normal Distribut          | ion)      |
| Median                         | 40                | Student's-t UCL                             | 42.5455   |
| Standard Deviation             | 6.0663            |                                             | 1210 1000 |
| Variance                       | 36.8              | Gamma Distribution Test                     |           |
| Coefficient of Variation       | 0.150903          | A-D Test Statistic                          | 0.60461   |
| Skewness                       | 0.405071          | A-D 5% Critical Value                       | 0.739604  |
|                                |                   | K-S Test Statistic                          | 0.16363   |
| Gamma Statistics               |                   | K-S 5% Critical Value                       | 0.19342   |
| k hat                          | 46.18307          | Data follow gamma distribution              |           |
| k star (bias corrected)        | 39.28894          | at 5% significance level                    |           |
| Theta hat                      | 0.870449          |                                             |           |
| Theta star                     | 1.023189          | 95% UCLs (Assuming Gamma Distribution       | n)        |
| nu hat                         | 1847.323          | Approximate Gamma UCL                       | 42.6732   |
| nu star                        | 1571.558          | Adjusted Gamma UCL                          | 42.8750   |
| Approx.Chi Square Value (.05)  | 1480.473          |                                             |           |
| Adjusted Level of Significance | 0.038             | Lognormal Distribution Test                 |           |
| Adjusted Chi Square Value      | 1473.504          | Shapiro-Wilk Test Statisitic                | 0.93854   |
|                                |                   | Shapiro-Wilk 5% Critical Value              | 0.90      |
| Log-transformed Statistics     |                   | Data are lognormal at 5% significance level |           |
| Minimum of log data            | 3.295837          |                                             |           |
| Maximum of log data            | 3.988984          | 95% UCLs (Assuming Lognormal Distrib        |           |
| Mean of log data               | 3.683001          | 95% H-UCL                                   | 42.762    |
| Standard Deviation of log data | 0.152081          | 95% Chebyshev (MVUE) UCL                    | 46.185    |
| Variance of log data           | 0.023128          | 97.5% Chebyshev (MVUE) UCL                  | 48.7738   |
|                                |                   | 99% Chebyshev (MVUE) UCL                    | 53.85762  |
|                                |                   | 95% Non-parametric UCLs                     |           |
|                                |                   | CLT UCL                                     | 42.4311   |
|                                |                   | Adj-CLT UCL (Adjusted for skewness)         | 42.5624   |
|                                |                   | Mod-t UCL (Adjusted for skewness)           | 42.5659   |
|                                |                   | Jackknife UCL                               | 42.5455   |
|                                |                   | Standard Bootstrap UCL                      | 42.39493  |
|                                |                   | Bootstrap-t UCL                             | 42.7834   |
| RECOMMENDATION                 |                   | Hall's Bootstrap UCL                        | 43.1394   |
| Data are normal (0.05)         |                   | Percentile Bootstrap UCL                    | 42.4      |
|                                | BCA Bootstrap UCL |                                             | 42.5      |
| Use Student's-t UCL            |                   | 95% Chebyshev (Mean, Sd) UCL                | 46.112    |
|                                |                   | 97.5% Chebyshev (Mean, Sd) UCL              | 48.6711   |
|                                |                   | 99% Chebyshev (Mean, Sd) UCL                | 53.6966   |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-43 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Vanadium Concentration in Soil (Upland Area)



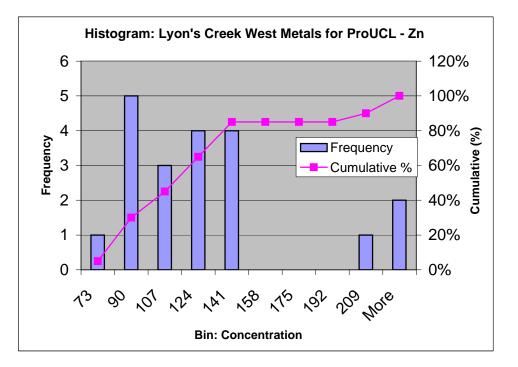
| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 30             | 1         | 5.0%         |  |
| 32             | 0         | 5.0%         |  |
| 34             | 1         | 10.0%        |  |
| 36             | 1         | 15.0%        |  |
| 38             | 2         | 25.0%        |  |
| 40             | 3         | 40.0%        |  |
| 42             | 6         | 70.0%        |  |
| 44             | 3         | 85.0%        |  |
| 46             | 0         | 85.0%        |  |
| More           | 3         | 100.0%       |  |



#### Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-44 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Zinc Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:      | Zinc Uplands |                                             |          |
|----------------------------------|--------------|---------------------------------------------|----------|
| Raw Statistics                   | <u>т</u>     | Normal Distribution Test                    |          |
| Number of Valid Samples          | 20           | Shapiro-Wilk Test Statisitic                | 0.521729 |
| Number of Unique Samples         | 19           | Shapiro-Wilk 5% Critical Value              |          |
| Minimum                          | 71           | Data not normal at 5% significance level    |          |
| Maximum                          | 707          | Data not normal at 5 % significance rever   |          |
| Mean                             | 158          | 95% UCL (Assuming Normal Distributi         | on)      |
| Median                           | 110.5        | Student's-t UCL                             | 220.2344 |
| Standard Deviation               | 160.9596     |                                             |          |
| Variance                         | 25908        | Gamma Distribution Test                     |          |
| Coefficient of Variation         | 1.018732     | A-D Test Statistic                          | 2.724644 |
| Skewness                         | 2.900442     | A-D 5% Critical Value                       | 0.751443 |
|                                  |              | K-S Test Statistic                          | 0.345054 |
| Gamma Statistics                 |              | K-S 5% Critical Value                       | 0.195896 |
| k hat                            | 2.198217     | Data do not follow gamma distribution       |          |
| k star (bias corrected)          | 1.901817     | at 5% significance level                    |          |
| Theta hat                        | 71.87645     |                                             |          |
| Theta star                       | 83.07843     | 95% UCLs (Assuming Gamma Distribution       | ı)       |
| nu hat                           | 87.92866     | Approximate Gamma UCL                       | 210.9453 |
| nu star                          | 76.0727      | Adjusted Gamma UCL                          | 215.8921 |
| Approx.Chi Square Value (.05)    | 56.97917     |                                             |          |
| Adjusted Level of Significance   | 0.038        | Lognormal Distribution Test                 |          |
| Adjusted Chi Square Value        | 55.67357     | Shapiro-Wilk Test Statisitic                | 0.741809 |
|                                  |              | Shapiro-Wilk 5% Critical Value              | 0.905    |
| Log-transformed Statistics       |              | Data not lognormal at 5% significance level |          |
| Minimum of log data              | 4.26268      |                                             |          |
| Maximum of log data              | 6.561031     | 95% UCLs (Assuming Lognormal Distrib        |          |
| Mean of log data                 | 4.81822      | 95% H-UCL                                   | 198.3193 |
| Standard Deviation of log data   | 0.602003     | 95% Chebyshev (MVUE) UCL                    | 237.3467 |
| Variance of log data             | 0.362408     | 97.5% Chebyshev (MVUE) UCL                  | 276.5321 |
|                                  | +            | 99% Chebyshev (MVUE) UCL                    | 353.5043 |
|                                  | + +          | 95% Non-parametric UCLs                     |          |
|                                  | + +          | CLT UCL                                     | 217.201  |
|                                  |              | Adj-CLT UCL (Adjusted for skewness)         | 242.143  |
|                                  | + +          | Mod-t UCL (Adjusted for skewness)           | 224.1248 |
|                                  | + +          | Jackknife UCL                               | 220.2344 |
|                                  | + +          | Standard Bootstrap UCL                      | 215.9425 |
|                                  | + +          | Bootstrap-t UCL                             | 431.2143 |
| RECOMMENDATION                   |              | Hall's Bootstrap UCL                        | 486.2615 |
| Data are Non-parametric (0.05)   |              | Percentile Bootstrap UCL                    | 222.75   |
|                                  |              | BCA Bootstrap UCL                           | 245.65   |
| Use 95% Chebyshev (Mean, Sd) UCL |              | 95% Chebyshev (Mean, Sd) UCL                | 314.884  |
|                                  | 1            | 97.5% Chebyshev (Mean, Sd) UCL              | 382.7679 |
| 1                                |              | 99% Chebyshev (Mean, Sd) UCL                | 516.1126 |

Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West Page B-45 December, 2007 Dillon Consulting Limited

## Lyon's Creek West: Zinc Concentration in Soil (Upland Area)

| Raw data |  |  |
|----------|--|--|
| Zn       |  |  |
| 126      |  |  |
| 111      |  |  |
| 707      |  |  |
| 115      |  |  |
| 207      |  |  |
| 100      |  |  |
| 126      |  |  |
| 110      |  |  |
| 79       |  |  |
| 73       |  |  |
| 102      |  |  |
| 97       |  |  |
| 83       |  |  |
| 77       |  |  |
| 80       |  |  |
| 515      |  |  |
| 117      |  |  |
| 71       |  |  |
| 128      |  |  |
| 136      |  |  |

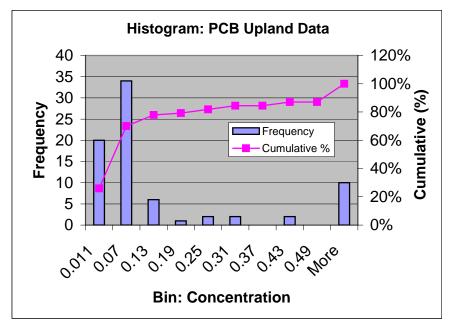
| Histogram data |           |              |  |
|----------------|-----------|--------------|--|
| Bin            | Frequency | Cumulative % |  |
| 73             | 1         | 5.0%         |  |
| 90             | 5         | 30.0%        |  |
| 107            | 3         | 45.0%        |  |
| 124            | 4         | 65.0%        |  |
| 141            | 4         | 85.0%        |  |
| 158            | 0         | 85.0%        |  |
| 175            | 0         | 85.0%        |  |
| 192            | 0         | 85.0%        |  |
| 209            | 1         | 90.0%        |  |
| More           | 2         | 100.0%       |  |



#### Niagara Peninsula Conservation Authority Human Health Risk Assessment Lyon's Creek West

Page B-46 December, 2007 Dillon Consulting Limited

# Lyon's Creek West: PCB Concentration in Soil (Upland Area)


| ProUCL Statistical Summary:    |                | Upland PCB <sub>total</sub>                                                                         |             |  |
|--------------------------------|----------------|-----------------------------------------------------------------------------------------------------|-------------|--|
|                                | г г            |                                                                                                     |             |  |
| Raw Statistics                 |                | Normal Distribution Test                                                                            |             |  |
| Number of Valid Samples        | 77             | Lilliefors Test Statisitic 0.36267                                                                  |             |  |
| Number of Unique Samples       | 24             | Lilliefors 5% Critical Value                                                                        | 0.100969071 |  |
| Minimum                        | 0.01           | Data not normal at 5% significance level                                                            |             |  |
| Maximum                        | 3.58           |                                                                                                     |             |  |
| Mean                           | 0.168896       | 95% UCL (Assuming Normal Distributi                                                                 |             |  |
| Median                         | 0.025          | Student's-t UCL                                                                                     | 0.254724324 |  |
| Standard Deviation             | 0.452295       |                                                                                                     |             |  |
| Variance                       | 0.204571       | Gamma Distribution Test                                                                             |             |  |
| Coefficient of Variation       | 2.677948       | A-D Test Statistic                                                                                  | 8.430004385 |  |
| Skewness                       | 6.024427       | A-D 5% Critical Value                                                                               | 0.827595739 |  |
|                                |                | K-S Test Statistic                                                                                  | 0.314654579 |  |
| Gamma Statistics               |                | K-S 5% Critical Value                                                                               | 0.108186207 |  |
| k hat                          | 0.460234       | Data do not follow gamma distribution                                                               |             |  |
| k star (bias corrected)        | 0.450961       | at 5% significance level                                                                            |             |  |
| Theta hat                      | 0.366979       |                                                                                                     |             |  |
| Theta star                     | 0.374525       | 95% UCLs (Assuming Gamma Distribution                                                               | ı)          |  |
| nu hat                         | 70.87606       | Approximate Gamma UCL                                                                               | 0.22881912  |  |
| nu star                        | 69.44799       | Adjusted Gamma UCL                                                                                  | 0.230154388 |  |
| Approx.Chi Square Value (.05)  | 51.26099       |                                                                                                     |             |  |
| Adjusted Level of Significance | 0.046883       | Lognormal Distribution Test                                                                         |             |  |
| Adjusted Chi Square Value      | 50.9636        | Lilliefors Test Statisitic                                                                          | 0.259034306 |  |
|                                |                | Lilliefors 5% Critical Value 0.10096                                                                |             |  |
| Log-transformed Statistics     |                | Data not lognormal at 5% significance level                                                         |             |  |
| Minimum of log data            | -4.60517       |                                                                                                     |             |  |
| Maximum of log data            | 1.275363       | 95% UCLs (Assuming Lognormal Distrib                                                                | ution)      |  |
| Mean of log data               | -3.176612      | 95% H-UCL                                                                                           | 0.197626793 |  |
| Standard Deviation of log data | 1.476802       | 95% Chebyshev (MVUE) UCL                                                                            | 0.241010336 |  |
| Variance of log data           | 2.180945       | 97.5% Chebyshev (MVUE) UCL                                                                          | 0.29307907  |  |
|                                | 2.1007.15      | 99% Chebyshev (MVUE) UCL                                                                            | 0.395358016 |  |
|                                | 1 1            |                                                                                                     | 0.575550010 |  |
|                                | 1 1            | 95% Non-parametric UCLs                                                                             |             |  |
|                                | <del>   </del> | CLT UCL 0.25367                                                                                     |             |  |
|                                | <del>   </del> |                                                                                                     |             |  |
|                                | <del>   </del> | Adj-CLT UCL (Adjusted for skewness)0.29143Mod-t UCL (Adjusted for skewness)0.260                    |             |  |
|                                | ╂────╂         | Jackknife UCL 0.25472                                                                               |             |  |
|                                | <del>   </del> | Standard Bootstrap UCL 0.252595                                                                     |             |  |
|                                | ╂────╂         | Bootstrap-t UCL 0.351470                                                                            |             |  |
| RECOMMENDATION                 | <u> </u>       | Hall's Bootstrap UCL 0.5909                                                                         |             |  |
| Data are Non-parametric (0.0.  | 5)             | Percentile Bootstrap UCL 0.2601                                                                     |             |  |
|                                | <i>.,</i>      | *                                                                                                   |             |  |
| Liso 07 5% Chabyshaw (Mass. S  | d) UCI         | BCA Bootstrap UCL 0.30948                                                                           |             |  |
| Use 97.5% Chebyshev (Mean, S   | u) UCL         | 95% Chebyshev (Mean, Sd) UCL 0.3935                                                                 |             |  |
| <u>├───┤</u> ───┤────          | ┨────┤         | 97.5% Chebyshev (Mean, Sd) UCL         0.4907           99% Chebyshev (Mean, Sd) UCL         0.6817 |             |  |
|                                |                | 99% Chebyshev (Mean, Sd) UCL 0.4                                                                    |             |  |

# Lyon's Creek West: PCB Concentration in Soil (Upland Area)

| ata |
|-----|
|     |

| PCB <sub>total (mg/kg)</sub> |       |       |  |  |
|------------------------------|-------|-------|--|--|
| 0.01 0.07 0.025              |       |       |  |  |
| 0.01                         | 0.07  | 0.025 |  |  |
|                              |       |       |  |  |
| 0.02                         |       | 0.025 |  |  |
| 0.01                         | 0.015 |       |  |  |
| 0.08                         | 0.04  |       |  |  |
| 0.01                         | 1.14  |       |  |  |
| 0.03                         | 0.76  |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.22                         | 0.025 |       |  |  |
| 0.01                         | 0.50  |       |  |  |
| 0.02                         | 0.50  |       |  |  |
| 0.01                         | 0.50  |       |  |  |
| 0.01                         | 0.30  |       |  |  |
| 0.04                         | 0.11  |       |  |  |
| 0.01                         | 0.20  |       |  |  |
| 0.01                         | 0.50  |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.02                         | 0.025 |       |  |  |
| 0.40                         | 0.025 |       |  |  |
| 0.01                         | 0.55  |       |  |  |
| 0.03                         | 0.025 |       |  |  |
| 0.02                         | 3.58  |       |  |  |
| 0.56                         | 0.025 |       |  |  |
| 0.11                         | 0.87  |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.01                         | 0.07  |       |  |  |
| 0.02                         | 0.025 |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.41                         | 0.025 |       |  |  |
| 0.28                         | 0.025 |       |  |  |
| 0.05                         | 0.025 |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.01                         | 0.025 |       |  |  |
| 0.01                         | 0.14  |       |  |  |
| 0.01                         | 0.025 |       |  |  |

| Histogram data |           |              |  |  |  |
|----------------|-----------|--------------|--|--|--|
| Bin            | Frequency | Cumulative % |  |  |  |
| 0.011          | 20        | 26.0%        |  |  |  |
| 0.07           | 34        | 70.1%        |  |  |  |
| 0.13           | 6         | 77.9%        |  |  |  |
| 0.19           | 1         | 79.2%        |  |  |  |
| 0.25           | 2         | 81.8%        |  |  |  |
| 0.31           | 2         | 84.4%        |  |  |  |
| 0.37           | 0         | 84.4%        |  |  |  |
| 0.43           | 2         | 87.0%        |  |  |  |
| 0.49           | 0         | 87.0%        |  |  |  |
| More           | 10        | 100.0%       |  |  |  |



APPENDIX C Toxicity Profiles

# TABLE OF CONTENTS

| 1 | Introduction     | 1  |
|---|------------------|----|
| 2 | Arsenic          | 1  |
| 3 | Iron             | 6  |
| 4 | Manganese        | 9  |
| 5 | Total PCBs       | 13 |
| 6 | Dioxin-Like PCBs | 18 |

#### Appendix C Toxicity Profiles

## 1 Introduction

An essential part of the risk assessment process is the identification of toxicologically based toxicity values against which exposures can be compared. Toxicity values have been established by several regulatory agencies including Health Canada, the United States Environmental Protection Agency (US EPA), and the World Health Organization (WHO). Additional detailed review of the toxicological information for individual chemicals is available from the Agency for Toxic Substances and Disease Registry (ATSDR). In addition to these primary sources of toxicological information, secondary sources such as the US based Health Effects Assessment Summary Tables (HEAST) can provide additional toxicity information. This latter source must be used with some caution because the data available from this source is not updated as frequently as the primary regulatory sources and often contains information that has been withdrawn by other agencies.

In the selection of toxicity values, preference has been given to the most recently developed values because it was felt that these would incorporate the most recent toxicological information and would provide the best basis upon which to assess potential health hazards/risks. Additional consideration was given to toxicity values for which the underlying toxicological rationales were available. The high degree of scrutiny to which this project will be subject means that it is essential that each decision be transparent and fully defensible. Therefore, it is essential that the toxicological rationale behind the development of each toxicity value be available for evaluation and scrutiny. If supporting documentation was not available for a given toxicity value, the toxicity value was not selected for use in the current risk assessment.

This toxicity assessment presents brief toxicological profiles for each of the contaminants of concern considered and outlines the toxicological effects associated with chronic ingestion, dermal contact and inhalation exposures.

#### 2 Arsenic

The majority of information included in the following toxicity profile was taken from ATSDR (2000). It should be noted that a 2005 Draft version of the toxicity profile is also available and is open for public review and comment. As a result, information presented in the draft version may change with the review process. Information presented in the 2000 version will not change and, therefore, was deemed more appropriate for use as the basis of this toxicity profile.

Arsenic is widely distributed in the Earth's crust. In its elemental form, arsenic is a steel grey metallike material. It is a naturally occurring substance, usually found combined with other elements. More specifically, inorganic arsenic compounds are formed when arsenic combines with oxygen, chlorine or sulphur; organic arsenic compounds occur when arsenic combines with carbon and hydrogen. It is important to differentiate between organic and inorganic forms of arsenic, as the organic forms are often less harmful (ATSDR, 2000). In the present risk assessment, only inorganic compounds are of concern. Most arsenic compounds are white or colorless powders that do not evaporate. Because these compounds do not smell and have no distinct taste, it is difficult to detect their presence in food, water or air. Approximately 90% of all arsenic produced is used as a preservative for wood in order to render it resistant to rotting and decay. Copper chromated arsenic (CCA) is used to make this 'pressure-treated' wood. Due to the human health implications associated with exposure to arsenic, in 2003, U.S. manufacturers of wood preservatives containing arsenic voluntarily transitioned from CCA to arsenic-free preservatives to treat wood products for certain residential uses. In addition, past uses of inorganic arsenic compounds included application to cotton fields and orchards as a pesticide. Although inorganic compounds can no longer be used for agrecicultural purposes, organic arsenic compounds including cacodylic acid, disodium methylarsenate (DSMA) and monosodium methylarsenate (MSMA) are still used as pesticides. Presently, the greatest use of arsenic in alloys is in lead-acid batteries for automobiles. Arsenic compounds are also used in semiconductors and light-emitting diodes (ATSDR, 2000).

There are numerous studies that have looked at human exposures to inorganic arsenic in the air, but there are no reports of fatalities associated with short-term occupational exposures to arsenic levels as high as 100 mg As/m<sup>3</sup> (ATSDR, 2000). There are a large number of cases of human fatalities following the ingestion of inorganic arsenicals. In most cases, the doses resulting in death have been difficult to quantify. However, two reports indicate that doses ranging between 1 and 22 mg As per kg body weight per day (mg/kg-day) have resulted in death. No studies were found regarding mortality subsequent to inhalation or ingestion of organic arsenicals (ATSDR, 2000).

Inhalation exposures to inorganic arsenic dusts in the workplace have been reported to cause irritation of the nose and throat, laryngitis, and bronchitis. Cases of very high exposures have been reported to result in perforation of the nasal septum (Dunlap 1921; Pinto and McGill 1953; Sandstrom *et al.* 1989). However, respiratory effects have not been noted at exposure levels that range between 0.1 and 1.0 mg/m<sup>3</sup> (ATSDR, 2000). There is some limited evidence of respiratory tract effects following oral exposure to inorganic arsenic, but this is thought to be a secondary effect that is due to vascular damage that results from the ingestion of arsenic (ATSDR, 2000).

There is limited and equivocal epidemiological evidence that suggests that inhalation exposures to arsenic trioxide dust may result in cardiovascular effects. However, there are a number of studies that indicate that oral exposure to inorganic arsenic can lead to serious damage of the cardiovascular system (ATSDR, 2000). Both acute and long-term exposures can result in myocardial depolarization and cardiac arrhythmias. Long-term exposures to low levels of arsenic can also result in damage to the vascular system, characterized by a progressive loss of circulation in the hands and feet (Chen *et al.* 1988b; Ch'i and Blackwell 1968; Tseng 1977, 1989; Tseng *et al.* 1968, 1995, 1996). In areas of Taiwan, with elevated levels of arsenic in the drinking water, evidence of circulatory effects related to arsenic exposures begin to occur at a dose of approximately 0.014 mg As/kg-day (ATSDR, 2000).

In almost all reported cases of acute ingestion exposures to inorganic arsenicals, a number of gastrointestinal effects including; nausea, vomiting, diarrhea and abdominal pain have been found to occur (ATSDR, 2000). Although similar effects are often seen with long-term exposures to lower doses of arsenic, effects are not generally reported at doses lower than 0.01 mg As/kg-day (ATSDR, 2000).

A number of hematological effects including anemia and leukopenia have been reported in humans as a result of acute, intermediate and chronic oral exposures to arsenic (ATSDR, 2000).

Oral exposures to inorganic arsenic have been reported to cause several toxic effects in the liver including elevated levels of hepatic enzymes in the blood, portal tract fibrosis and swelling of the liver (Guha Mazumder *et al.* 1988; Morris *et al.* 1974; Piontek *et al.* 1989; Szuler *et al.* 1979). These effects are generally seen in cases where chronic exposures range between 0.019 to 0.1 mg/kg-day (ATSDR, 2000). It has been suggested by several researchers that these effects are secondary to the damage of hepatic blood vessels resulting from the damaging effects that inorganic arsenic has on the circulatory system. However, there is insufficient clinical information available to confirm this (Morris *et al.* 1974; Rosenberg 1974).

There is little clinical evidence of renal damage following oral exposures to inorganic arsenic compounds (ATSDR, 2000). A few cases of renal failure have been reported in cases of arsenic poisoning, but this is felt to be due to fluid imbalances of vascular damage caused by arsenic, and not directly attributable to arsenic (ATSDR, 1993).

The most common dermal effect associated with the ingestion of inorganic arsenic is the development of a pattern of skin changes which include; hyperkeratosis, the development of hyperkeratotic warts, areas of hyperpigmentation and hypopigmentation (Rosenberg 1974; Zaldívar 1974.

Numerous studies have shown that dermal effects are common in humans exposed to inorganic arsenic levels that range between 0.01 and 0.1 mg As/kg-day. These studies have also demonstrated that, below a dose level of 0.01 mg As/kg-day, dermal effects are not reported (ATSDR, 2000).

There are several studies that have indicated that inhalation exposures to inorganic arsenic can lead to a number of neurological effects in humans, including peripheral neuropathy of sensory and motor neurons that are manifested as numbness, loss of reflexes and muscle weakness. In extreme cases, frank encephalopathy including, hallucinations and memory loss have been reported (Beckett *et al.* 1986; Bolla-Wilson and Bleecker 1987; Morton and Caron 1989). These effects generally cease once exposures have ended (ATSDR, 1993). There are a large number of studies that indicate that the acute ingestion of large amounts of inorganic arsenic can cause a number of injuries to the nervous system including; headache, lethargy, mental confusion, hallucination, seizures and in extreme cases, coma (ATSDR, 2000). Chronic exposures to lower levels of arsenic, ranging between 0.019 and 0.5 mg/kg-day, are typically characterized by a peripheral neuropathy similar to that seen with inhalation exposures. Neurological effects have not been detected in populations chronically exposed to arsenic levels of less than 0.01 mg/kg-day (ATSDR, 2000).

There is sufficient convincing epidemiological evidence to show that inhalation exposure to inorganic arsenic can increase the risk of developing lung cancer. Many studies provide only qualitative evidence of an association between the duration of and/or level of exposure to arsenic and the increase in the rate of lung cancer. There is sufficient epidemiological information available from occupational studies for the US EPA to develop cancer potency estimates for inhalation exposures to inorganic arsenic (USEPA, 1998). There are a large number of epidemiological studies that provide convincing evidence that the ingestion of inorganic arsenic increases the risk of developing skin cancer. The most common effect is the development of squamous cell carcinomas. Basal cell carcinomas also occur. In the majority of cases, skin cancer only develops after prolonged exposure (ATSDR, 2000). There is sufficient human epidemiological data available for the US EPA to develop estimates of cancer risk associated with oral exposure to inorganic arsenic (USEPA, 1998).

The estimates of the carcinogenic potencies of inhaled and ingested inorganic arsenic, developed by Health Canada, will be used to assess potential human health risks associated with exposure to inorganic arsenic at this site. The potency estimates established by the US EPA and the health effects upon which they are based are summarized below.

| Source               | Route of<br>Exposure | TRV                                             | Basis                   |
|----------------------|----------------------|-------------------------------------------------|-------------------------|
| US EPA (1998)        | Inhalation           | Unit Risk: 4.3 x $10^{-3}$ $(\mu g/m^3)^{-1}$   | Lung Cancer             |
| Health Canada (2004) | Inhalation           | $6.4 (mg/m3)^{-1}$                              | Lung Cancer             |
| Health Canada (2004) | Oral                 | $1.5 (mg/kg-d)^{-1}$                            | Skin Cancer             |
| US EPA (1998)        | Oral                 | Unit Risk: 5.0 x $10^{-5}$ (µg/L) <sup>-1</sup> | Squamous Cell Carcinoma |
| US EPA (1998)        | Oral                 | Slope Factor: $1.5$ $(mg/kg-day)^{-1}$          | Squamous Cell Carcinoma |
| US EPA (1998)        | Oral/Dermal          | $1.5 (mg/kg-d)^{-1}$                            | Skin Cancer             |

## References:

ATSDR, 2000. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Arsenic.

Beckett W.S., Moore J.L., Keogh J.P., *et al.* 1986. Acute encephalopathy due to occupational exposure to arsenic. Br J Ind Med 43:66-67. As cited in ATSDR (2000).

Bolla-Wilson K., Bleecker M.L. 1987. Neuropsychological impairment following inorganic arsenic exposure. J Occup Med 29(6):500-503. As cited in ATSDR (2000).

Chen C-J, Wu M-M, Lee S-S, *et al.* 1988. Atherogenicity and carcinogenicity of high-arsenic artesian well water: Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8:452-460. As cited in ATSDR (2000).

Ch'i I-C, Blackwell R.Q. 1968. A controlled retrospective study of blackfoot disease, an endemic peripheral gangrene disease in Taiwan. Am J Epidemiol 88(1):7-24 As cited in ATSDR (2000).

Dunlap L.G. 1921. Perforations of the nasal septum due to inhalation of arsenous oxide. JAMA 76(9):568-569. As cited in ATSDR (2000).

Guha Mazumder D.N., Das Gupta J., Santra A., *et al.* 1998. Chronic arsenic toxicity in west Bengal--the worst calamity in the world. J Indian Med Assoc 96(1):4-7. As cited in ATSDR (2000).

Health Canada, 2004. Federal Contaminated Site Risk Assessment in Canada: Part I: Guidance on Human Health Screening Level Risk Assessment (SLRA), & Part II: Health Canada Toxicological Reference Values (TRVs).

Morris J.S., Schmid M., Newman S., *et al.* 1974. Arsenic and noncirrhotic portal hypertension. Gastroenterology 66(1):86-94. As cited in ATSDR (2000).

Morton W.E., Caron G.A. 1989. Encephalopathy: An uncommon manifestation of workplace arsenic poisoning? Am J Ind Med 15:1-5. As cited in ATSDR (2000).

Piontek M., Hengels K.J., Borchard F., *et al.* 1989. [Noncirrhotic liver fibrosis after chronic arsenic poisoning.] Dtsch Med Wochenschr 114:1653-1657. (German). As cited in ATSDR (2000).

Pinto S.S., McGill C.M. 1953. Arsenic trioxide exposure in industry. Ind Med Surg 22(7):281-287. As cited in ATSDR (2000).

Rosenberg H.G. 1974. Systemic arterial disease and chronic arsenicism in infants. Arch Pathol 97:360-365. As cited in ATSDR (2000).

Sandstrom A.I.M., Wall S.G.I., Taube A.. 1989. Cancer incidence and mortality among Swedish smelter workers. Br J Ind Med 46:82-89. As cited in ATSDR (2000).

Szuler I.M., Williams C.N., Hindmarsh J.T., *et al.* 1979. Massive variceal hemorrhage secondary to presinusoidal portal hypertension due to arsenic poisoning. Can Med Assoc J 120:168-171. As cited in ATSDR (2000).

Tseng W-P. 1977. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19:109-119. As cited in ATSDR (2000).

Tseng W-P. 1989. Blackfoot disease in Taiwan: A 30-year follow-up study. Angiology 40(6):547-558. As cited in ATSDR (2000).

Tseng W.P., Chu H.M., How S.W., *et al.* 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453-463. As cited in ATSDR (2000).

Tseng C-H, Chong C-K, Chen C-J, *et al.* 1995. Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. Int J Microcirc Clin Exp 15(1):21-27. As cited in ATSDR (2000).

Tseng C-H, Chong C-K, Chen C-J, *et al.* 1996. Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis 120:125-133. As cited in ATSDR (2000).

US EPA, 1998. United States Environmental Protection Agency: Integrated Risk Information System; Substance File for Inorganic Arsenic.

Zaldívar R. 1974. Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitr Pathol 151:384-400. As cited in ATSDR (2000).

# 3 Iron

Iron is one of the most abundant elements in the earth's crust and it is the most abundant heavy metal. In the environment, it is present mainly as Fe(II) or Fe(III). In Canada, the main use of iron ores is in the production of steel. In addition, iron is also used in the production of paint pigments, polishing agents and electrical materials.

Iron is an essential element for the maintenance of proper human health. More specifically, it is an integral component of cytochromes, porphyrins and metalloenzymes. The intake of iron from a typical Canadian diet is more than required to meet minimum daily requirements (Health Canada, 1987). The Canadian Recommended Nutrient Intake for adults is 8 mg/d for men, 14 mg/d for women of menstrual age and 7 mg/d for post-menopausal women (Department of National Health and Welfare, 1983). Iron deficiency can result in impaired mental development and performance in children (Anonymous, 1983), elevated catecholamines and restlessness in children (Voorhess, 1975) and reduced work performance in adults. In severe cases of deficiency, anaemia and impaired oxygen delivery can result (Sproule, 1960).

Although iron is a required nutrient, the ingestion of large quantities of this compound can result in haemochromatosis, a condition in which normal regulatory mechanisms do not operate effectively. This condition can lead to tissue damage, however, this rarely develops as a result of simple dietary overloading (Watt and Merrill, 1963; Hopps, 1972; Jacobs, 1977). In two year old children, three grams of Fe(II) sulphate is considered to be the lethal dose (National Academy of Sciences, 1980).

Sampling results from a limited number of Canadian drinking water stations indicate that the concentration of iron in drinking water is usually below 1 mg/L and is often less than 0.3 mg/L (Hem, 1972). The presence of iron in drinking water can result in the reaction of Fe(II) salts with water to form insoluble hydroxides, which settle out as rust-coloured silt. Iron can also promote the growth of bacteria that derive energy from the oxidation of Fe(II) to Fe(III). Both conditions usually occur when the iron concentration in the water exceeds 0.3 mg/L (Health Canada, 1987).

Studies describing the potential adverse effects resulting from the exposure of humans to iron via inhalation are quite rare. However, iron has been found to be a local irritant to the lung and gastrointestinal tract (International Labour Office, 1998). In an epidemiological study, bronchial obstruction was observed in workers exposed to iron in an iron foundry (Bingham *et al.*, 2001).

Oral exposure studies involving iron were not found. However, the estimated toxic dose for a child is believed to be 20 mg Fe/kg (Bingham *et al.*, 2001).

Iron is not classifiable as to human carcinogenicity (American Conference of Governmental Industrial Hygienists TLVs and BEIs, 2005).

The USEPA's Federal Drinking Water Standard is 300 ug/L (HSDB, 2006). Health Canada has based their drinking water quality guideline value of  $\leq 0.3$  mg/L on aesthetic objectives (Health Canada, 1978).

The American Conference of Governmental Industrial Hygienists (ACGIH) 8-hour Time Weighted Average (TWA) is 5 mg/m<sup>3</sup> for iron oxide (ACGIH, 2005). The United States Environmental

Protection Agency Region III Risk-Based Concentration values for iron are 11000 ug/L in tap water, 1100 ug/m<sup>3</sup> in ambient air, 410 mg/kg in fish, 310000 mg/kg in industrial soil, and 23000 mg/kg in residential soil (US EPA, 2006).

The United States Environmental Protection Agency (US EPA) Integrated Risk Information System did not provide any TRVs for iron. As a result, the USEPA Region III Risk-Based Concentration Table values are presented below.

| Source            | Route of<br>Exposure | TRV              | Basis         |
|-------------------|----------------------|------------------|---------------|
| USEPA RIII (2006) | Oral                 | RfD: 0.3 mg/kg-d | Not provided. |

#### References

American Conference of Governmental Industrial Hygienists TLVs and BEIs. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, OH, 2005. As cited in HSDB, 2006.

Anonymous. Iron deficiency and mental development. Nutr. Rev., 41: 235 (1983). As cited in Health Canada (1987).

Bingham, E.; Cohrssen, B.; Powell, C.H.; Patty's Toxicology Volumes 1-9 5th ed. John Wiley & Sons. New York, N.Y. (2001)., p. V3 176. As cited in HSDB, 2006.

Department of National Health and Welfare. Recommended nutrient intakes for Canadians. Committee for Revision of the Canadian Dietary Standard, Ottawa (1983). As cited in Health Canada (1987).

Jacobs, A. Iron overload — clinical and pathologic aspects. Semin. Haematol., 14: 89 (1977). As cited in Health Canada (1987).

Health Canada (1987). Drinking Water Quality Guideline for Iron.

Hem, J.D. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol. Soc. Am. Spec. Pap., 140:17 (1972). As cited in Health Canada (1987).

Hopps, H.C. Ecology of disease in relation to environmental trace elements — particularly iron. Geol. Soc. Am. Spec. Pap., 340: 1 (1972). As cited in Health Canada (1987).

International Labour Office. Encyclopaedia of Occupational Health and Safety. 4th edition, Volumes 1-4 1998. Geneva, Switzerland: International Labour Office, 1998., p. 63.15. As cited in HSDB, 2006.

National Academy of Sciences. Recommended dietary allowances. 9th edition. National Academy Press, Washington, DC (1980). As cited in Health Canada (1987).

Sproule, B.J., Mitchell, J.H. and Miller, W.F. Cardiopulmonary physiological response to heavy exercise in patients with anemia. J. Clin. Invest., 39: 378 (1960). As cited in Health Canada (1987).

USEPA (2006). United States Environmental Protection Agency Region III Risk-Based Concentration Tables. April, 2006.

Voorhess, M.L., Stuart, M.J., Stockman, J.A. and Oski, F.A. Iron deficiency anemia and increased urinary iron epinephrine excretion. J. Pediatr., 86: 542 (1975). As cited in Health Canada (1987).

Watt, B.K. and Merrill, A.L. Composition of foods — raw, processed, prepared. Revised Agriculture Handbook 8, U.S. Department of Agriculture (1963). As cited in Health Canada (1987).

# 4 Manganese

Manganese is a naturally occurring metal, found in numerous types of rock. It is mined for use in the production of various types of steel. More specifically, in Canada, the primary use of manganese is in the steel industry, where it is used to counteract the effects of sulphur, as a deoxidizing agent, and as an ingredient in special alloys (Health Canada, 1987). Manganese compounds are also used to produce batteries, dietary supplements, as well as some ceramics, pesticides and fertilizers (ATSDR, 2000).

Manganese is an essential element necessary to maintain proper health in humans. It functions as both an enzyme co-factor and as a constituent of metalloenzymes (Health Canada, 1987). The amount of manganese in a typical western diet ranges from 1-10 mg Mn/day, which appears to be sufficient to meet dietary requirements (ATSDR, 2000). More specifically, in Canada, the dietary intake of manganese is estimated to be 4.7 mg/day (Hill, 1988). The Food and Nutrition Board of the National Research Council (NRC) has suggested an Estimated Safe and Adequate Daily Dietary Intake for manganese of 0.3-0.6 mg/d for infants (0-6 months), 0.6-1 mg/d for infants (6 months – 1 year), 1-1.5 mg/d for children (1-3 years), 1-2 mg/day for children (4-10 years) and 2-5 mg/d for children (10 years to adult). More recently; however, it was suggested that the dose should instead range from 3.5 – 7.0 mg/d in adults (Zidenberg-Cherr and Keen, 1987).

Although manganese is an essential element, an excess of this compound can cause adverse effects. Of particular concern is the onset of manganism, a condition characterized by mental and emotional disturbances, as well as neurological effects (ATSDR, 2000). In addition, in drinking water, concentrations exceeding 0.15 mg/L have been found to cause stains to plumbing fixtures and laundry, as well as cause undesirable tastes in beverages (Griffin, 1960).

Manganese can exist in both inorganic (MnCl<sub>2</sub>, MnSO<sub>4</sub>, MnOAc, MnPO<sub>4</sub>, MnO<sub>2</sub>, Mn<sub>3</sub>O<sub>4</sub>) and organic forms (manganese trocarbonyl, maneb, mancozeb and mangafodipir). Inorganic manganese compounds are not volatile, however, they can exist as aerosols and suspended particulate matter.

Inhalation exposure to inorganic manganese can cause an inflammatory response in the lung (ATSDR, 2000). In addition, cardiovascular effects have been noted after occupational exposure to both inorganic and organic manganese. Based on available studies, it appears that manganese causes only minor adverse effects to the gastrointestinal system. Although inorganic manganese has not been found to cause adverse musculoskeletal effects, exposures to maneb and mancozeb have been found to cause muscular weakness (Koizumi et al., 1979), tremors (Meco et al., 1994) and convulsions (Israeli et al., 1983). Renal effects have not been reported for inorganic manganese, however studies by Koizumi et al. (1979) and de Carvalho et al. (1989) report acute renal failure after exposure to maneb and mancozeb. Although few studies have reported endocrine effects in humans exposed to inorganic manganese, studies by Alessio et al. (1989) and Smargiassi and Mutti (1999) report adverse effects to the endocrine system in workers occupationally exposed to inorganic manganese at elevated levels. Immunological and lymphoreticular effects have been noted after inhalation exposure to inorganic manganese. No studies have been found that unequivocally attribute the onset of genotoxic effects to inorganic manganese exposure (ATSDR, 2000). However, occupational exposure studies do suggest that organic manganese can cause adverse genotoxic effects (Jablonicka et al., 1989).

There is conclusive evidence to suggest that exposure to high levels of manganese compounds leads to neurological effects, namely manganism. This progressive condition begins with mild symptoms which eventually turn into more severe symptoms including dull affect, altered gait, fine tremor and occasionally psychiatric disturbances. Numerous studies documenting this condition are available. Reproductive effects have also been noted in workers suffering from manganism (ATSDR, 2000).

Unfortunately, the majority of oral exposure studies of manganese involve animals rather than humans. It has been noted (ATSDR, 2000), that there is a lack of data regarding the potential for manganese to cause adverse systemic effects in humans via ingestion. It has been suggested that this is most likely due to the strong homeostatic control the body exerts on the amount of manganese absorbed following oral exposure (ATSDR, 2000). Unlike inhalation exposure to manganese, there is only limited evidence that oral exposure to this compound causes neurological effects in humans. Although information concerning the developmental effects due to oral exposure to inorganic manganese is limited, an exposed population was observed and evaluated by He *et al.* (1994) and Zhang *et al.* (1995). It was reported that the children drank water containing manganese levels of at least 0.241±0.051 mg/L for at least 3 years and ate food high in manganese. They were given the WHO nerurobehaviousal core test and compared to a control group of children. The negative test results correlated with hair manganese concentration and the control group preformed better in school compared to the exposed group of children (ATSDR, 2000).

With respect to inorganic manganese, dermal exposure is not of concern as this compound does not readily penetrate the skin surface (ATSDR, 2000). Dermal exposure to organic manganese, however, is of potential concern, especially in an occupational exposure setting. Localized allergic contact dermatitis was found to occur after dermal exposure to organic manganese (ATSDR, 2000).

Studies of the carcinogenic potential of manganese subsequent to inhalation exposure to either inorganic or organic manganese are not available. Likewise, no studies were located regarding carcinogenic effects in humans subsequent to oral and dermal exposure to manganese (ATSDR, 2000).

The EPA and FDA recommend that manganese in drinking water not exceed 0.05 ppm. OSHA has set a concentration limit of 5 mg/m<sup>3</sup> for the average amount of manganese in workplace air over an 8-hour workday (OSHA 1998, ATSDR, 2000). Health Canada (1987) suggests a drinking water quality guideline of  $\leq$ 0.05 mg/L based on aesthetic objectives.

| Source        | Route of<br>Exposure | TRV                                  |                     | Bas | sis             |
|---------------|----------------------|--------------------------------------|---------------------|-----|-----------------|
| US EPA (1995) | Oral                 | RfD: 0.14 mg/kg-d                    | CNS Effects         |     |                 |
| US EPA (1995) | Inhalation           | RfC: 5 x $10^{-5}$ mg/m <sup>3</sup> | Impairment function | of  | neurobehavioral |

#### References

Alessio L, Apostoli P, Ferioli A, *et al.* 1989. Interference of manganese on neuroendocrinal system in exposed workers. Preliminary report. Biol Trace Elem Res 21:249-253. As cited in ATSDR, 2000.

ATSDR, 2000. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese.

de Carvalho E, Faria V, Loureiro A, *et al.* 1989. Acute renal failure and nephrotic syndrome after maneb exposure: A new case with light and electron microscopic study. Acta Med Port 1989 2:215-8.

Griffin, A.E. Significance and removal of manganese in water supplies. J. Am. Water Works Assoc., 52: 1326 (1960). As cited in Health Canada (1987).

He P, Liu D, Zhang G, *et al.* 1994. Effects of high-level manganese sewage irrigation on children's neurobehavior. Chung Hua Yu Fang I Hsueh Tsa Chih] 28:216-218. (Chinese). As cited in ATSDR, 2000.

Health Canada, 1987. Drinking Water Quality Guideline for Manganese.

Hill, R.J. Review of information on manganese and the oxidation products of MMT combustion (unpublished). Prepared for the Department of National Health and Welfare, Ottawa (1988). As cited in Health Canada (1987).

Israeli R, Sculsky M, Tiberin P. 1983. Acute central nervous system changes due to intoxication by Manzidan (a combined dithiocarbamate of maneb and zineb). Arch Toxicol Suppl 6:238-243. As cited in ATSDR, 2000.

Jablonicka A, Polakova H, Karelova J, *et al.* 1989. Analysis of chromosome aberrations and sister-chromatid exchanges in peripheral blood lymphocytes of workers with occupational exposure to the mancozeb-containing fungicide Novozir Mn80. Mutat Res 224:143-146. As cited in ATSDR, 2000.

Koizumi A, Shiojima S, Omiya M, *et al.* 1979. Acute renal failure and maneb (manganous ethylenebis[dithiocarbamate]) exposure. JAMA 242:2583-2585. As cited in ATSDR, 2000.

Meco G, Bonifati V, Vanacore N, *et al.* 1994. Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene bis-dithiocarbamate). Scand J Work Environ Health 20:301-305. As cited in ATSDR, 2000.

OSHA. 1998. Occupational Safety and Health Administration. Code of Federal Regulations 29 CFR 1910.1000. Table Z-1. Limits for air contaminants. As cited in ATSDR, 2000.

Smargiassi A and Mutti A. 1999. Peripheral biomarkers of exposure to manganese. Neurotoxicology 20:401-406. As cited in ATSDR, 2000.

USEPA (1995). United States Environmental Protection Agency Integrated Risk Information System (IRIS). http://www.epa.gov/iris/

Zhang G, Liu D, He P. 1995. Effects of manganese on learning abilities in school children] Chung Hua Yu Fang I Hsueh Tsa Chih 29:156-158. As cited in ATSDR, 2000.

Zidenberg-Cherr, S. and Keen, C.L. 1987. Enhanced tissue lipid peroxidation: mechanism underlying pathologies associated with dietary manganese deficiency. In: Nutritional bioavailability of manganese. C. Kies (ed.). American Chemical Society, Washington, DC. p. 56 (1987). As cited in Health Canada.

#### 5 Total PCBs

Polychlorinated biphenyls (PCBs) are a group of synthetic, organic chemicals known to cause adverse health effects in humans. PCBs exist as either oily liquids or solids, are colourless to light yellow, and are potentially volatile in some cases (ATSDR, 2000). In the past, PCBs were used as coolants and lubricants in transformers, capacitors, and other electrical equipment (ATSDR, 2000). PCBs are no longer produced in North America, due to the health implications associated with their presence in the environment. These compounds do not readily degrade and are, thus, quite environmentally persistent. In addition, many PCBs are subject to long-range transport resulting in the presence of these compounds worldwide. The bioaccumulative nature of PCBs is of concern, as concentrations of these chemicals increase with each trophic level of the food chain. As a result, humans are not only exposed to PCBs via the environment, but also via food sources. Of particular concern are women who breastfeed, as PCBs accumulate in fat compartments, i.e. breast milk, and may be passed on to breastfed infants (ATSDR, 2000).

Typically, PCBs were produced in mixtures, with seven mixtures accounting for the majority of PCBs in the environment. These mixtures are often referred to as Aroclor mixtures and are made up of numerous individual PCB congeners. For example, Aroclor 1254 represents a mixture of which 54% is chlorine, by weight (ATSDR, 2000). In a carcinogenic assessment by MOE (MOE, 2005), Arocolor 1254 was found to be the most toxic congener followed by Aroclor 1260, Aroclor 1242 and Aroclor 1016.

Data regarding the respiratory effects of inhalation exposure to PCBs are limited. Occupational exposure studies reported upper respiratory tract irritation, chest pain and changes in lung function (Fischbein et al., 1979; Warshaw et al., 1979; Emmett et al., 1988; Kuratsune, 1989; Rogan, 1989; Nakanishi et al., 1985; Shigematsu et al., 1971). Gastrointestinal damage, characterized by loss of appetite, anorexia, nausea, vomiting, abdominal pain, and/or epigastric distress, was also reported in workers exposed to airborne PCBs (Emmett et al., 1988; Fischbein et al., 1979; Smith et al., 1982; Maroni et al., 1981a; Kuratsune, 1989). Clinical studies of PCB workers reported associations between increased serum levels of liver-related enzymes, lipids and cholesterol and serum PCBs, suggesting PCBs cause hepatic effects (ATSDR, 2000). The results of a number of studies suggest that PCBs can induce thyroid toxicity and a variety of changes in thyroid hormone levels. Increased thyroid gland volume was reported in workers at a PCB manufacturing facility (Langer et al., 1998). Chloracne and other dermal alterations were also reported in workers exposed to PCBs (ATSDR, 2000). Occular effects, including general eye irritation, hypersecretion of the Meibomian glands and abnormal pigmentation of the conjunctiva, were reported in subjects occupationally exposed to PCBs (Emmett et al. 1988; Ouw et al. 1976; Smith et al. 1982; Fischbein et al., 1985). Limited information is available concerning the immunological effects of PCBs in humans, as the majority of studies available do not include an assessment of immunocompetence. Reports of neurological effects subsequent to occupational exposure to PCBs are also limited and inconclusive.

The majority of oral exposure data for PCBs was derived from the Yusho and Yu-Cheng incidents, where humans were exposed to contaminated rice oil, and contaminated fish and animal products, respectively. Respiratory effects noted in both Yusho and Yu-Cheng patients included severe respiratory infections and chronic bronchitis (Kuratsune, 1989; Rogan, 1989; Nakanishi *et al.*, 1985; Shigematsu *et al.*, 1971, 1977). Cardiovascular effects were noted in Alabama residents exposed to PCBs via the consumption of contaminated fish (Kreiss *et al.*, 1981). Hematological effects, such as normocytic anemia and leukocytosis, were noted in Yu-Cheng patients (Rogan, 1989). Hepatic

effects (serum cholesterol and triglycerides) were found to occur in consumers of contaminated fish. An elevated odds ratio for goiter was found among the Yu-Cheng cohort, indicating the potential for adverse effects to the endocrine system (Guo *et al.* 1999).

As with inhalation exposure, chloracne and other dermal alterations were reported with oral exposure, i.e., the Yusho and Yu-Cheng cohorts (Fischbein *et al.* 1979, 1982; Guo *et al.* 1999; Hsu *et al.* 1994; Maroni *et al.* 1981a, 1981b; Masuda 1994). Also similar to inhalation exposure, ocular effects consisting of hypersecretion of the Meibomian glands and abnormal pigmentation of the conjunctiva, were reported in the Yusho and Yu-Cheng cohorts (Masuda, 1994). Although studies of immunological effects are limited, they do suggest an increased susceptibility to respiratory tract infections, increased prevalence of ear infections in children, decreased serum IgA and IgM antibody levels, and/or changes in T lymphocyte subsets (ATSDR, 2000).

With respect to neurological effects, there is a great deal of concern surrounding the transfer of PCBs to the fetus of women who consume contaminated food. In addition, there is concern for these same women who may breastfeed their infants, as PCBs tend to accumulate in breast milk. Studies have provided evidence that PCBs contribute to subtle neurobehavioral alterations in newborn children. In addition, neurodevelopmental changes were noted in women who accidentally consumed rice oil contaminated with PCBs (ATSDR, 2000).

Reproductive effects in orally exposed humans include menstrual disturbances in females and effects on fertility in males. Increased PCB levels were observed in women with late miscarriages, and a reduction in the months of lifetime lactation was associated with increasing PCB levels in breast milk (ATSDR, 2000). The results of studies examining the developmental effects (anthropometric measures at birth and physical growth during infancy) associated with exposure to PCBs are conflicting. Some studies found significant positive associations, some found significant negative associations and some found no association at all between PCB exposure and developmental effects (ATSDR, 2000).

The results of numerous studies indicate that exposure to PCBs is related to cancer at several sites, namely the liver, biliary tract, intestines, and skin (melanoma). In contrast, there is no clear association between occupational exposures to PCBs and cancer in the brain, hematopoietic and lymphatic systems (ATSDR, 2000). There is some indication that certain subgroups of women may be at an increased risk for breast cancer. Overall, human study results do provide evidence that commercial PCB mixtures are carcinogenic (ATSDR, 2000). The IARC (1987) has concluded that the evidence for carcinogenicity to humans is limited. US EPA IRIS (1987), has classified total PCBs as a probable human carcinogen (B2) based on sufficient evidence of carcinogenicity in animals. More specifically, the US EPA based their oral slope factors for total PCB on the development of liver hepatocellular adenomas, carcinomas, cholangiomas or cholandiocarcinomas on female Sprague-Dawley rats exposed to PCBs via the diet (Brunner *et al.*, 1996; Norback and Weltman, 1985).

It should be noted, however, that the majority of information on the carcinogenic potential of PCBs is based on cohort mortality epidemiological studies of workers exposed to PCBs. The ATSDR (2000) has concluded that, although the results of some of these studies do suggest carcinogenicity with high exposures to PCBs, many of the studies are confounded by possible exposures to chlorinated dioxins and related compounds. In addition, PCBs are not genotoxic and would, therefore, not initiate neoplastic transformation, which is believed to be an initial step in the onset of cancer. SDB

recommends that PCBs be assessed via threshold (non-genotoxic) dose response only, and that they be assessed as total PCBs and as dioxin-like PCBs.

| Source                            | Route of   | TRV                      | Basis                                                    |  |  |  |
|-----------------------------------|------------|--------------------------|----------------------------------------------------------|--|--|--|
|                                   | Exposure   |                          |                                                          |  |  |  |
| Total PCBs                        |            |                          |                                                          |  |  |  |
| US EPA IRIS                       | Oral       | Slope Factor:            | Lowest risk and persistence; central-                    |  |  |  |
| (1997)                            |            | 0.04 mg/kg-d             | estimate slope factor; linear extrapolation below LED10s |  |  |  |
| US EPA IRIS                       | Oral       | Slope Factor:            | High risk and persistence; upper-bound                   |  |  |  |
| (1997)                            |            | 2.0 mg/kg-d              | slope factor; linear extrapolation below LED10s          |  |  |  |
| US EPA IRIS                       | Oral       | Drinking                 | Low risk and persistence, upper-bound                    |  |  |  |
| (1997)                            |            | Water Unit               | slope factor                                             |  |  |  |
|                                   |            | Risk: 1x10 <sup>-5</sup> |                                                          |  |  |  |
|                                   |            | per ug/L                 |                                                          |  |  |  |
| Health Canada                     | Oral       | PTDI: 1.0                |                                                          |  |  |  |
| (2004)                            |            | ug/kg-d                  |                                                          |  |  |  |
| WHO (2003)                        | Oral       | 0.02 ug/kg-d             | Hepatic and immunological effects                        |  |  |  |
| US EPA IRIS                       | Inhalation | Air Unit                 | Linear extrapolation below LED10s. Low                   |  |  |  |
| (1997)                            |            | Risk: $1 \times 10^{-4}$ | risk and persistence; upper-bound unit risk.             |  |  |  |
|                                   |            | per ug/m <sup>3</sup>    | Based on oral exposure study (Brunner et                 |  |  |  |
|                                   |            |                          | al., 1996; Norback and Weltman, 1985).                   |  |  |  |
|                                   |            | Aroclor 1                |                                                          |  |  |  |
| US EPA IRIS                       | Oral       | RfD: 7x10 <sup>-5</sup>  | Based on reduced birth weights in a                      |  |  |  |
| (1993)                            |            | mg/kg-d                  | monkey reproductive bioassay (Barsotti                   |  |  |  |
|                                   |            |                          | and van Miller, 1984; Levin et al., 1988;                |  |  |  |
|                                   |            |                          | Schantz et al., 1989, 1991).                             |  |  |  |
|                                   |            |                          | NOAEL: 0.007 mg/kg-d, UF = 100                           |  |  |  |
| Balagopal <i>et al.</i><br>(2005) | Oral       | 0.880 ug/kg-d            |                                                          |  |  |  |
|                                   |            | Aroclor 1                | 254                                                      |  |  |  |
| US EPA IRIS                       | Oral       | RfD: $2x10^{-5}$         | Based on ocular exudates, inflamed and                   |  |  |  |
| (1996)                            |            | mg/kg-d                  | prominent Meibomian glands, distorted                    |  |  |  |
|                                   |            |                          | growth of finger and toe nails, decreased                |  |  |  |
|                                   |            |                          | antibody (IgG and IgM) response to sheep                 |  |  |  |
|                                   |            |                          | erythrocytes from monkey clinical and                    |  |  |  |
|                                   |            |                          | immunologic studies (Arnold et al.,                      |  |  |  |
|                                   |            |                          | 1994a,b; Tryphonas et al., 1989, 1991 a,b).              |  |  |  |
|                                   |            |                          | LOAEL: 0.005 mg/kg-d, UF = 300.                          |  |  |  |
| Balagopal <i>et al</i> .          | Oral       | 0.032 ug/kg-d            |                                                          |  |  |  |
| (2005)                            |            |                          |                                                          |  |  |  |

| Source                         | Route of<br>Exposure | TRV           | Basis |
|--------------------------------|----------------------|---------------|-------|
|                                |                      | Aroclor 1     | 242   |
| Balagopal <i>et al.</i> (2005) | Oral                 | 0.170 ug/kg-d |       |
|                                |                      | Aroclor 1     | 260   |
| Balagopal <i>et al.</i> (2005) | Oral                 | 0.110 ug/kg-d |       |

#### References

Arnold, D.L., F. Bryce, R. Stapley *et al.* 1993a. Toxicological consequences of Aroclor 1254 ingestion by female Rhesus (Macaca mulatta) monkeys, Part 1A: Prebreeding phase - clinical health findings. Food Chem. Toxicol. 31: 799- 810.

Arnold, D.L., F. Bryce, K. Karpinski *et al.* 1993b. Toxicological consequences of Aroclor 1254 ingestion by female Rhesus (Macaca mulatta) monkeys, Part 1B: Prebreeding phase -clinical and analytical laboratory findings. Food Chem. Toxicol. 31: 811-824.

ATSDR, 2000. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Polychlorinated Biphenyls (PCBs), November 2000.

Balagopal, G., Manca, D., Welsh, P., Piche, D., Birmingham, B. 2005. Carcinogenic Assessment of Polychlorinated Biphenyls (PCBs) using a Non-Linear Dose-Response Model. Extended Abstract. Presented at the 25<sup>th</sup> International Symposium on Halogenated Environmental Organic Pollutants and POPs in Toronto, Ontario (August 21-26).

Barsotti, D.A. and J.P. van Miller. 1984. Accumulation of a commercial polychlorinated biphenyl mixture (Aroclor 1016) in adult rhesus monkeys and their nursing infants. Toxicology. 30: 31-44.

Brunner, M.J., T.M. Sullivan, A.W. Singer, *et. al.* 1996. An assessment of the chronic toxicity and oncogenicity of Aroclor-1016, Aroclor-1242, Aroclor- 1254, and Aroclor-1260 administered in diet to rats. Study No. SC920192. Chronic toxicity and oncogenicity report. Battelle, Columbus OH. As cited in US EPA IRIS.

Emmett EA, Maroni M, Schmith JM, *et al.* 1988. Studies of transformer repair workers exposed to PCBs: I. Study design, PCB concentrations, questionnaire, and clinical examination results. Am J Ind Med 13:415-427. As cited in ATSDR (2000).

Fischbein A, Wolff MS, Bernstein J, *et al.* 1982. Dermatological findings in capacitor manufacturing workers exposed to dielectric fluids containing polychlorinated biphenyls (PCBs). Arch Environ Health 37:69-74. As cited in ATSDR (2000).

Fischbein A, Wolff MS, Lilis R, *et al.* 1979. Clinical findings among PCB-exposed capacitor manufacturing workers. Ann NY Acad Sci 320:703-715. As cited in ATSDR (2000).

Guo YL, Yu M-L, Hsu C-C, *et al.* 1999. Chloracne, goiter, arthritis, and anemia after polychlorinated biphenyl poisoning: 14-year follow-up of the Taiwan Yucheng cohort. Environ Health Perspect 107(9):715-719. As cited in ATSDR (2000).

Health Canada, 2000. Contaminant Profiles: Polychlorinated Biphenyls (PCBs). Health Canada. www.hc-sc.gc.ca/ehp/ehd/catalogue/bch\_pubs/98ehd211/con\_profiles.pdf

Health Canada, 2004. Federal Contaminated Site Risk Assessment in Canada: Part I: Guidance on Human Health Screening Level Risk Assessment (SLRA), & Part II: Health Canada Toxicological Reference Values (TRVs),

Hsu C-C, Yu M-LM, Chen Y-CJ, *et al.* 1994. The Yu-Cheng rice oil poisoning incident. In: Schecter A, ed. Dioxins and health. New York, NY: Plenum Press, 661-684. As cited in ATSDR (2000).

IARC. 1987. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Supplement 7: Overall evaluations of carcinogenicity: An updating of IARC monographs volumes 1 to 42. World Health Organization, Lyon, France. As cited in ATSDR (2000).

Kreiss K, Zack MM, Kimbrough RD, *et al.* 1981. Association of blood pressure and polychlorinated biphenyl levels. J Am Med Assoc 245:2505-2509. As cited in ATSDR (2000).

Kuratsune M. 1989. Yusho, with reference to Yu-Cheng. In: Kimbrough RD, Jensen AA, eds. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. 2nd ed. Amsterdam, The Netherlands: Elsevier Science Publishers, 381-400. As cited in ATSDR (2000).

Langer P, Tajtakova M, Fodor G, *et al.* 1998. Increased thyroid volume and prevalence of thyroid disorders in an area heavily polluted by polychlorinated biphenyls. Eur J Endocrinol 139:402-409. As cited in ATSDR (2000).

Levin, E.D., S.L. Schantz and R.E Bowman. 1988. Delayed spatial alternation deficits resulting from perinatal PCB exposure in monkeys. Arch. Toxicol. 62: 267-273.

Maroni M, Columbi A, Arbosti G, *et al.* 1981a. Occupational exposure to polychlorinated biphenyls in electrical workers. II Health effects. Br J Ind Med 38:55-60. As cited in ATSDR (2000).

Maroni M, Columbi A, Arbosti G, *et al.* 1981b. Occupational exposure to polychlorinated biphenyls in electrical workers. I Environmental and blood polychlorinated biphenyls concentrations. Br J Ind Med 38:49-54. As cited in ATSDR (2000).

Masuda Y. 1994. The Yusho rice oil poisoning incident. In: Schecter A., ed. Dioxins and health. New York, NY: Plenum Press, 633-659. As cited in ATSDR (2000).

Nakanishi Y, Shigematsu N, Kurita Y, *et al.* 1985. Respiratory involvement and immune status in Yusho patients. Environ Health Perspect 59:31-36. As cited in ATSDR (2000).

Norback, D.H. and R.H. Weltman. 1985. Polychlorinated biphenyl induction of hepatocellular carcinoma in the Sprague-Dawley rat. Environ. Health Perspect. 60: 97-105. As cited in US EPA IRIS.

Ouw HK, Simpson GR, Siyali DS. 1976. Use and health effects of Aroclor 1242, a polychlorinated biphenyl, in an electrical industry. Arch Environ Health 31:189-194. As cited in ATSDR (2000).

Rogan WJ. 1989. Yu-Cheng. In: Kimbrough RD, Jensen AA, eds. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. 2nd ed. Amsterdam, The Netherlands: Elsevier Science Publishers, 401-415. As cited in ATSDR (2000).

Schantz, S.L., E.D. Levin, R.E. Bowman *et al.* 1989. Effects of perinatal PCB exposure on discrimination-reversal learning in monkeys. Neurotoxicol. Teratol. 11: 243-250.

Schantz, S.L., E.D. Levin and R.E. Bowman. 1991. Long-term neurobehavioral effects of perinatal polychlorinated biphenyl (PCB) exposure in monkeys. Environ. Toxicol. Chem. 10: 747-756.

Shigematsu N, Norimatsu Y, Ishibashi T, *et al.* 1971. Clinical and experimental studies on respiratory involvement in chlorobiphenyls poisoning. Fukuoka Ishi 62(1):150-156. As cited in ATSDR (2000).

Smith AB, Schloemer J, Lowry LK, *et al.* 1982. Metabolic and health consequences of occupational exposure to polychlorinated biphenyls. Br J Ind Med 39:361-369. As cited in ATSDR (2000).

Tryphonas, H., S. Hayward, L. O'Grady *et al.* 1989. Immunotoxicity studies of PCB (Aroclor 1254) in the adult rhesus (Macaca mulatta) monkey -- preliminary report. Int. J. Immunopharmacol. 11: 199-206.

Tryphonas, H., M.I. Luster, G. Schiffman *et al.* 1991a. Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the rhesus (Macaca mulatta) monkey. Fund. Appl. Toxicol. 16(4): 773-786.

Tryphonas, H., M.I. Luster, K.L. White *et al.* 1991b. Effects of PCB (Aroclor 1254) on non-specific immune parameters in Rhesus (Macaca mulatta) monkeys. Int. J. Immunopharmacol. 13: 639-648.

United States Environmental Protection Agency Integrated Risk Information System (US EPA IRIS), 1993. Toxicological Profile for Aroclor 1016. www.epa.gov/iris

United States Environmental Protection Agency Integrated Risk Information System (US EPA IRIS), 1996. Toxicological Profile for Aroclor 1254. www.epa.gov/iris

United States Environmental Protection Agency Integrated Risk Information System (US EPA IRIS), 1997. Toxicological Profile for PCB. www.epa.gov/iris

Warshaw R, Fischbein A, Thornton J, *et al.* 1979. Decrease in vital capacity in PCB-exposed workers in a capacitor manufacturing facility. Ann NY Acad Sci 320:277-283. As cited in ATSDR (2000).

WHO, 2003. Polychlorinated Biphenyls: Human Health Aspects. Concise International Chemical Assessment Document 55. World Health Organization, 2003. ISBN 92 4 153055 3

#### 6 Dioxin-Like PCBs

The various isomers and congeners of polychlorinated dibenzo-*p*-dioxins (PCDDs), polychclorinated dibenzofurans (PCDFs) and dioxin-like PCBs (DL-PCBs) all have the same biological mechanism of action (*ie.* they all work on the body in the same way). However, they differ in their levels of toxicity. The WHO TEFs are used to relate the toxicities of the various PCDDs, PCDFs and DL-PCBs to the most potent PCDD in the group (2,3,7,8-PCDD), which is assigned a potency factor or TEF of 1.0. The concentrations of the individual PCDD, PCDF and DL-PCB isomers and congeners are multiplied by their respective TEF to provide a toxic equivalent concentration or TEQ. For example if the soil concentration of octachlorodibenzo-p-dioxin (OCDD) is reported as 500 pg/g, this is converted to a TEQ concentration by multiplying the reported concentration by the TEF for OCDD (500 pg/g x 0.0001 = 0.5 pg TEQ/g). Similar calculations are completed for each PCDD, PCDF and DLPCB and the TEQ concentrations are then used in the HHRA to estimate exposure and potential hazards. The MOE supports the use of the TEQ approach for the assessment of exposures to PCB mixtures (Manca *et al.*, 2005).

Officially, the Health Canada and TDI for PCDD/PCDF is 10 pg TEQ/kg-d (Health Canada, 2004); however, the WHO/FAO Joint Expert Committee on Food Additives and Contaminants (JECFA) recently proposed a revised Provisional Tolerable Monthly Intake (PTMI) of 70 pg/kg-month (JECFA, 2002). On a daily basis, this PTMI is equivalent to a Provisional Tolerable Daily Intake (PTDI) of 2.3 pg TEQ.kg-d. This revised TDI is being implemented by the federal government and MOE. This TDI is in use by the MOE Sport fish Advisory group and will be incorporated into upcoming revisions of MOE's soil and air guidelines. The current model for calculating TEQ is the 1997 WHO TEF scheme for mammals (applies to humans) (van den Berg *et al.*, 1998)

The JECFA PTMI is based on the most sensitive adverse effects of dioxin on developmental endpoints in rats (specifically, effects on the reproductive system of male offspring of female rats treated with dioxin) similar to those and other endpoints considered by WHO, 1998 and SCF, 2001. Essentially, WHO 1998 set a range (1-4 pg/kg/day) and the SCF, 2001 and JECFA, 2002 select midpoints in this range (SCF = 2 pg/kg/d, JECFA = 2.3 pg/kg/d).

#### References

Health Canada, 2004. Federal Contaminated Site Risk Assessment in Canada, Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA) and Part II: Health Canada Toxicological Reference Values (TRVs). Health Canada, 2004

JECFA, 2002. World Health Organization Joint FAO/WHO Expert Committee on Food Additives (2001 : Rome, Italy) Evaluation of certain food additives and contaminants : fifty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. (WHO technical report series; 909).

Manca, D., Balagopal, G, Welsh, P.G., Piche, D., and B. Birmingham, 2005. Assessing the carcinogenicity of total PCBs using toxicity equivalents (TEQ). Extended abstract. Presented at

the 25<sup>th</sup> International Symposium on Halogenated Environmental Organic Pollutants and POPs in Toronto, Ontario.

Scientific Committee on Food (SCF), 2001. Opinion Of The Scientific Committee On Food On The Risk Assessment Of Dioxins And Dioxin-Like PCBs In Food Update Based On New Scientific Information Available Since The Adoption Of The SCF Opinion Of 22nd November 2000. CS/CNTM/DIOXIN/20 final. Adopted on 30 May 2001.

Van den Berg, M., et al. 1998. Toxic equivalency factgors (TEFs) for PCBs, PCDDs, PCDFs, for humans and wildlife. Environ. Health Perspectives 106 (12): 775-792.

World Health Organization (WHO) 1998. Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI). WHO Consultation May 25-29 1998, Geneva, Switzerland.